

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	-
Core Size	8-Bit
Speed	12MHz
Connectivity	SIO, UART/USART
Peripherals	PWM, WDT
Number of I/O	88
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 15x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 70°C (TA)
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/onsemi/lc87f5lp6au-ch-e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

■Ports

• Normal withstand voltage I/O ports

Ports whose I/O direction can be designated in 1-bit units 64 (P1n, P2n, P3n, P70 to P73, P8n, PAn, PBn, PCn,

S2Pn, PWM0, PWM1, XT2)

16 (PEn, PFn)

8 (P0n)

Ports whose I/O direction can be designated in 2-bit units

Ports whose I/O direction can be designated in 4-bit units

• Normal withstand voltage input port 1 (XT1) • Dedicated oscillator ports 2 (CF1, CF2) • Reset pin 1 (RES)

• Power pins 8 (VSS1 to VSS4, VDD1 to VDD4)

■Timers

• Timer 0: 16-bit timer/counter with capture register

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers) ×2 channels

Mode 1: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers)

+ 8-bit counter (with two 8-bit capture registers)

Mode 2: 16-bit timer with an 8-bit programmable prescaler (with two 16-bit capture registers)

Mode 3: 16-bit counter (with 216-bit capture registers)

• Timer 1: 16-bit timer/counter that support PWM/ toggle output

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/counter (with toggle outputs)

Mode 1: 8-bit PWM with an 8-bit prescaler × 2 channels

Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs) (toggle outputs also from the lower-order 8 bits)

Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs) (The lower-order 8 bits can be used as PWM.)

- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillator), system clock, and timer 0 prescaler
 - 2) Interrupts programmable in 5 different time schemes.

■High-speed Clock Counter

- 1. Can count clocks with a maximum clock rate of 20MHz (at a main clock of 10MHz).
- 2. Can generate output real-time.
- 3. Can count clocks with a maximum clock rate of 24MHz (at a main clock of 12MHz).

■SIO

- SIO0: 8-bit synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle = 4/3 tCYC)
 - 3) Automatic continuous data transmission (1 to 256 bits)
- SIO1: 8-bit asynchronous/synchronous serial interface

Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)

Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)

Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)

Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

- SIO2: 8 bit synchronous serial interface
 - 1) LSB first mode
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle = 4/3 tCYC)
 - 3) Automatic continuous data transmission (1 to 32 bytes)

■System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from 300ns, 600ns, 1.2μs, 2.4μs, 4.8μs, 9.6μs, 19.2μs, 38.4μs, and 76.8μs (at a main clock rate of 10MHz).
- The minimum instruction cycle selectable from 250ns, 500ns, 1.0μs, 2.0μs, 4.0μs, 8.0μs, 16.0μs, 32.0μs, and 64.0μs (at a main clock rate of 12MHz).

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) Canceled by a system reset or occurrence of interrupt.
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC, and crystal oscillators automatically stop operation.
 - 2) There are three ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the lower level.
 - (2) Setting at least one of the INTO, INT1, INT2, INT4, and INT5 pins to the specified level
 - (3) Having an interrupt source established at port 0
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.
 - 1) The CF and RC oscillators automatically stop operation.
 - 2) The state of crystal oscillation established when the HOLD mode is entered is retained.
 - 3) There are four ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) Setting at least one of the INT0, INT1, INT2, INT4, and INT5 pins to the specified level
 - (3) Having an interrupt source established at port 0
 - (4) Having an interrupt source established in the base timer circuit

■On-chip Debugger Function

• Permits software debugging with the test device installed on the target board.

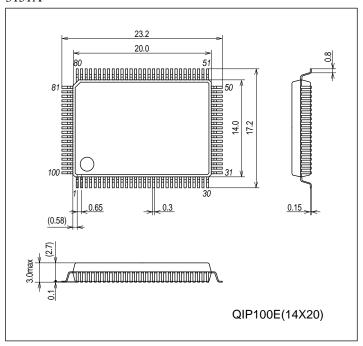
■Package Form

QIP100E (14 × 20) : "Lead-free type"
 TQFP100 (14 × 14) : "Lead-free type"

■Development Tools

• Evaluation (EVA) chip : LC87EV690

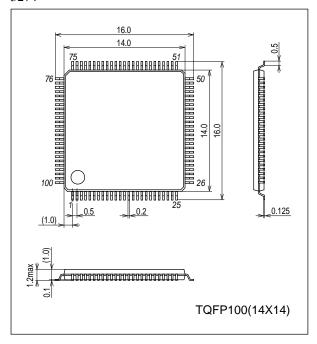
• Emulator : EVA62S + ECB876600D + SUB875C00 + POD100QFP or POD100SQFP Type B

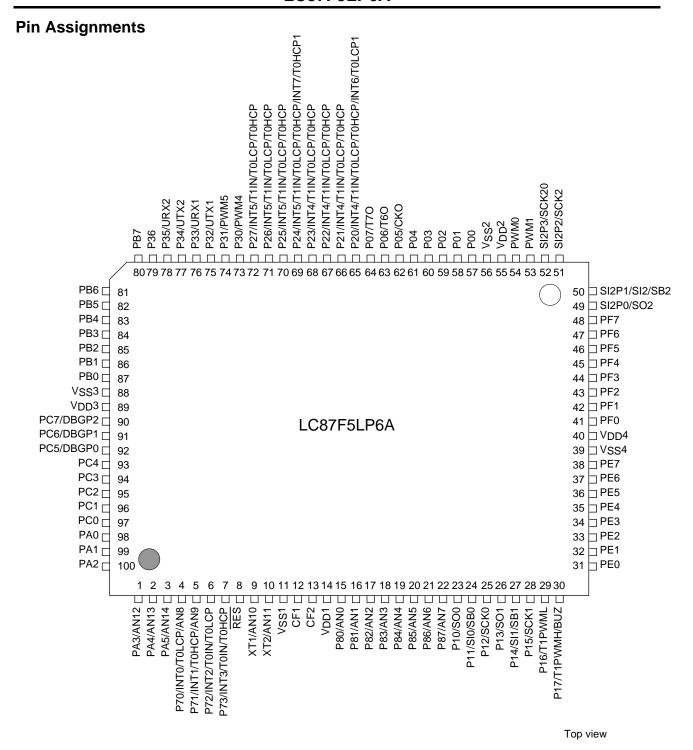

 $ICE\text{-}B877300 + SUB875C00 + POD100QFP \ or \ POD100SQFP \ Type \ B$

• Flash ROM writer adapter: W87F52256Q(QIP100E), W87F52256SQ(TQFP100)

Package Dimensions

unit: mm (typ)

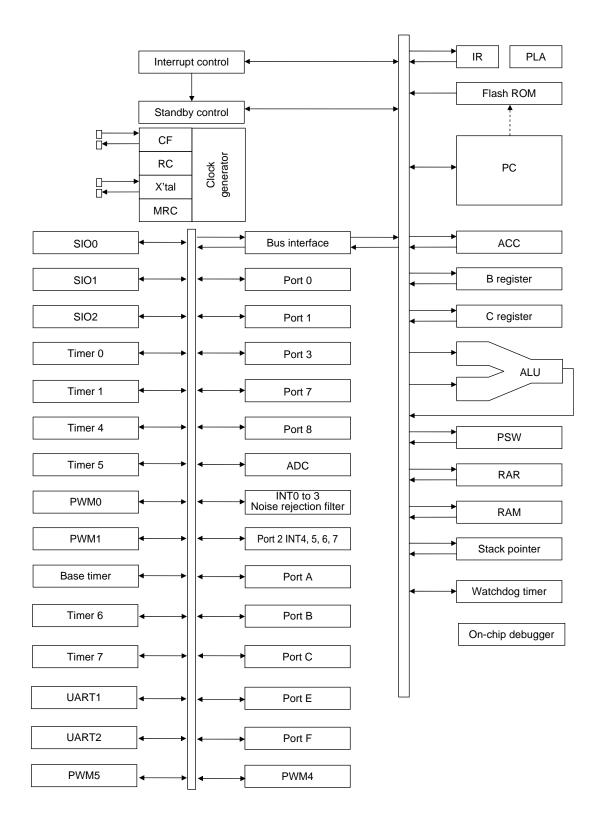

3151A



Package Dimensions

unit: mm (typ)

3274



QIP100E(14×20) "Lead-free Type"

QIP	NAME	TQFP
1	PA3/AN12	98
2	PA4/AN13	99
3	PA5/AN14	100
4	P70/INT0/T0LCP/AN8	1
5	P71/INT1/T0HCP/AN9	2
6	P72/INT2/T0IN/T0LCP	3
7	P73/INT3/T0IN/T0HCP	4
8	RES	5
9	XT1/AN10	6
10	XT2/AN11	7
11		8
	V _{SS} 1	
12	CF1	9
13	CF2	10
14	V _{DD} 1	11
15	P80/AN0	12
16	P81/AN1	13
17	P82/AN2	14
18	P83/AN3	15
19	P84/AN4	16
20	P85/AN5	17
21	P86/AN6	18
22	P87/AN7	19
23	P10/SO0	20
24	P11/SI0/SB0	21
25	P12/SCK0	22
26	P13/SO1	23
27	P14/SI1/SB1	24
28	P15/SCK1	25
29	P16/T1PWML	26
30	P17/T1PWMH/BUZ	27
31	PE0	28
32	PE1	29
33	PE2	30
34	PE3	31
35	PE4	32
36	PE5	33
37	PE6	34
38	PE7	35
39	V _{SS} 4	36
40	V _{DD} 4	37
41	PF0	38
42	PF1	39
43	PF2	40
44	PF3	41
45	PF4	42
46	PF5	43
47	PF6	44
48	PF7	45
49	SI2P0/SO2	46
50	SI2P1/SI2/SB2	47

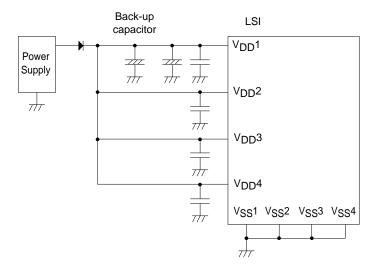
QIP	NAME	TQFP
51	SI2P2/SCK2	48
52	SI2P3/SCK20	49
53	PWM1	50
54	PWM0	51
55	V _{DD} 2	52
56	V _{SS} 2	53
57	P00	54
58	P01	55
59	P02	56
60	P03	57
61	P04	58
62	P05/CKO	59
63	P06/T6O	60
64	P07/T7O	61
65	P20/INT4/T1IN/T0LCP/T0HCP/INT6/T0LCP1	62
66	P21/INT4/T1IN/T0LCP/T0HCP	63
67	P22/INT4/T1IN/T0LCP/T0HCP	64
68	P23/INT4/T1IN/T0LCP/T0HCP	65
69	P24/INT5/T1IN/T0LCP/T0HCP/INT7/T0HCP1	66
70	P25/INT5/T1IN/T0LCP/T0HCP	67
71	P26/INT5/T1IN/T0LCP/T0HCP	68
72	P27/INT5/T1IN/T0LCP/T0HCP	69
73	P30/PWM4	70
74		
	P31/PWM5	71
75	P32/UDX1	72
76	P33/URX1	73
77	P34/UTX2	74
78	P35/URX2	75
79	P36	76
80	PB7	77
81	PB6	78
82	PB5	79
83	PB4	80
84	PB3	81
85	PB2	82
86	PB1	83
87	PB0	84
88	V _{SS} 3	85
89	V _{DD} 3	86
90	PC7/DBGP2	87
91	PC6/DBGP1	88
92	PC5/DBGP0	89
93	PC4	90
94	PC3	91
95	PC2	92
96	PC1	93
97	PC0	94
98	PA0	95
99	PA1	96
100	PA2	97

System Block Diagram

Pin Description

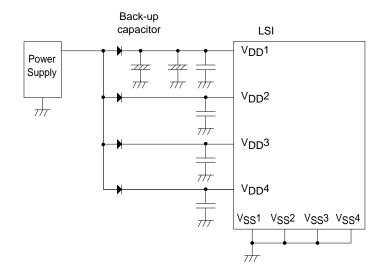
Pin Name	I/O			Desc	cription			Option	
V _{SS} 1, V _{SS} 2	-	- Power supply pi	n		<u> </u>			No	
V _{SS} 3, V _{SS} 4									
V _{DD} 1, V _{DD} 2	-	+ Power supply p	in					No	
V _{DD} 3, V _{DD} 4									
Port 0	I/O	• 8-bit I/O port						Yes	
P00 to P07			Dispecifiable in 4-bit units						
1 00 10 1 07		-	Il-up resistor can be turned on and off in 4-bit units						
		HOLD release in	·						
		Port 0 interrupt i	nput						
		Pin functions							
		P05: System clo	ck output						
		P06: Timer 6 tog	ggle output						
		P07: Timer 7 tog	ggle output						
Port 1	I/O	• 8-bit I/O port						Yes	
P10 to P17		I/O specifiable in							
		Pull-up resistor of	can be turned or	n and off in 1-bit	units				
		• Pin functions							
		P10: SIO0 data	•						
		P11: SIO0 data P12: SIO0 clock	-						
		P13: SIO1 data							
		P14: SIO1 data	•						
		P15: SIO1 clock							
		P16: Timer 1 PV							
		P17: Timer 1 PV	•	eper output					
Port 2	I/O	• 8-bit I/O port	•	·				Yes	
P20 to P27		I/O specifiable in	1-bit units						
. 20 10 . 2.		Pull-up resistor of	can be turned or	and off in 1-bit	units				
		Other functions							
		P20: INT4 input/	HOLD reset inp	ut/timer 1 event	input/timer 0L c	apture input/			
		timer 0H ca	apture input/INT	6 input/timer 0L	capture 1 input				
		P21 to P23: INT		eset input/timer	1 event input/tim	er 0L capture in	put/		
			apture input						
		P24: INT5 input	=		-	-			
				•	capture 1 input		nut/		
		P25 to P27: INT	apture input Inte	· ·	•	iei or capitile ili	puv		
		Interrupt acknow		Trupt acknowled	ige type				
		Thomas donner			Rising/				
			Rising	Falling	Falling	H level	L level		
		INT4	enable	enable	enable	disable	disable		
		INT5	enable	enable	enable	disable	disable		
		INT6	enable	enable	enable	disable	disable		
		INT7	enable	enable	enable	disable	disable		
Port 3	I/O	• 7-bit I/O port						Yes	
P30 to P36		I/O specifiable in	1-bit units						
		Pull-up resistor of	can be turned or	and off in 1-bit	units				
		Pin functions							
		P30: PWM4 out	•						
		P31: PWM5 out	•						
		P32: UART1 tra							
		P33: UART1 red P34: UART2 tra							
		P34: UART2 tra							
	l	1 33. UAN 12 IEC	JO146						

Continued on next page.


Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor. Data can be read into any input port even if it is in the output mode.

Port	Options Selected in Units of	Option Type	Output Type	Pull-up Resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
		2	N-channel open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
P20 to P27 P30 to P36		2	N-channel open drain	Programmable
PA0 to PA5	1 bit	1	CMOS	Programmable
PB0 to PB7 PC0 to PC7		2	N-channel open drain	Programmable
PE0 to PE7 PF0 to PF7	-	No	CMOS	Programmable
P70	-	No	N-channel open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
P80 to P87	-	No	N-channel open drain	No
SI2P0, SI2P2 SI2P3 PWM0, PWM1	-	No	CMOS	No
SI2P1	-	No	CMOS (when selected as ordinary port) N-channel open drain (When SIO2 data is selected)	No
XT1	-	No	Input only	No
XT2	-	No	Output for 32.768kHz quartz oscillator N-channel open drain (when in general- purpose No output mode)	No


Note 1: Programmable pull-up resistors for port 0 are controlled in 4-bit units (P00 to 03, P04 to 07).

(Example 1) When backup is active in the HOLD mode, the high level of the port outputs is supplied by the backup capacitors.

^{*1:} Make the following connection to minimize the noise input to the V_{DD1} pin and prolong the backup time. Be sure to electrically short the V_{SS1} , V_{SS2} , V_{SS3} and V_{SS4} pins.

(Example 2) The high-level output at the ports is unstable when the HOLD mode backup is in effect.

Absolute Maximum Ratings at Ta = 25°C, VSS1 = VSS2 = VSS3 = VSS4 = 0V

	Darameter	Cumhal	Pins/Remarks	Conditions			Speci	fication	
	Parameter	Symbol	Pins/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Maxii volta	mum supply ge	V _{DD} max	V _{DD} 1, V _{DD} 2, V _{DD} 3, V _{DD} 4	$V_{DD}1=V_{DD}2$ $=V_{DD}3=V_{DD}4$		-0.3		+6.5	
Input	voltage	V _I (1)	XT1, CF1			-0.3		V _{DD} +0.3	
Input volta	t/Output ge	V _{IO} (1)	Ports 0, 1, 2 Ports 3, 7, 8 Ports A, B, C, E, F SI2P0 to SI2P3 PWM0, PWM1, XT2			-0.3		V _{DD} +0.3	V
	Peak output current	IOPH(1)	Ports 0, 1, 2, 3 Ports A, B, C, E, F SI2P0 to SI2P3	CMOS output select per 1 application pin		-10			
		IOPH(2)	PWM0, PWM1	Per 1 application pin.		-20			
		IOPH(3)	P71 to P73	Per 1 application pin.		-5			
(Average output current (Note1-1)	IOM(1)	Ports 0, 1, 2, 3 Ports A, B, C, E, F SI2P0 to SI2P3	CMOS output select per 1 application pin		-7.5			
¥		IOM(2)	PWM0, PWM1	Per 1 application pin.		-15			
urrer		IOM(3)	P71 to P73	Per 1 application pin.		-3			
nt cr	Total output	ΣΙΟΑΗ(1)	P71 to P73	Total of all applicable pins		-10			
High level output current	current	ΣΙΟΑΗ(2)	PWM0, PWM1 SI2P0 to SI2P3	Total of all applicable pins		-20			mA
h le		ΣΙΟΑΗ(3)	Ports 0, 2, 3	Total of all applicable pins		-30			
Hig	- LBIL	ΣΙΟΑΗ(4)	Ports 0, 2, 3 PWM0, PWM1 SI2P0 to SI2P3	Total of all applicable pins		-50			
		ΣΙΟΑΗ(5)	Port B	Total of all applicable pins		-20			
		ΣΙΟΑΗ(6)	Ports A, C	Total of all applicable pins		-20			
		ΣΙΟΑΗ(7)	Ports A, B, C	Total of all applicable pins		-40			
		ΣΙΟΑΗ(8)	Port F	Total of all applicable pins		-20			
		ΣΙΟΑΗ(9)	Ports 1, E	Total of all applicable pins		-20			
		ΣΙΟΑΗ(10)	Ports 1, E, F	Total of all applicable pins		-40			

Note 1-1: Average output current is average of current in 100ms interval.

Continued on next page.

Continued from preceding page.

	Doromotor	Cumbal	Dina/Damarka	Conditions			Specif	fication	
	Parameter	Symbol	Pins/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	Peak output current	IOPL(1)	P02 to P07 Ports 1, 2, 3 Ports A, B, C, E, F SI2P0 to SI2P3 PWM0, PWM1	Per 1 application pin.				20	
		IOPL(2)	P00, P01	Per 1 application pin.				30	
		IOPL(3)	Ports 7, 8, XT2	Per 1 application pin.				10	
	Average output current (Note1-1)	IOML(1)	P02 to P07 Ports 1, 2, 3 Ports A, B, C, E, F SI2P0 to SI2P3 PWM0, PWM1	Per 1 application pin.				15	
ent		IOML(2)	P00, P01	Per 1 application pin.				20	
cur		IOML(3)	Ports 7, 8, XT2	Per 1 application pin.				7.5	
Low level output current	Total output	ΣIOAL(1)	Port 7, XT2	Total of all applicable pins				15	
el or	current	ΣIOAL(2)	Port 8	Total of all applicable pins				15	mA
v lev		ΣIOAL(3)	Ports 7, 8, XT2	Total of all applicable pins				20	
Lov		ΣIOAL(4)	PWM0, PWM1 SI2P0 to SI2P3	Total of all applicable pins				40	
		ΣIOAL(5)	Ports 0, 2, 3	Total of all applicable pins				80	
		ΣIOAL(6)	Ports 0, 2, 3 PWM0, PWM1 SI2P0 to SI2P3	Total of all applicable pins				120	
		ΣIOAL(7)	Port B	Total of all applicable pins				40	
		ΣIOAL(8)	Ports A, C	Total of all applicable pins				40	
		ΣIOAL(9)	Ports A, B, C	Total of all applicable pins				80	
		ΣIOAL(10)	Port F	Total of all applicable pins				40	
		ΣIOAL(11)	Ports 1, E	Total of all applicable pins				70	
		ΣIOAL(12)	Ports 1, E, F	Total of all applicable pins				110	
Ma	aximum power	Pd max	QIP100E(14×20)					523	\A/
dis	ssipation		TQFP100(14×14)					364	mW
•	perating ambient mperature	Topr				-20		+70	°C
	orage ambient mperature	Tstg				-55		+125	

Note 1-1: Average output current is average of current in 100ms interval.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Serial I/O Characteristics at Ta = -20 °C to +70 °C, $V_SS1 = V_SS2 = V_SS3 = V_SS4 = 0V$

1. SIO0 Serial I/O Characteristics (Note 4-1-1)

	_		O. made al	Pins	O and distance			Speci	fication	
	Pi	arameter	Symbol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	• See Fig. 6.		2			
		Low level pulse width	tSCKL(1)				1			
		High level pulse width	tSCKH(1)				1			
	Input clock		tSCKHA(1a)		Continuous data transmission/reception mode SIO2 is not in use simultaneous. See Fig. 6. (Note 4-1-2)	2.5 to 5.5	4			tCYC
Serial clock			tSCKHA(1b)		Continuous data transmission/reception mode SIO2 is in use simultaneous. See Fig. 6. (Note 4-1-2)		6			
Serial		Frequency	tSCK(2)	SCK0(P12)	CMOS output selected. See Fig. 6.		4/3			
		Low level pulse width	tSCKL(2)					1/2		10016
		High level pulse width	tSCKH(2)					1/2		tSCK
	Output clock		tSCKHA(2a)		Continuous data transmission/reception mode SIO2 is not in use simultaneous. CMOS output selected. See Fig. 6.	2.5 to 5.5	tSCKH(2) +2tCYC		tSCKH(2) +(10/3) tCYC	
			tSCKHA(2b)		Continuous data transmission/reception mode SIO2 is in use simultaneous. CMOS output selected. See Fig. 6.		tSCKH(2) +2tCYC		tSCKH(2) +(16/3) tCYC	tCYC
nput	Da	ta setup time	tsDI(1)	SI0(P11), SB0(P11)	Must be specified with respect to rising edge of SIOCLK See fig. 6.		0.03			
Serial input	Da	ta hold time	thDI(1)		500 lig. 0.	2.5 to 5.5	0.03			
	Input clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11),	Continuous data transmission/reception mode (Note 4-1-3)				(1/3)tCYC +0.05	
Serial output	Input		tdD0(2)		Synchronous 8-bit mode. (Note 4-1-3)	25+055			1tCYC +0.05	μs
Serial	Output clock		tdD0(3)		• (Note 4-1-3)	2.5 to 5.5			(1/3)tCYC +0.05	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: To use serial-clock-input in continuous trans/rec mode, a time from SI0RUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

	_	aramatar.	Cumbal	Pins/	Conditions			Speci	fication		
	Р	arameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
	ik	Frequency	Tsck(3)	SCK1(P15)	• See Fig. 6.		2				
	Input clock	Low level pulse width	tSCKL(3)			2.5 to 5.5	1				
clock	In	High level pulse width	tSCKH(3)				1			tCYC	
Serial clock	ck	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected. See Fig. 6.		2				
	Output clock	Low level pulse width	tSCKL(4)			2.5 to 5.5		1/2		1001	
	nO	High level pulse width	tSCKH(4)					1/2		tSCK	
Serial input	Da	ta setup time	tsDI(2)	SI1(P14), SB1(P14)	Must be specified with respect to rising edge of SIOCLK See fig. 6.	0.5.1.5.5	0.03				
Serial	Da	ita hold time	thDI(2)			2.5 to 5.5	0.03				
Serial output	Ou	itput delay ne	tdD0(4)	SO1(P13), SB1(P14)	Must be specified with respect to falling edge of SIOCLK Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.	2.5 to 5.5			(1/3)tCYC +0.05	μѕ	

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

3. SIO2 Serial I/O Characteristics (Note 4-3-1)

	De	arameter	Symbol	Pins/	Conditions			Spe	cification	
	Г c	irameter	Symbol	Remarks	Conditions	V _{DD} [V]	min.	typ	max.	unit
		Frequency	tSCK(5)	SCK2 (SI2P2)	• See Fig. 6.		2			
		Low level pulse width	tSCKL(5)				1			
		High level pulse width	tSCKH(5)				1			
	Input clock		tSCKHA(5a)		Continuous data transmission/ reception mode of SIO0 is not in use simultaneous. See Fig. 6. (Note 4-3-2)	2.5 to 5.5	4			tCYC
Serial clock			tSCKHA(5b)		Continuous data transmission/ reception mode of SIO0 is in use simultaneous. See Fig. 6. (Note 4-3-2)		7			
Seria		Frequency	tSCK(6)	SCK2 (SI2P2),	CMOS output selected.See Fig. 6.		4/3			
		Low level pulse width	tSCKL(6)	SCK2O (SI2P3)				1/2		tSCK
	*	High level pulse width	tSCKH(6)					1/2		ISON
	Output clock		tSCKHA(6a)		Continuous data transmission/ reception mode of SIO0 is not in use simultaneous. CMOS output selected. See Fig. 6.	2.5 to 5.5	tSCKH(6) +(5/3)tCYC		tSCKH(6) +(10/3)tCYC	101/0
			tSCKHA(6b)		Continuous data transmission/ reception mode of SIO0 is in use simultaneous. CMOS output selected. See Fig. 6.		tSCKH(6) +(5/3)tCYC		tSCKH(6) +(19/3)tCYC	tCYC
input	Da	ta setup time	tsDI(3)	SI2(SI2P1), SB2(SI2P1)	Must be specified with respect to rising edge of SIOCLK See fig. 6.		0.03			
Serial input	Data hold time	ta hold time	thDI(3)			2.5 to 5.5	0.03			
Serial output	Ou	tput delay e	tdD0(5)	SO2 (SI2P0), SB2(SI2P1)	Must be specified with respect to falling edge of SIOCLK Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.	2.5 to 5.5			(1/3)tCYC +0.05	, µs

Note 4-3-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-3-2: To use serial-clock-input, a time from SI2RUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

Pulse Input Conditions at $Ta = -20^{\circ}C$ to $+70^{\circ}C$, $V_SS1 = V_SS2 = V_SS3 = V_SS4 = 0V$

D	0	Dia a /D a mandra	O a maliki a ma			Specif	ication	
Parameter	Symbol	Pins/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level	tPIH(1)	INT0(P70),	Interrupt source flag can be set.					
pulse width	tPIL(1)	INT1(P71),	Event inputs for timer 0 or 1 are					
		INT2(P72)	enabled.					
		INT4(P20 to P23),		2.5 to 5.5	1			
		INT5(P24 to P27),						
		INT6(P20),						
		INT7(P24)						
	tPIH(2)	INT3(P73) when noise	Interrupt source flag can be set.	2.5 to 5.5	2			tCYC
	tPIL(2)	filter time constant is 1/1.	Event inputs for timer 0 are enabled.	2.5 10 5.5	2			
	tPIH(3)	INT3(P73)	Interrupt source flag can be set.					
	tPIL(3)	(The noise rejection clock	Event inputs for timer 0 are enabled.	2.5 to 5.5	64			
		is selected to 1/32.)						
	tPIH(4)	INT3(P73)	Interrupt source flag can be set.					
	tPIL(4)	(The noise rejection clock	Event inputs for timer 0 are enabled.	2.5 to 5.5	256			
		is selected to 1/128.)						
	tPIL(5)	RES	Reset acceptable	2.5 to 5.5	200			μs

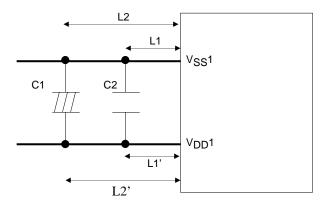
AD Converter Characteristics at $Ta = -20^{\circ}C$ to $+70^{\circ}C$, VSS1 = VSS2 = VSS3 = VSS4 = 0V

		D: /D .	0 1111			Specific	cation	
Parameter	Symbol	Pins/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P80)		3.0 to 5.5		8		bit
Absolute precision	ET	to AN7(P87), AN8(P70),	(Note 6-1)	3.0 to 5.5			±1.5	LSB
Conversion time	TCAD	AN9(P71), AN10(XT1), AN11(XT2),	AD conversion time=32×tCYC (when ADCR2=0) (Note 6-2)	4.5 to 5.5	11.74 (tCYC= 0.367μs)		97.92 (tCYC= 3.06μs)	
AN12(PA3), AN13(PA4), AN14(PA5)		3.0 to 5.5	31.36 (tCYC= 0.980μs)		97.92 (tCYC= 3.06μs)			
			AD conversion time=64×tCYC (when ADCR2=1) (Note 6-2)	4.5 to 5.5	18.82 (tCYC= 0.294μs)		97.92 (tCYC= 1.53μs)	μs
				3.0 to 5.5	31.36 (tCYC= 0.490μs)		97.92 (tCYC= 1.53μs)	
Analog input voltage range	VAIN			3.0 to 5.5	V _{SS}		V _{DD}	V
Analog port	IAINH	1	VAIN=V _{DD}	3.0 to 5.5			1	
input current	IAINL	1	VAIN=V _{SS}	3.0 to 5.5	-1			μΑ

Note 6-1: The quantization error ($\pm 1/2$ LSB) is excluded from the absolute accuracy value.

Note 6-2: The conversion time refers to the interval from the time the instruction for starting the converter is issued till the complete digital value corresponding to the analog input value is loaded in the required register.

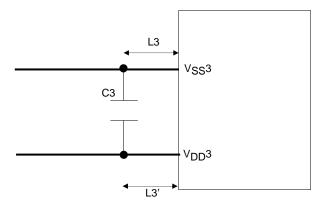
					Specification						
Parameter	Symbol	Pins/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit			
Normal mode consumption current (Note 7-1)	IDDOP(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3 =V _{DD} 4	FmCF=10MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode System clock set to 10MHz side Internal RC oscillation stopped frequency variable RC oscillation stopped 1/1 frequency division ratio.	4.5 to 5.5		9	22				
	IDDOP(2)		FmCF=8MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode System clock set to 8MHz side	4.5 to 5.5		8	17				
	IDDOP(3)		Internal RC oscillation stopped frequency variable RC oscillation stopped 1/1 frequency division ratio.	3.0 to 4.5		4.2	12.5				
	IDDOP(4)		FmCF=5MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode Suptem clock as the FMHz side.	4.5 to 5.5		5.5	12	mA			
	IDDOP(5)		System clock set to 5MHz side Internal RC oscillation stopped frequency variable RC oscillation stopped 1/1 frequency division ratio.	2.5 to 4.5		3	8.5				
	IDDOP(6)		FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz by crystal oscillation mode	4.5 to 5.5		1.2	6				
	IDDOP(7)		System clock set to internal RC oscillation frequency variable RC oscillation stopped 1/2 frequency division ratio.	2.5 to 4.5		0.7	4				
	IDDOP(8)		FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz by crystal oscillation mode.	4.5 to 5.5		1.5	10				
	IDDOP(9)		System clock set to 1MHz with frequency variable RC oscillation Internal RC oscillation stopped 1/2 frequency division ratio.	2.5 to 4.5		1	6				
	IDDOP(10)		FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz by crystal oscillation mode.	4.5 to 5.5		45	130				
	IDDOP(11)		System clock set to 32.768kHz side. Internal RC oscillation stopped frequency variable RC oscillation stopped 1/2 frequency division ratio.	2.5 to 4.5		22	85	μА			
	IDDOP(12)		FmCF=12MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode System clock set to 12MHz side Internal RC oscillation stopped frequency variable RC oscillation stopped 1/1 frequency division ratio.	4.5 to 5.5		10.2	25				
HALT mode consumption current (Note 7-1)	IDDHALT(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3 =V _{DD} 4	HALT mode FmCF=10MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode System clock set to 10MHz side Internal RC oscillation stopped frequency variable RC oscillation stopped	4.5 to 5.5		4	8.5	mA			


Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors

Continued on next page.

VDD1, VSS1 Terminal Condition

It is necessary to place capacitors between V_{DD}1 and V_{SS}1 as describe below.


- Place capacitors as close to VDD1 and VSS1 as possible.
- Place capacitors so that the length of each terminal to the each leg of the capacitor be equal (L1 = L1', L2 = L2').
- Place high capacitance capacitor C1 and low capacitance capacitor C2 in parallel.
- Capacitance of C2 must be more than 0.1µF.
- Use thicker pattern for VDD1 and VSS1.

VDD3, VSS3 Terminal Condition

It is necessary to place capacitors between VDD3 and VSS3 as describe below.

- Place capacitors as close to VDD3 and VSS3 as possible.
- Place capacitors so that the length of each terminal to the each leg of the capacitor be equal (L3 = L3').
- \bullet Capacitance of C3 must be more than 0.1 $\mu F.$
- Use thicker pattern for V_{DD}3 and V_{DD}3.

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

	Vendor	endor Oscillator Name	Circuit Constant				Operating Voltage	Oscillation Stabilization Time		Remarks	
	Name		C1 [pF]	C2 [pF]	Rf1 [Ω]	Rd1 [Ω]	Range [V]	typ [ms]	max [ms]		
12MHz	MURATA	CSTCE12M0G52-R0	(10)	(10)	Open	470	4.5 to 5.5	0.05	0.15	Internal C1,C2	
10MHz 8MHz 5MHz		CSTCE10M0G52-R0	(10)	(10)	Open	1.0k	4.5 to 5.5	0.05	0.15	Internal C1,C2	
			CSTLS10M0G53-B0	(15)	(15)	Open	680	4.5 to 5.5	0.05	0.15	Internal C1,C2
		CSTCE8M00G52-R0	(10)	(10)	Open	2.2k	3.0 to 5.5	0.05	0.15	Internal C1,C2	
		CSTLS8M00G53-B0	(15)	(15)	Open	680	3.0 to 5.5	0.05	0.15	Internal C1,C2	
		CSTCR5M00G53-R0	(15)	(15)	Open	3.3k	2.5 to 5.5	0.05	0.15	Internal C1,C2	
		CSTLS5M00G53-B0	(15)	(15)	Open	1.5k	2.5 to 5.5	0.05	0.15	Internal C1,C2	

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Fig. 4).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

Nominal Frequency	Vendor Name	Oscillator Name	Circuit Constant				Operating	Oscillation Stabilization Time		
			C3 [pF]	C4 [pF]	Rf2 [Ω]	Rd2 [Ω]	Voltage Range [V]	typ [s]	max [s]	Remarks
32.768kHz	SEIKO EPSON	MC-306	18	18	Open	560k	2.5 to 5.5	1.3	3.0	Applicable CL value=12.5pF

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Fig. 4).

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

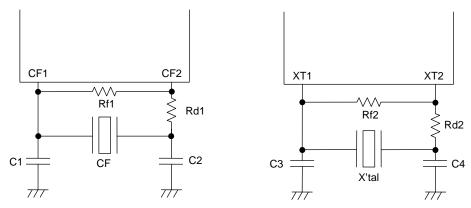
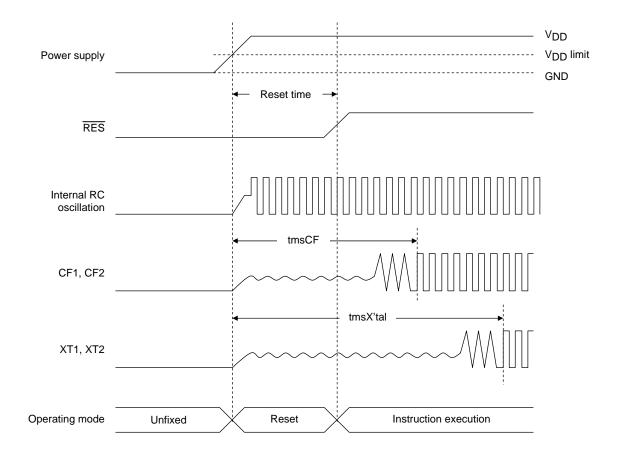



Figure 1 Ceramic Oscillator Circuit

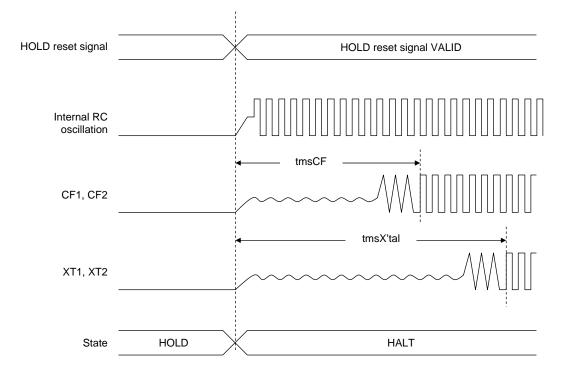
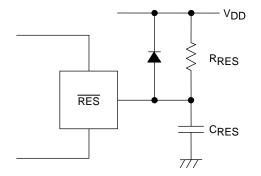

Figure 2 Crystal Oscillator Circuit

Figure 3 AC Timing Measurement Point



Reset Time and Oscillation Stabilization Time

HOLD Release Signal and Oscillation Stabilization Time

Figure 4 Oscillation Stabilization Times

Note:

Select C_{RES} and R_{RES} value to assure that at least 200 μ s reset time is generated after the V_{DD} becomes higher than the minimum operating voltage.

Figure 5 Reset Circuit

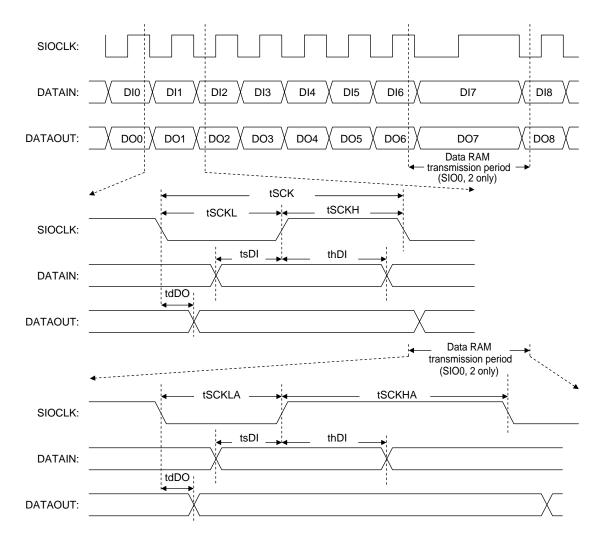


Figure 6 Serial I/O Test Condition

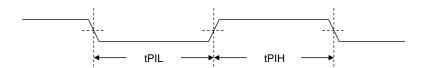


Figure 7 Pulse Input Timing Signal Waveform

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa