
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, IRSCI, SCI, SPI
Peripherals	LED, LVD, POR, PWM
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-QFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68hc908ap32cfb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Monitor ROM

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
	MMIIC Data Receive	Read:	MMRD7	MMRD6	MMRD5	MMRD4	MMRD3	MMRD2	MMRD1	MMRD0
\$004D	Register	Write:								
	(MMDRR)	Reset:	0	0	0	0	0	0	0	0
	MMIIC CRC Data Register	Read:	MMCRCD7	MMCRCD6	MMCRCD5	MMCRCD4	MMCRCD3	MMCRCD2	MMCRCD1	MMCRCD0
\$004E	(MMCRDR)	Write:								
		Reset:	0	0	0	0	0	0	0	0
	MMIIC Frequency Divider	Read:	0	0	0	0	0	MMBR2	MMBR1	MMBR0
\$004F	Register	Write:							IVIIVIDNI	IVIIVIDOU
	(MMFDR)	Reset:	0	0	0	0	0	1	0	0
		Read:	R	R	Р	р	D	р	R	R
\$0050	Reserved	Write:		n	R	R	R	R	n	n
		Reset:								
	Timebase Control Register	Read:	TBIF	TBR2	TBR1	TBR0	0	TBIE	TBON	R
\$0051	(TBCR)	Write:		TDNZ	IDNI	IDNU	TACK	IDE	TBON	n
		Reset:	0	0	0	0	0	0	0	0
		Read:								
\$0052	Unimplemented	Write:								
		Reset:								
		Read:								
\$0053	Unimplemented	Write:								
		Reset:								
		Read:								
\$0054	Unimplemented	Write:								
		Reset:								
		Read:								
\$0055	Unimplemented	Write:								
		Reset:								
		Read:								
\$0056	Unimplemented	Write:								
		Reset:								
	ADC Status and Control	Read:	0000		ADCO	ADCH4	ADCH3	ADCH2		ADCH0
\$0057	Register	Write:		AIEN	ADCO	ADCH4	ADCH3	ADCHZ	ADCH1	ADCHU
	(ADSCR)	Reset:	0	0	0	1	1	1	1	1
		Read:						MODEO	0	0
\$0058	ADC Clock Control Register (ADICLK)	Write:	ADIV2	ADIV1	ADIV0	ADICLK	MODE1	MODE0		R
		Reset:	0	0	0	0	0	0	0	0
		Read:	ADx	ADx	ADx	ADx	ADx	ADx	ADx	ADx
\$0059	ADC Data Register High 0 (ADRH0)	Write:	R	R	R	R	R	R	R	R
	(סוווישה)	Reset:	0	0	0	0	0	0	0	0
	U = Unaffected		X = Indeterm	inate		= Unimplem	ented	R	= Reserved	

Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 9)

Central Processor Unit (CPU)



Figure 4-5. Program Counter (PC)

4.3.5 Condition Code Register

The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register.

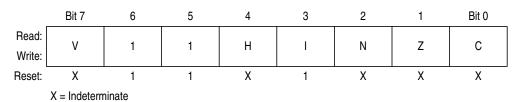


Figure 4-6. Condition Code Register (CCR)

V — Overflow Flag

The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag.

1 = Overflow

0 = No overflow

H — Half-Carry Flag

The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor.

1 = Carry between bits 3 and 4

0 = No carry between bits 3 and 4

I — Interrupt Mask

When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.

1 = Interrupts disabled

0 = Interrupts enabled

NOTE

To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions.

Source	Operation	Description		E		ct (CR			Address Mode	Opcode	Operand	Cycles
Form			v	н	I	Ν	z	С	PdA	do	Ope	ටි
AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP	Logical AND	A ← (A) & (M)	0	_	_	0	o	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A4 B4 C4 D4 E4 F4 9EE4 9ED4	ii dd hh ll ee ff ff ee ff	2 3 4 3 2 4 5
ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP	Arithmetic Shift Left (Same as LSL)	C ← ← 0 b7 b0	0	_	_	0	0	0	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	4 1 4 3 5
ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP	Arithmetic Shift Right		o	_	_	0	0	o	DIR INH INH IX1 IX SP1	37 47 57 67 77 9E67	dd ff ff	4 1 4 3 5
BCC rel	Branch if Carry Bit Clear	$PC \leftarrow (PC) + 2 + rel ? (C) = 0$	-	-	_	-	-	-	REL	24	rr	3
BCLR n, opr	Clear Bit n in M	Mn ← 0	_	_	_	_	_	_	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b5) DIR (b7)	11 13 15 17 19 1B 1D 1F	dd dd dd dd dd dd dd dd dd	4 4 4 4 4 4 4 4
BCS rel	Branch if Carry Bit Set (Same as BLO)	PC ← (PC) + 2 + <i>rel</i> ? (C) = 1	-	-	-	-	-	-	REL	25	rr	3
BEQ rel	Branch if Equal	PC ← (PC) + 2 + <i>rel</i> ? (Z) = 1	-	-	-	-	-	-	REL	27	rr	3
BGE opr	Branch if Greater Than or Equal To (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (N \oplus V) = 0$	-	-	-	-	-	-	REL	90	rr	3
BGT opr	Branch if Greater Than (Signed Operands)	$PC \leftarrow (PC) + 2 + rel? (Z) \mid (N \oplus V) = 0$	-	_	_	-	-	-	REL	92	rr	3
BHCC rel	Branch if Half Carry Bit Clear	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (H) = 0$	-	-	-	-	-	-	REL	28	rr	3
BHCS rel	Branch if Half Carry Bit Set	PC ← (PC) + 2 + <i>rel</i> ? (H) = 1	-	-	-	-	-	-	REL	29	rr	3
BHI <i>rel</i>	Branch if Higher	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) \mid (Z) = 0$	-	-	-	-	-	-	REL	22	rr	3
BHS rel	Branch if Higher or Same (Same as BCC)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) = 0$	-	_	_	_	_	-	REL	24	rr	3
BIH <i>rel</i>	Branch if IRQ Pin High	$PC \leftarrow (PC) + 2 + \mathit{rel} ? \overline{IRQ} = 1$	-	_	_	-	_	-	REL	2F	rr	3
BIL <i>rel</i>	Branch if IRQ Pin Low	$PC \leftarrow (PC) + 2 + rel ? \overline{IRQ} = 0$	-	-	_	-	-	-	REL	2E	rr	3

Central Processor Unit (CPU)

Source	Operation	Description		E		ct o CR	on		Address Mode	Opcode	Operand	Cycles
Form	•		v	н	I	Ν	z	С	Ado	ŎĎ	ope	ଧି
BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP	Bit Test	(A) & (M)	0	_	_	o	o	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A5 B5 C5 D5 E5 F5 9EE5 9ED5	ii dd hh ll ee ff ff ee ff	2 3 4 3 2 4 5
BLE opr	Branch if Less Than or Equal To (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (Z) \mid (N \oplus V) = 1$	-	_	_	-	-	-	REL	93	rr	3
BLO rel	Branch if Lower (Same as BCS)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) = 1$	-	-	-	-	-	-	REL	25	rr	3
BLS rel	Branch if Lower or Same	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) \mid (Z) = 1$	-	-	-	-	-	-	REL	23	rr	3
BLT opr	Branch if Less Than (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (N \oplus V) = 1$	-	-	-	-	-	-	REL	91	rr	3
BMC rel	Branch if Interrupt Mask Clear	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (I) = 0$	-	-	-	-	-	-	REL	2C	rr	3
BMI <i>rel</i>	Branch if Minus	PC ← (PC) + 2 + <i>rel</i> ? (N) = 1	-	-	_	-	-	-	REL	2B	rr	3
BMS rel	Branch if Interrupt Mask Set	PC ← (PC) + 2 + <i>rel</i> ? (I) = 1	-	-	_	-	-	-	REL	2D	rr	3
BNE rel	Branch if Not Equal	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (Z) = 0$	-	-	_	-	-	-	REL	26	rr	3
BPL <i>rel</i>	Branch if Plus	PC ← (PC) + 2 + <i>rel</i> ? (N) = 0	-	-	_	-	-	-	REL	2A	rr	3
BRA rel	Branch Always	$PC \leftarrow (PC) + 2 + \mathit{rel}$	-	-	_	-	-	-	REL	20	rr	3
BRCLR n,opr,rel	Branch if Bit <i>n</i> in M Clear	PC ← (PC) + 3 + <i>rel</i> ? (Mn) = 0	_	_	_	_	_	o	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b3) DIR (b4) DIR (b5) DIR (b5) DIR (b6)	01 03 05 07 09 0B 0D 0F	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	5 5 5 5 5 5 5 5 5 5 5 5
BRN <i>rel</i>	Branch Never	$PC \leftarrow (PC) + 2$	-	-	_	-	-	-	REL	21	rr	3
BRSET n,opr,rel	Branch if Bit <i>n</i> in M Set	PC ← (PC) + 3 + <i>rel</i> ? (Mn) = 1	_	_	_	_	_	o	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b3) DIR (b4) DIR (b5) DIR (b5) DIR (b7)	00 02 04 06 08 0A 0C 0E	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	5 5 5 5 5 5 5 5 5 5 5 5
BSET n,opr	Set Bit <i>n</i> in M	Mn ← 1	_	_	_	_	_	_	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b5) DIR (b7)	10 12 14 16 18 1A 1C 1E	dd dd dd dd dd dd dd dd dd	4 4 4 4 4 4 4 4 4

Source Form	Operation	Description		E		ct o CR			Address Mode	Opcode	Operand	Cycles
Form			v	н	I	N	z	С	PA	do	Ope	S S
BSR rel	Branch to Subroutine	$\begin{array}{l} PC \leftarrow (PC) + 2; push (PCL) \\ SP \leftarrow (SP) - 1; push (PCH) \\ SP \leftarrow (SP) - 1 \\ PC \leftarrow (PC) + \mathit{rel} \end{array}$	-	_	_	_	-	-	REL	AD	rr	4
CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel	Compare and Branch if Equal	$\begin{array}{l} PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (X) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 2 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 4 + rel ? (A) - (M) = \$00 \end{array}$	-	_	_	_	_	_	DIR IMM IMM IX1+ IX+ SP1	31 41 51 61 71 9E61	dd rr ii rr ii rr ff rr rr ff rr	5 4 4 5 4 6
CLC	Clear Carry Bit	$C \leftarrow 0$	-	-	-	-	-	0	INH	98		1
CLI	Clear Interrupt Mask	l ← 0	-	-	0	-	-	-	INH	9A		2
CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP	Clear	$\begin{array}{c} M \leftarrow \$00\\ A \leftarrow \$00\\ X \leftarrow \$00\\ H \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ \end{array}$	0	_	_	0	1	_	DIR INH INH IX1 IX SP1	3F 4F 5F 8C 6F 7F 9E6F	dd ff ff	3 1 1 3 2 4
CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP	Compare A with M	(A) – (M)	o	_	_	o	o	o	IMM DIR EXT IX2 IX1 IX SP1 SP2	A1 B1 C1 E1 F1 9EE1 9ED1	ii dd hh ll ee ff ff ff ee ff	2 3 4 3 2 4 5
COM opr COMA COMX COM opr,X COM ,X COM opr,SP	Complement (One's Complement)	$\begin{split} M &\leftarrow (\overline{M}) = \$FF - (M) \\ A &\leftarrow (\overline{A}) = \$FF - (M) \\ X &\leftarrow (\overline{X}) = \$FF - (M) \\ M &\leftarrow (\overline{M}) = \$FF - (M) \end{split}$	0	_	_	0	0	1	DIR INH INH IX1 IX SP1	33 43 53 63 73 9E63	dd ff ff	4 1 4 3 5
CPHX # <i>opr</i> CPHX <i>opr</i>	Compare H:X with M	(H:X) – (M:M + 1)	0	-	-	0	0	0	IMM DIR	65 75	ii ii+1 dd	3 4
CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP	Compare X with M	(X) – (M)	o	_	_	o	o	0	IMM DIR EXT IX2 IX1 IX SP1 SP2	A3 B3 C3 D3 E3 F3 9EE3 9ED3	ii dd hh ll ee ff ff ee ff	2 3 4 3 2 4 5
DAA	Decimal Adjust A	(A) ₁₀	υ	_	-	0	0	0	INH	72		2
	I	I	I		L	I		I	I		I	1

Source	Operation	Description		E		ct (CR			Address Mode	Opcode	erand	Cycles
Form			v	н	I	Ν	z	С	Add	Ő	do	ပ်
LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP	Load X from M	X ← (M)	0	_	_	0	o	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	AE BE CE DE EE FE 9EEE 9EDE	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP	Logical Shift Left (Same as ASL)	C	0	_	_	0	o	o	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	4 1 4 3 5
LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP	Logical Shift Right		0	_	_	0	0	0	DIR INH INH IX1 IX SP1	34 44 54 64 74 9E64	dd ff ff	4 1 4 3 5
MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr	Move	$(M)_{Destination} \leftarrow (M)_{Source}$ H:X \leftarrow (H:X) + 1 (IX+D, DIX+)	0	_	_	0	0	_	DD DIX+ IMD IX+D	4E 5E 6E 7E	dd dd dd ii dd dd	5 4 4 4
MUL	Unsigned multiply	$X:A \gets (X) \times (A)$	-	0	-	-	-	0	INH	42		5
NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP	Negate (Two's Complement)	$\begin{split} M &\leftarrow -(M) = \$00 - (M) \\ A &\leftarrow -(A) = \$00 - (A) \\ X &\leftarrow -(X) = \$00 - (X) \\ M &\leftarrow -(M) = \$00 - (M) \\ M &\leftarrow -(M) = \$00 - (M) \end{split}$	0	_	_	0	o	o	DIR INH INH IX1 IX SP1	30 40 50 60 70 9E60	dd ff ff	4 1 4 3 5
NOP	No Operation	None	-	-	-	-	-	-	INH	9D		1
NSA	Nibble Swap A	A ← (A[3:0]:A[7:4])	-	-	-	-	-	-	INH	62		3
ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP	Inclusive OR A and M	A ← (A) (M)	0	_	_	0	o	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	AA BA CA DA EA FA 9EEA 9EDA	ii dd hh II ee ff ff ff ee ff	2 3 4 3 2 4 5
PSHA	Push A onto Stack	Push (A); SP \leftarrow (SP) – 1	-	-	-	-	-	-	INH	87		2
PSHH	Push H onto Stack	Push (H); SP \leftarrow (SP) – 1	-	-	-	-	-	-	INH	8B		2
PSHX	Push X onto Stack	Push (X); SP \leftarrow (SP) – 1	-	-	-	-	-	-	INH	89		2
PULA	Pull A from Stack	$SP \leftarrow (SP + 1); Pull (A)$	-	-	-	-	-	-	INH	86		2

SIM Bus Clock Control and Generation

		Read:	IF6	IF5	IF4	IF3	IF2	IF1	0	0
\$FE04	Interrupt Status Register 1 (INT1)	Write:	R	R	R	R	R	R	R	R
	()	Reset:	0	0	0	0	0	0	0	0
	Interrupt Statue Degister 2	Read:	IF14	IF13	IF12	IF11	IF10	IF9	IF8	IF7
\$FE05	Interrupt Status Register 2 (INT2)	Write:	R	R	R	R	R	R	R	R
	()	Reset:	0	0	0	0	0	0	0	0
	Interrupt Statue Degister 2	Read:	0	IF21	IF20	IF19	IF18	IF17	IF16	IF15
\$FE06	Interrupt Status Register 3 (INT3)	Write:	R	R	R	R	R	R	R	R
	(Reset:	0	0	0	0	0	0	0	0
				= Unimple	mented					

7.2 SIM Bus Clock Control and Generation

The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 7-3. This clock can come from either an external oscillator or from the on-chip PLL. (See Chapter 6 Clock Generator Module (CGM).)

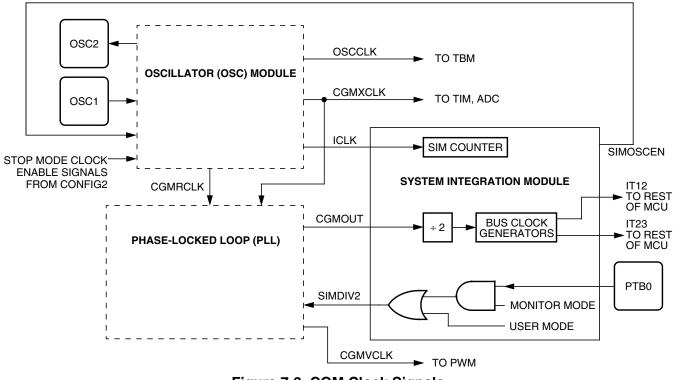


Figure 7-3. CGM Clock Signals

7.2.1 Bus Timing

In user mode, the internal bus frequency is either the oscillator output (CGMXCLK) divided by four or the divided PLL output (CGMPCLK) divided by four.

8.5.2 ERARNGE

ERARNGE is used to erase a range of locations in FLASH.

Routine Name	ERARNGE
Routine Description	Erase a page or the entire array
Calling Address	\$FCE4
Stack Used	9 bytes
Data Block Format	Bus speed (BUS_SPD) Data size (DATASIZE) Starting address (ADDRH) Starting address (ADDRL)

Table 8-12. ERARNGE Routine

There are two sizes of erase ranges: a page or the entire array. The ERARNGE will erase the page (512 consecutive bytes) in FLASH specified by the address ADDRH:ADDRL. This address can be any address within the page. Calling ERARNGE with ADDRH:ADDRL equal to \$FFFF will erase the entire FLASH array (mass erase). Therefore, care must be taken when calling this routine to prevent an accidental mass erase.

The ERARNGE routine do not use a data array. The DATASIZE byte is a dummy byte that is also not used.

The coding example below is to perform a page erase, from \$EE00-\$EFFF. The Initialization subroutine is the same as the coding example for PRGRNGE (see 8.5.1 PRGRNGE).

ERARNGE EQU \$FCE4 MAIN: BSR INITIALISATION : LDHX #FILE_PTR JSR ERARNGE :

Functional Description

Addr.	Register Name	_	Bit 7	6	5	4	3	2	1	Bit 0
*****	TIM1 Status and Control	Read:	TOF	TOIE	TSTOP	0	0	PS2	PS1	PS0
\$0020	Register (T1SC)	Write:	0	0	1	TRST 0	0	0	0	0
	TIM1 Counter Register	Reset: Read:	Bit 15	14	13	12	11	10	9	Bit 8
\$0021	High	Write:	Dit 15	14	13	12	11	10	9	Dit o
ψ0021	(T1CNTH)	Reset:	0	0	0	0	0	0	0	0
	TIM1 Counter Register	Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$0022	Low	Write:								
	(T1CNTL)	Reset:	0	0	0	0	0	0	0	0
	TIM Counter Modulo	Read:	Bit 15	14	13	12	11	10	9	Bit 8
\$0023	Register High	Write:								
	(TMODH)	Reset:	1	1	1	1	1	1	1	1
	TIM1 Counter Modulo	Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$0024	Register Low	Write:		 						
	(T1MODL) TIM1 Channel 0 Status	Reset: Read:	1 CH0F	1	1	1	1	1	1	1
\$0025	and Control Register	Write:	0	CHOIE	MS0B	MS0A	ELS0B	ELS0A	TOV0	CH0MAX
\$00 <u></u> 20	(T1SC0)	Reset:	0	0	0	0	0	0	0	0
	TIM1 Channel 0	Read:	Bit 15	14	13	12	11	10	0	Bit 8
\$0026	Register High	Write:	DIL TO	14	10	12	11	10	9	DILO
	(T1CH0H)	Reset:				Indetermina	te after reset			
	TIM1 Channel 0	Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$0027	Register Low	Write:								
	(T1CH0L) TIM1 Channel 1 Status	Reset: Read:	CH1F		0	Indetermina	te after reset			
\$0028	and Control Register	Write:		CH1IE	0	MS1A	ELS1B	ELS1A	TOV1	CH1MAX
ψ0020	(T1SC1)	Reset:	0	0	0	0	0	0	0	0
	TIM1 Channel 1	Read:	-	-		_		-	-	
\$0029	Register High	Write:	Bit 15	14	13	12	11	10	9	Bit 8
	(T1CH1H)	Reset:				Indetermina	te after reset			
	TIM1 Channel 1	Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$002A	Register Low	Write:		0	5			2	I	Dit U
	(T1CH1L)	Reset:		1	1	1	te after reset		1	
#000B	TIM2 Status and Control	Read:	TOF	TOIE	TSTOP		0	PS2	PS1	PS0
\$002B	Register (T2SC)	Write:	0		4	TRST	0			
	TIM2 Counter Register	Read:	0 Bit 15	0	1	0	0	0 10	0	0 Bit 8
\$002C	High	Write:	Dit 15	14	10	12	11	10	3	Dit 0
Ψ0020	(T2CNTH)	Reset:	0	0	0	0	0	0	0	0
	TIM2 Counter Register	Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$002D	Low	Write:	-							-
	(T2CNTL)	Reset:	0	0	0	0	0	0	0	0
****	TIM2 Counter Modulo	Read:	Bit 15	14	13	12	11	10	9	Bit 8
\$002E	Register High	Write:	1	<u>ا</u>	1	1	1	1	-	1
	(T2MODH)	Reset:	1	ı Unimplen =	•	I	I	I	1	I
		L								

Figure 9-2. TIM I/O Register Summary (Sheet 1 of 2)

Serial Communications Interface Module (SCI)

TE — Transmitter Enable Bit

Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the TxD returns to the idle condition (logic 1). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit.

1 = Transmitter enabled

0 = Transmitter disabled

NOTE

Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1.

RE — Receiver Enable Bit

Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit.

1 = Receiver enabled

0 = Receiver disabled

NOTE

Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1.

RWU — Receiver Wakeup Bit

This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit.

1 = Standby state

0 = Normal operation

SBK — Send Break Bit

Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit.

1 = Transmit break characters

0 = No break characters being transmitted

NOTE

Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the SCI to send a break character instead of a preamble.

SCI status register 2 contains flags to signal the following conditions:

- Break character detected •
- Incoming data •

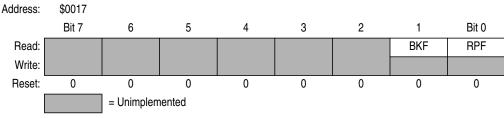


Figure 11-14. SCI Status Register 2 (SCS2)

BKF — Break Flag Bit

This clearable, read-only bit is set when the SCI detects a break character on the RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the SCDR. Once cleared, BKF can become set again only after logic 1s again appear on the RxD pin followed by another break character. Reset clears the BKF bit.

1 = Break character detected

0 = No break character detected

RPF — Reception in Progress Flag Bit

This read-only bit is set when the receiver detects a logic 0 during the RT1 time period of the start bit search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits (usually from noise or a baud rate mismatch) or when the receiver detects an idle character. Polling RPF before disabling the SCI module or entering stop mode can show whether a reception is in progress.

1 = Reception in progress

0 = No reception in progress

11.8.6 SCI Data Register

The SCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit shift registers. Reset has no effect on data in the SCI data register.

Address:	\$0018							
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	R7	R6	R5	R4	R3	R2	R1	R0
Write:	T7	T6	T5	T4	Т3	T2	T1	T0
Reset:				Unaffecte	d by reset			

Figure 11-15. SCI Data Register (SCDR)

R7/T7–R0/T0 — Receive/Transmit Data Bits

Reading the SCDR accesses the read-only received data bits, R7–R0. Writing to the SCDR writes the data to be transmitted, T7–T0. Reset has no effect on the SCDR.

NOTE

Do not use read/modify/write instructions on the SCI data register.

Infrared Serial Communications Interface Module (IRSCI)

RT3, RT5, and RT7 Samples	Start Bit Verification	Noise Flag
011	No	0
100	Yes	1
101	No	0
110	No	0
111	No	0

Table 12-2. Start Bit Verification

If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.

To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 12-3 summarizes the results of the data bit samples.

RT8, RT9, and RT10 Samples	Data Bit Determination	Noise Flag
000	0	0
001	0	1
010	0	1
011	1	1
100	0	1
101	1	1
110	1	1
111	1	0

Table 12-3. Data Bit Recovery

NOTE

The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a successful start bit verification, the noise flag (NF) is set and the receiver assumes that the bit is a start bit.

To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 12-4 summarizes the results of the stop bit samples.

RT8, RT9, and RT10 Samples	Framing Error Flag	Noise Flag
000	1	0
001	1	1

Table 12-4. Stop Bit Recovery

Infrared Serial Communications Interface Module (IRSCI)

The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit character with no errors is

$$\left|\frac{154 - 147}{154}\right| \times 100 = 4.54\%$$

For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times \times 16 RT cycles + 10 RT cycles = 170 RT cycles.

With the misaligned character shown in Figure 12-10, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 10 bit times \times 16 RT cycles + 3 RT cycles = 163 RT cycles.

The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit character with no errors is

$$\left|\frac{170 - 163}{170}\right| \times 100 = 4.12\%$$

Fast Data Tolerance

Figure 12-11 shows how much a fast received character can be misaligned without causing a noise error or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data samples at RT8, RT9, and RT10.

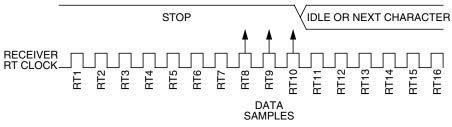


Figure 12-11. Fast Data

For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times \times 16 RT cycles + 10 RT cycles = 154 RT cycles.

With the misaligned character shown in Figure 12-11, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 10 bit times \times 16 RT cycles = 160 RT cycles.

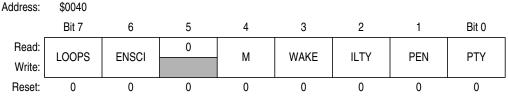
The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit character with no errors is

$$\left|\frac{154 - 160}{154}\right| \times 100 = 3.90\%$$

For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times \times 16 RT cycles + 10 RT cycles = 170 RT cycles.

With the misaligned character shown in Figure 12-11, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 11 bit times \times 16 RT cycles = 176 RT cycles.

The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit character with no errors is


Infrared Serial Communications Interface Module (IRSCI)

- IRSCI status register 1 (IRSCS1)
- IRSCI status register 2 (IRSCS2)
- IRSCI data register (IRSCDR)
- IRSCI baud rate register (IRSCBR)
- IRSCI infrared control register (IRSCIRCR)

12.9.1 IRSCI Control Register 1

SCI control register 1:

- Enables loop mode operation
- Enables the SCI
- Controls output polarity
- Controls character length
- Controls SCI wakeup method
- Controls idle character detection
- Enables parity function
- Controls parity type

Figure 12-12. IRSCI Control Register 1 (IRSCC1)

LOOPS — Loop Mode Select Bit

This read/write bit enables loop mode operation for the SCI only. In loop mode the RxD pin is disconnected from the SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must be enabled to use loop mode. The infrared encoder/decoder is not in the loop. Reset clears the LOOPS bit.

- 1 = Loop mode enabled
- 0 = Normal operation enabled

ENSCI — Enable SCI Bit

This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit.

1 = SCI enabled

0 = SCI disabled

12.9.8 IRSCI Infrared Control Register

The infrared control register contains the control bits for the infrared sub-module.

- Enables the infrared sub-module
- Selects the infrared transmitter narrow pulse width

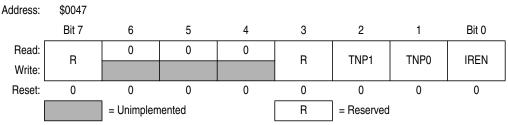


Figure 12-20. IRSCI Infrared Control Register (IRSCIRCR)

TNP1 and TNP0 — Transmitter Narrow Pulse Bits

These read/write bits select the infrared transmitter narrow pulse width as shown in Table 12-10. Reset clears TNP1 and TNP0.

TNP1 and TNP0	Prescaler Divisor (PD)			
00	SCI transmits a 3/16 narrow pulse			
01	SCI transmits a 1/16 narrow pulse			
10	COL transmite a 1/20 narrow pulsa			
11	SCI transmits a 1/32 narrow pulse			

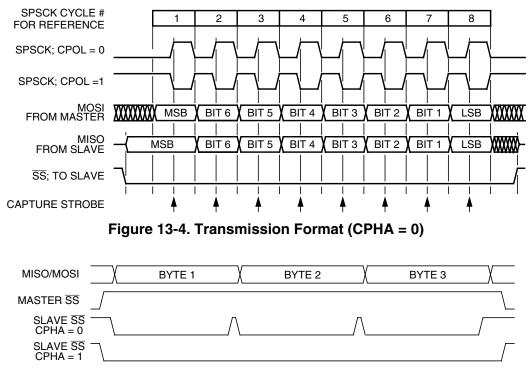
Table 12-10. Infrared Narrow Pulse Selection

IREN — Infrared Enable Bit

This read/write bit enables the infrared sub-module for encoding and decoding the SCI data stream. When this bit is clear, the infrared sub-module is disabled. Reset clears the IREN bit.

1 = infrared sub-module enabled

0 = infrared sub-module disabled



13.5.2 Transmission Format When CPHA = 0

Figure 13-4 shows an SPI transmission in which CPHA is logic 0. The figure should not be used as a replacement for data sheet parametric information.

Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The \overline{SS} line is the slave select input to the slave. The slave SPI drives its MISO output only when its slave select input (\overline{SS}) is at logic 0, so that only the selected slave drives to the master. The \overline{SS} pin of the master is not shown but is assumed to be inactive. The \overline{SS} pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See 13.7.2 Mode Fault Error.) When CPHA = 0, the first SPSCK edge is the MSB capture strobe. Therefore, the slave must begin driving its data before the first SPSCK edge, and a falling edge on the \overline{SS} pin is used to start the slave data transmission. The slave's \overline{SS} pin must be toggled back to high and then low again between each byte transmitted as shown in Figure 13-5.

When CPHA = 0 for a slave, the falling edge of \overline{SS} indicates the beginning of the transmission. This causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the transmission begins, no new data is allowed into the shift register from the transmit data register. Therefore, the SPI data register of the slave must be loaded with transmit data before the falling edge of \overline{SS} . Any data written after the falling edge is stored in the transmit data register and transferred to the shift register after the current transmission.

Analog-to-Digital Converter (ADC)

ADC Data Register Law 2	Read:	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2
50050		R	R	R	R	R	R	R	R
(ADRL3)	Reset:	0	0	0	0	0	0	0	0
ADC Data Register Low 2	Read:	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2
\$005D ADC Data Register Low 3 (ADRL3)	Write:	R	R	R	R	R	R	R	R
	Reset:	0	0	0	0	0	0	0	0
ADC Auto-scan Control	Read:	0	0	0	0	0			ASCAN
\$005E Register							AUTOT	AUTOU	ASCAN
(ADASCR)	Reset:	0	0	0	0	0	0	0	0
	(= Unimplemented				R	= Reserved		
	ADC Auto-scan Control Register	ADC Data Register Low 2 (ADRL3) ADC Data Register Low 3 (ADRL3) ADC Data Register Low 3 (ADRL3) ADC Auto-scan Control Register Write:	ADC Data Register Low 2 (ADRL3) ADC Data Register Low 3 (ADRL3) ADC Data Register Low 3 (ADRL3) ADC Auto-scan Control Register Write: R Reset: 0 Write: R Reset: 0 Read: AD9 Write: R Reset: 0 Read: 0 Write: R	ADC Data Register Low 2 (ADRL3)Write:RRADC Data Register Low 3 (ADRL3)Write:Read:00ADC Data Register Low 3 (ADRL3)Write:Read:AD9AD8ADC Data Register Low 3 (ADRL3)Write:RRADC Data Register Low 3 (ADRL3)Read:00ADC Auto-scan Control RegisterRead:00ADC Auto-scan Control (ADASCR)Reset:00	ADC Data Register Low 2 (ADRL3)Write:RRReset:000ADC Data Register Low 3 (ADRL3)Read:AD9AD8AD7ADC Data Register Low 3 (ADRL3)Write:RRRRead:AD9AD8AD7ADC Auto-scan Control RegisterRead:000ADC Auto-scan Control (ADASCR)Reset:000Reset:00000	ADC Data Register Low 2 (ADRL3)Write:RRRReset:0000ADC Data Register Low 3 (ADRL3)Read:AD9AD8AD7AD6Murite:RRRRRADC Data Register Low 3 (ADRL3)Write:RRRADC Data Register Low 3 (ADRL3)Read:000ADC Data Register Low 3 (ADRL3)Write:RRRADC Auto-scan Control RegisterRead:000Register (ADASCR)Write:Urite:Urite:Urite:	ADC Data Register Low 2 (ADRL3) Write: R R R R ADC Data Register Low 3 (ADRL3) Write: R R R R R ADC Data Register Low 3 (ADRL3) Write: R R R R R ADC Data Register Low 3 (ADRL3) (ADRL3) Write: R R R R ADC Data Register Low 3 (ADRL3) (ADRL3) Write: R R R R ADC Auto-scan Control Register Read: 0 0 0 0 0 ADC Auto-Scan Control Register Reset: 0 0 0 0 0	ADC Data Register Low 2 (ADRL3) Write: R R R R R R R ADC Data Register Low 3 (ADRL3) Write: R <td>ADC Data Register Low 2 (ADRL3) Write: R R R R R R R ADC Data Register Low 3 (ADRL3) Write: R</td>	ADC Data Register Low 2 (ADRL3) Write: R R R R R R R ADC Data Register Low 3 (ADRL3) Write: R

Figure 15-1. ADC I/O Register Summary

15.3 Functional Description

The ADC provides eight pins for sampling external sources at pins PTA0/ADC0–PTA7/ADC7. An analog multiplexer allows the single ADC converter to select one of eight ADC channels as ADC voltage in (V_{ADIN}) . V_{ADIN} is converted by the successive approximation register-based analog-to-digital converter. When the conversion is completed, ADC places the result in the ADC data register, high and low byte (ADRH0 and ADRL0), and sets a flag or generates an interrupt.

An additional three ADC data registers (ADRL1–ADRL3) are available to store the individual converted data for ADC channels ADC1–ADC3 when the auto-scan mode is enabled. Data from channel ADC0 is stored in ADRL0 in the auto-scan mode.

Figure 15-2 shows the structure of the ADC module.

15.3.1 ADC Port I/O Pins

PTA0–PTA7 are general-purpose I/O pins that are shared with the ADC channels. The channel select bits, ADCH[4:0], define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port data register or data direction register will not have any affect on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return the pin condition if the corresponding DDR bit is at logic 0. If the DDR bit is at logic 1, the value in the port data latch is read.

15.3.2 Voltage Conversion

When the input voltage to the ADC equals V_{REFH} , the ADC converts the signal to \$3FF (full scale). If the input voltage equals V_{REFL} , the ADC converts it to \$000. Input voltages between V_{REFH} and V_{REFL} are a straight-line linear conversion. All other input voltages will result in \$3FF if greater than V_{REFH} and \$000 if less than V_{REFL} .

NOTE

Input voltage should not exceed the analog supply voltages.

Chapter 17 External Interrupt (IRQ)

17.1 Introduction

The external interrupt (IRQ) module provides two maskable interrupt inputs: IRQ1 and IRQ2.

17.2 Features

Features of the IRQ module include:

- A dedicated external interrupt pin, IRQ1
- An external interrupt pin shared with a port pin, PTC0/IRQ2
- Separate IRQ interrupt control bits for IRQ1 and IRQ2
- Hysteresis buffers
- Programmable edge-only or edge and level interrupt sensitivity
- Automatic interrupt acknowledge
- Internal pullup resistor, with disable option on IRQ2

NOTE

References to either IRQ1 or IRQ2 may be made in the following text by omitting the IRQ number. For example, IRQF may refer generically to IRQ1F and IRQ2F, and IMASK may refer to IMASK1 and IMASK2.

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
	IRQ2 Status and Control	Read:	0	PUCOENB	0	0	IRQ2F	0	IMASK2	MODE2
\$001C	Register	Write:		FUCUEND				ACK2	INAGI	WODEZ
	(INTSCR2)	Reset:	0	0	0	0	0	0	0	0
	IRQ1 Status and Control	Read:	0	0	0	0	IRQ1F	0	IMASK1	MODE1
\$001E	Register	Write:						ACK1	INASKI	MODET
	(INTSCR1)	Reset:	0	0	0	0	0	0	0	0
] = Unimplem	ented					

Figure 17-1. External Interrupt I/O Register Summary

17.3 Functional Description

A logic 0 applied to the external interrupt pin can latch a CPU interrupt request. Figure 17-2 and Figure 17-3 shows the structure of the IRQ module.

Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs:

• Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears the latch that caused the vector fetch.

Chapter 22 Electrical Specifications

22.1 Introduction

This section contains electrical and timing specifications.

22.2 Absolute Maximum Ratings

Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it.

NOTE

This device is not guaranteed to operate properly at the maximum ratings. Refer to DC Electrical Characteristics for guaranteed operating conditions.

Characteristic ⁽¹⁾	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +6.0	V
Input voltage All pins (except IRQ1) IRQ1 pin	V _{IN}	V _{SS} -0.3 to V _{DD} +0.3 V _{SS} -0.3 to 8.5	V V
Maximum current per pin excluding V_{DD} and V_{SS}	I	±25	mA
Maximum current out of V _{SS}	I _{MVSS}	100	mA
Maximum current into V _{DD}	I _{MVDD}	100	mA
Storage temperature	T _{STG}	-55 to +150	°C

Table 22-1. Absolute Maximum Ratings

1. Voltages referenced to V_{SS} .

NOTE

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that V_{IN} and V_{OUT} be constrained to the range $V_{SS} \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{DD}$. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either V_{SS} or V_{DD} .)

Electrical Specifications

22.15 5V SPI Characteristics

Diagram Number ⁽¹⁾	Characteristic ⁽²⁾	Symbol	Min	Max	Unit
	Operating frequency Master Slave	f _{OP(M)} f _{OP(S)}	f _{OP} /128 dc	f _{OP} /2 f _{OP}	MHz MHz
1	Cycle time Master Slave	t _{CYC(M)} t _{CYC(S)}	2 1	128 —	t _{CYC} t _{CYC}
2	Enable lead time	t _{Lead(S)}	1		t _{CYC}
3	Enable lag time	t _{Lag(S)}	1		t _{CYC}
4	Clock (SPSCK) high time Master Slave	t _{SCKH(M)} t _{SCKH(S)}	t _{CYC} –25 1/2 t _{CYC} –25	64 t _{CYC}	ns ns
5	Clock (SPSCK) low time Master Slave	t _{SCKL(M)} t _{SCKL(S)}	t _{CYC} –25 1/2 t _{CYC} –25	64 t _{CYC}	ns ns
6	Data setup time (inputs) Master Slave	t _{SU(M)} t _{SU(S)}	30 30		ns ns
7	Data hold time (inputs) Master Slave	t _{H(M)} t _{H(S)}	30 30		ns ns
8	Access time, slave ⁽³⁾ CPHA = 0 CPHA = 1	t _{A(CP0)} t _{A(CP1)}	0 0	40 40	ns ns
9	Disable time, slave ⁽⁴⁾	t _{DIS(S)}	_	40	ns
10	Data valid time, after enable edge Master Slave ⁽⁵⁾	t _{V(M)} t _{V(S)}	_	50 50	ns ns
11	Data hold time, outputs, after enable edge Master Slave	t _{HO(M)} t _{HO(S)}	0 0		ns ns

Table 22-15. SPI Characteristics (5V)

Numbers refer to dimensions in Figure 22-3 and Figure 22-4.
 All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless noted; 100 pF load on all SPI pins.
 Time to data active from high-impedance state
 Hold time to high-impedance state
 With 100 pF on all SPI pins