

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, IRSCI, SCI, SPI
Peripherals	LED, LVD, POR, PWM
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-QFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc908ap8cfber

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Memory

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
		Read:								
\$000D	Unimplemented	Write:								
		Reset:								
		Read:								
\$000E	Unimplemented	Write:								
		Reset:								
		Read:								
\$000F	Unimplemented	Write:								
		Reset:								
		Read:	CDDIE	Б	ерметр	CROI	СРЦА	SDWOM	ODE	ODTIE
\$0010	SPI Control Register	Write:			3F10101 N	UFUL	UFNA		OFE	SFILE
		Reset:	0	0	1	0	1	0	0	0
	SPI Status and Control	Read:	SPRF	EDDIE	OVRF	MODF	SPTE		CDD1	SDDO
\$0011	Register	Write:							JENI	SFNU
	(SPSCR)	Reset:	0	0	0	0	1	0	0	0
		Read:	R7	R6	R5	R4	R3	R2	R1	R0
\$0012	SPI Data Register	Write:	T7	T6	T5	T4	Т3	T2	T1	Т0
		Reset:		•		Unaffecte	d by reset			
		Read:		ENISCI		М	WAKE	μтν	DEN	DTV
\$0013	SCI Control Register 1 (SCC1)	Write:	LUUFS	ENSO		IVI	WARE	1611	F EIN	ГП
	(5001)	Reset:	0	0	0	0	0	0	0	0
		Read:	SCTIE	TOIE	SCDIE	II IE	TE	DE	D\\/	SBK
\$0014	SCI Control Register 2 (SCC2)	Write:	SOTIE		JOHIE		1	n 	NVU	SDK
		Reset:	0	0	0	0	0	0	0	0
		Read:	R8	то		DMATE		NEIE	CEIE	DEIE
\$0015	SCI Control Register 3 (SCC3)	Write:		10	DIVIANE	DIVIATE	UNIE		FEIE	FEIE
	(0000)	Reset:	U	U	0	0	0	0	0	0
		Read:	SCTE	TC	SCRF	IDLE	OR	NF	FE	PE
\$0016	SCI Status Register 1 (SCS1)	Write:								
		Reset:	1	1	0	0	0	0	0	0
		Read:	0	0	0	0	0	0	BKF	RPF
\$0017	SCI Status Register 2 (SCS2)	Write:								
		Reset:	0	0	0	0	0	0	0	0
		Read:	R7	R6	R5	R4	R3	R2	R1	R0
\$0018 SCI Data Register	Write:	T7	T6	T5	T4	Т3	T2	T1	Т0	
(50		Reset:				Unaffecte	d by reset		1	
		Read:	0	0	0001	0000	P	0000	0001	0000
\$0019	SCI Baud Rate Register	Write:			50PT	SCP0	К	SCR2	SCR1	SCHU
		Reset:	0	0	0	0	0	0	0	0
	U = Unaffected		X = Indeterminate			= Unimplem	ented	R = Reserved		

Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 9)

Monitor ROM

Keyboard Status and Control Rogister (KBSCR) S001B Register Register (KBIER) Enable Register (KBIER) Enable Register (KBIER) Reset: 0	Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
S01A Register Write (KBSCR) Reset Reset 0 <		Keyboard Status and Control	Read:	0	0	0	0	KEYF	0	IMASK	MODE
(KBSCH) Reast: 0 <t< td=""><td>\$001A</td><td>Register</td><td>Write:</td><td></td><td></td><td></td><td></td><td></td><td>ACK</td><td></td><td>MODE</td></t<>	\$001A	Register	Write:						ACK		MODE
Keyboard Interrupt Enable Register KBIE2 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 S001B Enable Register (KBIE3) Write: (KBIE4) 0		(KBSCR)	Reset:	0	0	0	0	0	0	0	0
IRQ2 Status and Control Reg. S001D Reset: IRQ2 Status and Control Reg. (INTSCR2) Reset: Reset: (INTSCR2) 0 <td>\$001B</td> <td>Keyboard Interrupt Enable Register</td> <td>Read: Write:</td> <td>KBIE7</td> <td>KBIE6</td> <td>KBIE5</td> <td>KBIE4</td> <td>KBIE3</td> <td>KBIE2</td> <td>KBIE1</td> <td>KBIE0</td>	\$001B	Keyboard Interrupt Enable Register	Read: Write:	KBIE7	KBIE6	KBIE5	KBIE4	KBIE3	KBIE2	KBIE1	KBIE0
IRQ2 Status and Control Reg. ister Read: ister 0 0 IRQ2F 0 IMASK2 MODE2 S001D Configuration Register 2 (INTSCR) Read: Reset: 0		(KBIER)	Reset:	0	0	0	0	0	0	0	0
S001C ister Write: 0		IRQ2 Status and Control Reg-	Read:	0		0	0	IRQ2F	0	IMASK2	
INTSCR2 Reset: 0 <t< td=""><td>\$001C</td><td colspan="2">001C ister</td><td></td><td>TOODEND</td><td></td><td></td><td></td><td>ACK2</td><td></td><td>MODEL</td></t<>	\$001C	001C ister			TOODEND				ACK2		MODEL
Sool D Configuration Register 2 (CONFIG2) [†] Read: Reset: STOP_ ICLKDIS STOP_ RCLKEN OSCCLKI OSC		(INTSCR2)	Reset:	0	0	0	0	0	0	0	0
Lock Higg Reset: 0	\$001D	Configuration Register 2	Read: Write:	STOP_ ICLKDIS	STOP_ RCLKEN	STOP_ XCLKEN	OSCCLK1	OSCCLK0	0	0	SCIBDSRC
↑ One-time writable register after each reset. IRQ1 Status and Control Register if ister right write: Read: (INTSCR) 0 0 0 IRQ1F 0 IMASK1 MODE1 \$001E (INTSCR) Read: (INTSCR) 0		(CONFIG2)	Reset:	0	0	0	0	0	0	0	0
IR01 Status and Control Register (INTSCRI) Read: (INTSCRI) 0 0 0 0 IR01F 0 IMASK1 MODE1 \$001E (INTSCRI) Read: (INTSCRI) 0	† One-tin	ne writable register after each re	eset.								
\$001E ister Write: 0		IRQ1 Status and Control Reg-	Read:	0	0	0	0	IRQ1F	0		
(INTSCR1) Reset: 0	\$001E	ister	Write:						ACK1	INASKI	MODET
		(INTSCR1)	Reset:	0	0	0	0	0	0	0	0
(bork hold) Reset: 0	\$001F	Configuration Register 1	Read: Write:	COPRS	LVISTOP	LVIRSTD	LVIPWRD	LVIREGD	SSREC	STOP	COPD
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Reset:	0	0	0	0	0	0	0	0
	† One-tir	ne writable register after each re	eset.								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\$0020	Timer 1 Status and Control Register	Read: Write:	TOF 0	TOIE	TSTOP	0 TRST	0	PS2	PS1	PS0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(T1SC)	Reset:	0	0	1	0	0	0	0	0
S0021 Register High (T1CNTH) Write: Reset: 0		Timer 1 Counter	Read:	Bit 15	14	13	12	11	10	9	Bit 8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\$0021	Register High	Write:								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(T1CNTH)	Reset:	0	0	0	0	0	0	0	0
\$0022 Register Low (T1CNTL) Write: Reset: 0 0 0 0 0 0 0 0 0 Timer 1 Counter Modulo Reg (T1MODH) Read: (T1MODH) Read: (T1MODH) Bit 15 14 13 12 11 10 9 Bit 8 \$0023 ister High (T1MODH) Reset: 1 1 1 1 1 1 1 Timer 1 Counter Modulo Register Low (T1MODL) Read: (T1MODL) Bit 7 6 5 4 3 2 1 Bit 0 \$0024 Register Low (T1MODL) Read: (T1MODL) Bit 7 6 5 4 3 2 1 Bit 0 \$0025 Timer 1 Channel 0 Status and Control Register (T1SCO) Read: Reset: CHOF Reset: CHOIE MSOB MSOA ELSOB ELSOA TOV0 CHOMAX \$0025 U = Unaffected X = Indeterminate = Unimplemented R = Reserved		Timer 1 Counter	Read:	Bit 7	6	5	4	3	2	1	Bit 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\$0022	Register Low	Write:								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(T1CNTL)	Reset:	0	0	0	0	0	0	0	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\$0023	Timer 1 Counter Modulo Reg- ister High	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(T1MODH)	Reset:	1	1	1	1	1	1	1	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\$0024	Timer 1 Counter Modulo Register Low	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0025 Timer 1 Channel 0 Status and Control Register (T1SC0) Read: CHOF MS0B MS0B MS0A ELS0B ELS0A TOV0 CH0MAX \$0025 U = Unaffected X = Indeterminate 0 0 0 0 0 0 0 0		(T1MODL)	Reset:	1	1	1	1	1	1	1	1
Status and Control Register (T1SC0) Write: O CHOIE MS0B MS0A ELS0B ELS0A TOV0 CHOMAX U = Unaffected U = Unaffected X = Indeterminate U = Unimplemented R = Reserved			Read:	CH0F	0 1151 -						
Control Register (11500) Control Register (11500) Control Register (11500) Control Register (11500) Reset: 0 0 0 0 0 0 0 U = Unaffected X = Indeterminate Image: Control Register (11500) Endeterminate Endeterminate	\$0025	Timer 1 Channel 0 Status and	Write:	0	CH0IE	MS0B	MS0A	ELS0B	ELS0A	ΤΟΥΟ	CH0MAX
U = Unaffected X = Indeterminate = Unimplemented R = Reserved		Control Register (11500)	Reset:	0	0	0	0	0	0	0	0
		U = Unaffected		X = Indeterm	ninate		= Unimplem	ented	R	= Reserved	

Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 9)

Table 4-1. Instruction Set Summary

Source	Operation	Description		E	ffe C	ct (CR	on		dress ode	code	erand	cles
Form			v	н	I	Ν	z	С	PdA	do	op	ۍ ا
AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP	Logical AND	A ← (A) & (M)	0	_	_	0	o	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A4 B4 C4 D4 E4 F4 9EE4 9ED4	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP	Arithmetic Shift Left (Same as LSL)	C	0	_	_	0	0	0	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	4 1 4 3 5
ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP	Arithmetic Shift Right		0	_	_	0	o	o	DIR INH INH IX1 IX SP1	37 47 57 67 77 9E67	dd ff ff	4 1 4 3 5
BCC rel	Branch if Carry Bit Clear	$PC \leftarrow (PC) + 2 + rel ? (C) = 0$	1	-	-	-	-	-	REL	24	rr	3
BCLR n, opr	Clear Bit n in M	Mn ← 0	_	_	_	_	_	_	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	11 13 15 17 19 1B 1D 1F	dd dd dd dd dd dd dd dd	4 4 4 4 4 4 4 4
BCS rel	Branch if Carry Bit Set (Same as BLO)	PC ← (PC) + 2 + <i>rel</i> ? (C) = 1	-	-	-	-	-	-	REL	25	rr	3
BEQ rel	Branch if Equal	PC ← (PC) + 2 + <i>rel</i> ? (Z) = 1	-	-	-	-	-	-	REL	27	rr	3
BGE opr	Branch if Greater Than or Equal To (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (N \oplus V) = 0$	-	_	_	-	-	-	REL	90	rr	3
BGT <i>opr</i>	Branch if Greater Than (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (Z) \mid (N \oplus V) = 0$	-	-	-	-	-	-	REL	92	rr	3
BHCC rel	Branch if Half Carry Bit Clear	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (H) = 0$	-	-	-	-	-	-	REL	28	rr	3
BHCS rel	Branch if Half Carry Bit Set	PC ← (PC) + 2 + <i>rel</i> ? (H) = 1	-	-	-	-	-	-	REL	29	rr	3
BHI rel	Branch if Higher	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) \mid (Z) = 0$	-	_	-	-	-	-	REL	22	rr	3
BHS rel	Branch if Higher or Same (Same as BCC)	PC ← (PC) + 2 + <i>rel</i> ? (C) = 0	-	_	_	_	_	-	REL	24	rr	3
BIH <i>rel</i>	Branch if IRQ Pin High	$PC \leftarrow (PC) + 2 + \mathit{rel} ? \overline{IRQ} = 1$	-	-	_	-	-	-	REL	2F	rr	3
BIL rel	Branch if IRQ Pin Low	$PC \leftarrow (PC) + 2 + \mathit{rel} ? \overline{IRQ} = 0$	_	-	-	-	-	-	REL	2E	rr	3

Central Processor Unit (CPU)

	Sou Foi	rce rm	Operation	Description		Effect on CCR Address Address N Z C V H I N Z C	Cycles
Α		Accumu	Ilator		n	Any bit	
С		Carry/bo	orrow bit		opr	Operand (one or two bytes)	
C	CR	Conditio	on code register		PC	Program counter	
do	ł	Direct a	ddress of operand		PCH	Program counter high byte	
do	l rr	Direct a	ddress of operand and relative offset	of branch instruction	PCL	Program counter low byte	
D	D	Direct to	o direct addressing mode		REL	Relative addressing mode	
D	R	Direct a	ddressing mode		rel	Relative program counter offset byte	
D	X+	Direct to	o indexed with post increment addres	sing mode	rr	Relative program counter offset byte	
ee	e ff	High an	d low bytes of offset in indexed, 16-bi	it offset addressing	SP1	Stack pointer, 8-bit offset addressing mode	
E	ХT	Extende	ed addressing mode		SP2	Stack pointer 16-bit offset addressing mode	
ff		Offset b	yte in indexed, 8-bit offset addressing	9	SP	Stack pointer	
н		Half-car	ry bit		U	Undefined	
н		Index re	gister high byte		V	Overflow bit	
hr	n II	High an	d low bytes of operand address in ex	tended addressing	X	Index register low byte	
1		Interrup	t mask		2		
		Immedia	ate operand byte		č.		
		Immedia	ale source to direct destination addre	issing mode			
		Inhoron	t addressing mode		\bigcirc	Contents of	
		Indexed	no offset addressing mode		-0	Negation (two's complement)	
IX	Т	Indexed	no offset nost increment addressin	a mode	#	Immediate value	
iX	т +D	Indexed	with post increment to direct address	sina mode	π «	Sign extend	
ix	1	Indexed	8-bit offset addressing mode		←	Loaded with	
ix	1+	Indexed	. 8-bit offset, post increment address	ing mode	?	lf	
İX	2	Indexed	. 16-bit offset addressing mode		:	Concatenated with	
M		Memory	location		0	Set or cleared	
Ν		Negative	e bit		_	Not affected	

Functional Description

8.3.1 Entering Monitor Mode

Table 8-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a POR and will allow communication at 9600 baud provided one of the following sets of conditions is met:

- 1. If \$FFFE and \$FFFF do not contain \$FF (programmed state):
 - The external clock is 4.9152 MHz with PTB0 low or 9.8304 MHz with PTB0 high
 - IRQ1 = V_{TST}
- 2. If \$FFFE and \$FFFF both contain \$FF (erased state):
 - The external clock is 9.8304 MHz
 - $\overline{IRQ1} = V_{DD}$ (this can be implemented through the internal $\overline{IRQ1}$ pullup
- 3. If \$FFFE and \$FFFF both contain \$FF (erased state):
 - The external clock is 32.768 kHz (crystal)
 - $\overline{IRQ1} = V_{SS}$ (this setting initiates the PLL to boost the external 32.768 kHz to an internal bus frequency of 2.4576 MHz

If V_{TST} is applied to $\overline{IRQ1}$ and PTB0 is low upon monitor mode entry (above condition set 1), the bus frequency is a divide-by-two of the input clock. If PTB0 is high with V_{TST} applied to $\overline{IRQ1}$ upon monitor mode entry, the bus frequency will be a divide-by-four of the input clock. Holding the PTB0 pin low when entering monitor mode causes a bypass of a divide-by-two stage at the oscillator only if V_{TST} is applied to $\overline{IRQ1}$. In this event, the CGMOUT frequency is equal to the CGMXCLK frequency, and the OSC1 input directly generates internal bus clocks. In this case, the OSC1 signal must have a 50% duty cycle at maximum bus frequency.

If entering monitor mode without high voltage on $\overline{IRQ1}$ (above condition set 2, where applied voltage is either V_{DD}), then all port A pin requirements and conditions, including the PTB0 frequency divisor selection, are not in effect. This is to reduce circuit requirements when performing in-circuit programming.

NOTE

If the reset vector is blank and monitor mode is entered, the chip will see an additional reset cycle after the initial POR reset. Once the part has been programmed, the traditional method of applying a voltage, V_{TST} , to $\overline{IRQ1}$ must be used to enter monitor mode.

The COP module is disabled in monitor mode based on these conditions:

- If monitor mode was entered as a result of the reset vector being blank (above condition set 2 or 3), the COP is always disabled regardless of the state of IRQ1 or RST.
- If monitor mode was entered with V_{TST} on IRQ1 (condition set 1), then the COP is disabled as long as V_{TST} is applied to either IRQ1 or RST.

The second condition states that as long as V_{TST} is maintained on the IRQ1 pin after entering monitor mode, or if V_{TST} is applied to RST after the initial reset to get into monitor mode (when V_{TST} was applied to IRQ1), then the COP will be disabled. In the latter situation, after V_{TST} is applied to the RST pin, V_{TST} can be removed from the IRQ1 pin in the interest of freeing the IRQ1 for normal functionality in monitor mode.

Figure 8-2 shows a simplified diagram of the monitor mode entry when the reset vector is blank and just V_{DD} voltage is applied to the IRQ1 pin. An external oscillator of 9.8304 MHz is required for a baud rate of 9600, as the internal bus frequency is automatically set to the external frequency divided by four.

Functional Description

Enter monitor mode with pin configuration shown in Figure 8-1 by pulling \overline{RST} low and then high. The rising edge of \overline{RST} latches monitor mode. Once monitor mode is latched, the values on the specified pins can change.

Once out of reset, the MCU waits for the host to send eight security bytes. (See 8.4 Security.) After the security bytes, the MCU sends a break signal (10 consecutive logic 0's) to the host, indicating that it is ready to receive a command.

Figure 8-2. Low-Voltage Monitor Mode Entry Flowchart

In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt than those for user mode. The alternate vectors are in the \$FE page instead of the \$FF page and allow code execution from the internal monitor firmware instead of user code.

NOTE

Exiting monitor mode after it has been initiated by having a blank reset vector requires a power-on reset (POR). Pulling RST low will not exit monitor mode in this situation.

Table 8-2 summarizes the differences between user mode and monitor mode vectors.

			Func	tions		
Modes	Reset Vector High	Reset Vector Low	Break Vector High	Break Vector Low	SWI Vector High	SWI Vector Low
User	\$FFFE	\$FFFF	\$FFFC	\$FFFD	\$FFFC	\$FFFD
Monitor	\$FEFE	\$FEFF	\$FEFC	\$FEFD	\$FEFC	\$FEFD

Table 8-2. Mode Differences (Vectors)

Chapter 9 Timer Interface Module (TIM)

9.1 Introduction

This section describes the timer interface (TIM) module. The TIM is a two-channel timer that provides a timing reference with Input capture, output compare, and pulse-width-modulation functions. Figure 9-1 is a block diagram of the TIM.

This particular MCU has two timer interface modules which are denoted as TIM1 and TIM2.

9.2 Features

Features of the TIM include:

- Two input capture/output compare channels:
 - Rising-edge, falling-edge, or any-edge input capture trigger
 - Set, clear, or toggle output compare action
- Buffered and unbuffered pulse-width-modulation (PWM) signal generation
- Programmable TIM clock input with 7-frequency internal bus clock prescaler selection
- Free-running or modulo up-count operation
- Toggle any channel pin on overflow
- TIM counter stop and reset bits

9.3 Pin Name Conventions

The text that follows describes both timers, TIM1 and TIM2. The TIM input/output (I/O) pin names are T[1,2]CH0 (timer channel 0) and T[1,2]CH1 (timer channel 1), where "1" is used to indicate TIM1 and "2" is used to indicate TIM2. The two TIMs share four I/O pins with four I/O port pins. The external clock input for TIM2 is shared with the an ADC channel pin. The full names of the TIM I/O pins are listed in Table 9-1. The generic pin names appear in the text that follows.

TIM Generic Pin	Names:	T[1,2]CH0	T[1,2]CH1
Full TIM	TIM1	PTB4/T1CH0	PTB5/T1CH1
Pin Names:	TIM2	PTB6/T2CH0	PTB7/T2CH1

Table 9-1. Pin Name Conventions

NOTE

References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TCH0 may refer generically to T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1.

Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O.

Reset clears the MSxB bit.

- 1 = Buffered output compare/PWM operation enabled
- 0 = Buffered output compare/PWM operation disabled

MSxA — Mode Select Bit A

When ELSxB:ELSxA \neq 0:0, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation.

See Table 9-3.

1 = Unbuffered output compare/PWM operation

0 = Input capture operation

When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output level of the TCHx pin. See Table 9-3. Reset clears the MSxA bit.

1 = Initial output level low

0 = Initial output level high

NOTE

Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC).

ELSxB and ELSxA — Edge/Level Select Bits

When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x.

When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs.

When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin TCHx is available as a general-purpose I/O pin. Table 9-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits.

MSxB:MSxA	ELSxB:ELSxA	Mode	Configuration
X0	00		Pin under port control; initial output level high
X1	00	Output preset	Pin under port control; initial output level low
00	01		Capture on rising edge only
00	10	Input capture	Capture on falling edge only
00	11		Capture on rising or falling edge
01	01		Toggle output on compare
01	10	Output compare or PWM	Clear output on compare
01	11		Set output on compare
1X	01	Buffered output	Toggle output on compare
1X	10	compare or	Clear output on compare
1X	11	buttered PWM	Set output on compare

Table 9-3. Mode, Edge, and Level Selection

Serial Communications Interface Module (SCI)

Depending on the state of the WAKE bit in SCC1, either of two conditions on the RxD pin can bring the receiver out of the standby state:

- Address mark An address mark is a logic 1 in the most significant bit position of a received character. When the WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU bit. The address mark also sets the SCI receiver full bit, SCRF. Software can then compare the character containing the address mark to the user-defined address of the receiver. If they are the same, the receiver remains awake and processes the characters that follow. If they are not the same, software can set the RWU bit and put the receiver back into the standby state.
- Idle input line condition When the WAKE bit is clear, an idle character on the RxD pin wakes the
 receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver
 does not set the receiver idle bit, IDLE, or the SCI receiver full bit, SCRF. The idle line type bit,
 ILTY, determines whether the receiver begins counting logic 1s as idle character bits after the start
 bit or after the stop bit.

NOTE

With the WAKE bit clear, setting the RWU bit after the RxD pin has been idle may cause the receiver to wake up immediately.

11.4.3.7 Receiver Interrupts

The following sources can generate CPU interrupt requests from the SCI receiver:

- SCI receiver full (SCRF) The SCRF bit in SCS1 indicates that the receive shift register has transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting the SCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver CPU interrupts.
- Idle input (IDLE) The IDLE bit in SCS1 indicates that 10 or 11 consecutive logic 1s shifted in from the RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate CPU interrupt requests.

11.4.3.8 Error Interrupts

The following receiver error flags in SCS1 can generate CPU interrupt requests:

- Receiver overrun (OR) The OR bit indicates that the receive shift register shifted in a new character before the previous character was read from the SCDR. The previous character remains in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI error CPU interrupt requests.
- Noise flag (NF) The NF bit is set when the SCI detects noise on incoming data or break characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3 enables NF to generate SCI error CPU interrupt requests.
- Framing error (FE) The FE bit in SCS1 is set when a logic 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI error CPU interrupt requests.
- Parity error (PE) The PE bit in SCS1 is set when the SCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU interrupt requests.

Serial Communications Interface Module (SCI)

TE — Transmitter Enable Bit

Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the TxD returns to the idle condition (logic 1). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit.

1 = Transmitter enabled

0 = Transmitter disabled

NOTE

Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1.

RE — Receiver Enable Bit

Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit.

1 = Receiver enabled

0 = Receiver disabled

NOTE

Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1.

RWU — Receiver Wakeup Bit

This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit.

1 = Standby state

0 = Normal operation

SBK — Send Break Bit

Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit.

1 = Transmit break characters

0 = No break characters being transmitted

NOTE

Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the SCI to send a break character instead of a preamble.

Infrared Serial Communications Interface Module (IRSCI)

Figure 12-3. Infrared Sub-Module Diagram

12.4.1 Infrared Transmit Encoder

The infrared transmit encoder converts the "0" bits in the serial data stream from the SCI module to narrow "low" pulses, to the TxD pin. The narrow pulse is sent with a duration of 1/32, 1/16, or 3/16 of a data bit width. When two consecutive zeros are sent, the two consecutive narrow pulses will be separated by a time equal to a data bit width.

12.4.2 Infrared Receive Decoder

The infrared receive decoder converts low narrow pulses from the RxD pin to standard SCI data bits. The reference clock, SCI_R16XCLK, clocks a four bit internal counter which counts from 0 to 15. An incoming pulse starts the internal counter and a "0" is sent out to the IR_RxD output. Subsequent incoming pulses are ignored when the counter count is between 0 and 7; IR_RxD remains "0". Once the counter passes 7, an incoming pulse will reset the counter; IR_RxD remains "0". When the counter reaches 15, the IR_RxD output returns to "1", the counter stops and waits for further pulses. A pulse is interpreted as jitter if it arrives shortly after the counter reaches 15; IR_RxD remains "1".

NOTE

Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1.

RE — Receiver Enable Bit

Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit.

1 = Receiver enabled

0 = Receiver disabled

NOTE

Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1.

RWU — Receiver Wakeup Bit

This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in IRSCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit.

1 = Standby state

0 = Normal operation

SBK — Send Break Bit

Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit.

1 = Transmit break characters

0 = No break characters being transmitted

NOTE

Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the SCI to send a break character instead of a preamble.

12.9.3 IRSCI Control Register 3

IRSCI control register 3:

•

- Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted
- Enables the following interrupts:
 - Receiver overrun interrupts
 - Noise error interrupts
 - Framing error interrupts
 - Parity error interrupts

Figure 12-14. IRSCI Control Register 3 (IRSCC3)

Chapter 13 Serial Peripheral Interface Module (SPI)

13.1 Introduction

This section describes the serial peripheral interface (SPI) module, which allows full-duplex, synchronous, serial communications with peripheral devices.

13.2 Features

Features of the SPI module include the following:

- Full-duplex operation
- Master and slave modes
- Double-buffered operation with separate transmit and receive registers
- Four master mode frequencies (maximum = bus frequency ÷ 2)
- Maximum slave mode frequency = bus frequency
- Serial clock with programmable polarity and phase
- Two separately enabled interrupts:
 - SPRF (SPI receiver full)
 - SPTE (SPI transmitter empty)
- Mode fault error flag with CPU interrupt capability
- · Overflow error flag with CPU interrupt capability
- Programmable wired-OR mode

13.3 Pin Name Conventions and I/O Register Addresses

The text that follows describes the SPI. The SPI I/O pin names are \overline{SS} (slave select), SPSCK (SPI serial clock), CGND (clock ground), MOSI (master out slave in), and MISO (master in/slave out). The SPI shares four I/O pins with four parallel I/O ports.

The full names of the SPI I/O pins are shown in Table 13-1. The generic pin names appear in the text that follows.

SPI Generi Pin Names	с 5:	MISO	MOSI	SS	SPSCK	CGND
Full SPI Pin Names:	SPI	PTC2/MISO	PTC3/MOSI	PTC4/SS	PTC5/SPSCK	V _{SS}

Table 13-1. Pin Name Conventions

Figure 13-1 summarizes the SPI I/O registers.

Analog-to-Digital Converter (ADC)

	ADC Data Degister Law 0	Read:	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2
\$005C ADC Data Register Low 2	Write:	R	R	R	R	R	R	R	R	
		Reset:	0	0	0	0	0	0	0	0
	ADC Data Bagistar Law 2	Read:	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2
\$005D ADC Data Register Low 3	Write:	R	R	R	R	R	R	R	R	
		Reset:	0	0	0	0	0	0	0	0
	ADC Auto-scan Control	Read:	0	0	0	0	0			
\$005E	Register	Write:						AUTOT	AUTOU	AGUAN
	(ADASCR)	Reset:	0	0	0	0	0	0	0	0
				= Unimplem	ented		R	= Reserved		

Figure 15-1. ADC I/O Register Summary

15.3 Functional Description

The ADC provides eight pins for sampling external sources at pins PTA0/ADC0–PTA7/ADC7. An analog multiplexer allows the single ADC converter to select one of eight ADC channels as ADC voltage in (V_{ADIN}) . V_{ADIN} is converted by the successive approximation register-based analog-to-digital converter. When the conversion is completed, ADC places the result in the ADC data register, high and low byte (ADRH0 and ADRL0), and sets a flag or generates an interrupt.

An additional three ADC data registers (ADRL1–ADRL3) are available to store the individual converted data for ADC channels ADC1–ADC3 when the auto-scan mode is enabled. Data from channel ADC0 is stored in ADRL0 in the auto-scan mode.

Figure 15-2 shows the structure of the ADC module.

15.3.1 ADC Port I/O Pins

PTA0–PTA7 are general-purpose I/O pins that are shared with the ADC channels. The channel select bits, ADCH[4:0], define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port data register or data direction register will not have any affect on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return the pin condition if the corresponding DDR bit is at logic 0. If the DDR bit is at logic 1, the value in the port data latch is read.

15.3.2 Voltage Conversion

When the input voltage to the ADC equals V_{REFH} , the ADC converts the signal to \$3FF (full scale). If the input voltage equals V_{REFL} , the ADC converts it to \$000. Input voltages between V_{REFH} and V_{REFL} are a straight-line linear conversion. All other input voltages will result in \$3FF if greater than V_{REFH} and \$000 if less than V_{REFL} .

NOTE

Input voltage should not exceed the analog supply voltages.

Analog-to-Digital Converter (ADC)

15.5.1 Wait Mode

The ADC continues normal operation in wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting the ADCH[4:0] bits to logic 1's before executing the WAIT instruction.

15.5.2 Stop Mode

The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the analog circuitry before attempting a new ADC conversion after exiting stop mode.

15.6 I/O Signals

The ADC module has eight channels shared with port A I/O pins.

15.6.1 ADC Voltage In (V_{ADIN})

V_{ADIN} is the input voltage signal from one of the eight ADC channels to the ADC module.

15.6.2 ADC Analog Power Pin (V_{DDA})

The ADC analog portion uses V_{DDA} as its power pin. Connect the V_{DDA} pin to the same voltage potential as V_{DD} . External filtering may be necessary to ensure clean V_{DDA} for good results.

NOTE

Route V_{DDA} carefully for maximum noise immunity and place bypass capacitors as close as possible to the package.

15.6.3 ADC Analog Ground Pin (V_{SSA})

The ADC analog portion uses V_{SSA} as its ground pin. Connect the V_{SSA} pin to the same voltage potential as V_{SS} .

15.6.4 ADC Voltage Reference High Pin (V_{REFH})

 V_{REFH} is the power supply for setting the reference voltage V_{REFH} . Connect the V_{REFH} pin to the same voltage potential as V_{DDA} . There will be a finite current associated with V_{REFH} (see Chapter 22 Electrical Specifications).

NOTE

Route V_{REFH} carefully for maximum noise immunity and place bypass capacitors as close as possible to the package.

15.6.5 ADC Voltage Reference Low Pin (V_{REFL})

 V_{REFL} is the lower reference supply for the ADC. Connect the V_{REFL} pin to the same voltage potential as V_{SSA} . There will be a finite current associated with V_{REFL} (see Chapter 22 Electrical Specifications).

Table 16-5 summarizes the operation of the port D pins.

DDRD		I/O Bin Modo	Accesses to DDRD	Accesses to PTD			
Bit	FIDDI		Read/Write	Read	Write		
0	X ⁽¹⁾	Input, Hi-Z ⁽²⁾	DDRD[7:0]	Pin	PTD[7:0] ⁽³⁾		
1	Х	Output	DDRD[7:0]	PTD[7:0]	PTD[7:0]		

Table 16-5. Port D Pin Functions

1. X = don't care.

2. Hi-Z = high impedance.

3. Writing affects data register, but does not affect input.

Electrical Specifications

Characteristic ⁽¹⁾	Symbol	Min	Тур ⁽²⁾	Мах	Unit
Pullup resistors ⁽⁹⁾ PTD[0:7] RST, IRQ1, IRQ2	R _{PU1} R _{PU2}	21 21	27 27	39 39	kΩ kΩ
Low-voltage inhibit, trip falling voltage1 ⁽¹⁰⁾	V _{TRIPF1}	2.25	2.45	2.65	V
Low-voltage inhibit, trip rising voltage1 ⁽¹⁰⁾	V _{TRIPR1}	2.35	2.55	2.75	V
Low-voltage inhibit, trip voltage2 ⁽¹⁰⁾	V _{TRIPF2}	2.25	2.45	2.65	V
V _{REG} ^{(10), (11)}	V _{REG}	2.25	2.50	2.75	V

Table 22-4. DC Electrical Characteristics (5V)

1. V_{DD} = 4.5 to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.

3. Run (operating) I_{DD} measured using external 32MHz clock to OSC1; all inputs 0.2 V from rail; no dc loads; less than 100pF on all outputs; C_L = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects run I_{DD}; measured with all modules enabled.

4. Wait I_{DD} measured using external 32MHz to OSC1; all inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. $C_L = 20$ pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects wait I_{DD}.

5. STOP IDD measured using external 32.768kHz clock to OSC1; no port pins sourcing current.

6. STOP IDD measured with OSC1 grounded; no port pins sourcing current.

7. Maximum is highest voltage that POR is guaranteed. The rearm voltage is triggered by V_{REG}.

8. If minimum V_{DD} is not reached before the internal POR reset is released, RST must be driven low externally until minimum V_{DD} is reached.

9. R_{PU1} and R_{PU2} are measured at $V_{DD} = 5.0V$

10. Values are not affected by operating V_{DD} ; they are the same for 3V and 5V.

11. Measured from $V_{DD} = V_{TRIPF1}$ (Min) to 5.5 V.

22.6 5V Control Timing

Table 22-5. Control Timing (5V)

Characteristic ⁽¹⁾	Symbol	Min	Мах	Unit
Internal operating frequency ⁽²⁾	f _{OP}	_	8	MHz
RST input pulse width low ⁽³⁾	t _{IRL}	750	—	ns

1. V_{DD} = 4.5 to 5.5 Vdc, V_{SS} = 0 Vdc; timing shown with respect to 20% V_{DD} and 70% V_{DD} , unless otherwise noted.

2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information.

3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.

Electrical Specifications

22.12 3V ADC Electrical Characteristics

Characteristic ⁽¹⁾	Symbol	Min	Max	Unit	Notes
Supply voltage	V _{DDA}	2.7	3.3	v	V_{DDA} is an dedicated pin and should be tied to V_{DD} on the PCB with proper decoupling.
Input range	V _{ADIN}	0	V _{DDA}	V	$V_{ADIN} \leq V_{DDA}$
Resolution	B _{AD}	10	10	bits	
Absolute accuracy	A _{AD}	_	± 1.5	LSB	Includes quantization. $\pm 0.5 \text{ LSB} = \pm 1 \text{ ADC} \text{ step.}$
ADC internal clock	f _{ADIC}	500k	1.048M	Hz	$t_{ADIC} = 1/f_{ADIC}$
Conversion range	R _{AD}	V _{REFL}	V _{REFH}	V	
ADC voltage reference high	V _{REFH}	_	V _{DDA} + 0.1	v	
ADC voltage reference low	V _{REFL}	V _{SSA} – 0.1	_	v	
Conversion time	t _{ADC}	16	17	t _{ADIC} cycles	
Sample time	t _{ADS}	5	_	t _{ADIC} cycles	
Monotonicity	M _{AD}	Guaranteed			
Zero input reading	Z _{ADI}	000	001	HEX	V _{ADIN} = V _{REFL}
Full-scale reading	F _{ADI}	3FD	3FF	HEX	V _{ADIN} = V _{REFH}
Input capacitance	C _{ADI}	—	20	pF	Not tested.
Input impedance	R _{ADI}	20M	—	Ω	
V _{REFH} /V _{REFL}	I _{VREF}	—	1.6	mA	Not tested.

Table 22-11. ADC Electrical Characteristics (3V)

1. V_{DD} = 2.7 to 3.3 Vdc, V_{SS} = 0 Vdc, T_A = T_L to $T_H,$ unless otherwise noted.

Chapter 24 Ordering Information

24.1 Introduction

This section contains device ordering numbers.

24.2 MC Order Numbers

MC Order Number	RAM Size (bytes)	FLASH Size (bytes)	Package	Operating Temperature Range
MC68HC908AP64CB	2,048	62,368	42-pin SDIP	−40 to +85 °C
MC68HC908AP64CFB	2,048	62,368	44-pin QFP	−40 to +85 °C
MC68HC908AP64CFA	2,048	62,368	48-pin LQFP	−40 to +85 °C
MC68HC908AP32CB	2,048	32,768	42-pin SDIP	−40 to +85 °C
MC68HC908AP32CFB	2,048	32,768	44-pin QFP	−40 to +85 °C
MC68HC908AP32CFA	2,048	32,768	48-pin LQFP	−40 to +85 °C
MC68HC908AP16CB	1,024	16,384	42-pin SDIP	−40 to +85 °C
MC68HC908AP16CFB	1,024	16,384	44-pin QFP	−40 to +85 °C
MC68HC908AP16CFA	1,024	16,384	48-pin LQFP	−40 to +85 °C
MC68HC908AP8CB	1,024	8,192	42-pin SDIP	−40 to +85 °C
MC68HC908AP8CFB	1,024	8,192	44-pin QFP	−40 to +85 °C
MC68HC908AP8CFA	1,024	8,192	48-pin LQFP	−40 to +85 °C

Table 24-1. MC Order Numbers

