

Welcome to E-XFL.COM

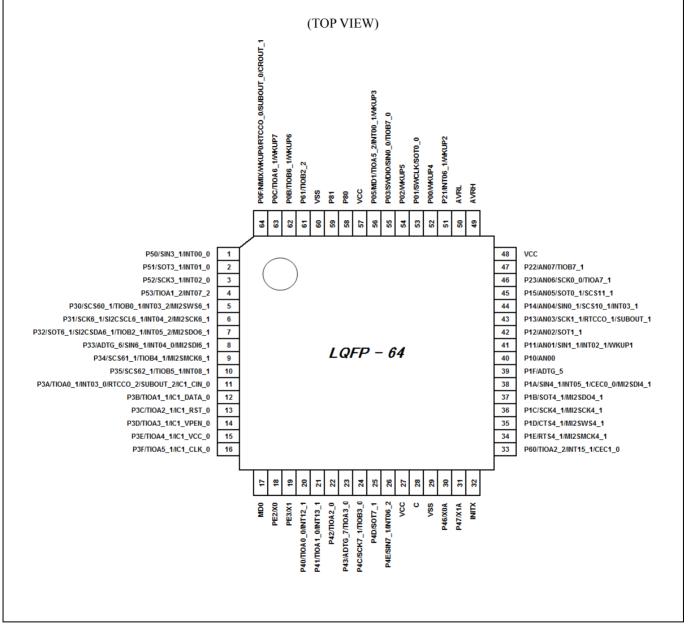
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

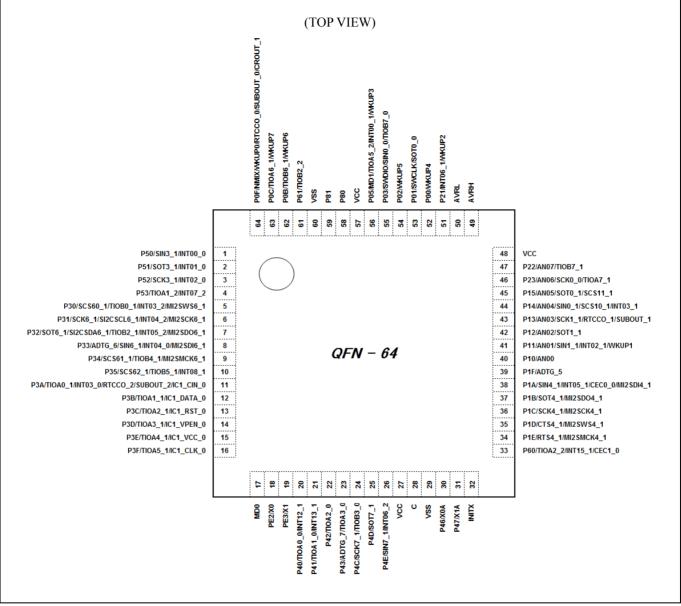
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CSIO, I ² C, LINbus, SmartCard, UART/USART
Peripherals	I ² S, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e1c11b0agp20000


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Pin Assignment

FPT-64P-M38


Note:

The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used.

S6E1C1 Series

LCC-64P-M25

Note:

The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used.

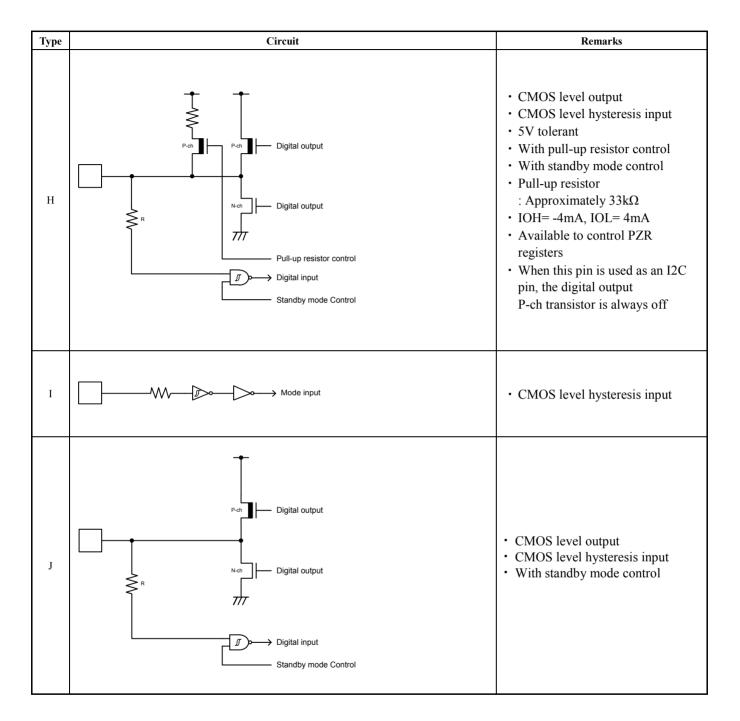
4. List of Pin Functions

List of Pin Numbers

The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used.

	Pin no.				Pin state
LQFP-64 QFN-64	LQFP-48 QFN-48	LQFP-32 QFN-32	Pin Function	I/O circuit type	type
QFIN-04	QFN-40	QFN-32	P50		
1	1	2	SIN3_1	D	к
I			INT00_0		IX.
			P51		
2	2	3	SOT3_1	D	К
-	-	Ũ	INT01_0		
			P52		
3	3	4	SCK3_1	D	к
Ũ	Ŭ	·	INT02_0	-	
			P53		
4	4	_	TIOA1_2	D	к
			INT07_2	+	
			P30		
			SCS60_1	-	
5	5	-	TIOB0_1	D	К
-			INT03 2	1	
			MI2SWS6_1	-	
			 P31		
			SCK6_1	-	к
6	6	-	SI2CSCL6_1	н	
			 INT04_2		
			MI2SCK6_1		
			 P31		
		_	SCK6_1	T	
-	-	5	SI2CSCL6_1	- н	К
			INT04_2		
			P32		
			SOT6_1		
7	7		SI2CSDA6_1		K
7	7	-	TIOB2_1	- н	К
			INT05_2	7	
			MI2SDO6_1		
			P32		
			SOT6_1		
-	-	- 6 SI2		н	К
			TIOB2_1		
			INT05_2		

	Pin no.			I/O circuit	Pin state
LQFP-64	LQFP-48	LQFP-32	Pin Function		
QFN-64	QFN-48	QFN-32		type	type
			P0F		
			NMIX		
64	48	1	WKUP0 E	F	
64	40	1	RTCCO_0		1
			SUBOUT_0		
			CROUT_1		


*: In case of 32-pin package, AVRH pin is internally connected to VCC pin.

				Pin no.	
Pin function	Pin name	Function description	LQFP-64	LQFP-48	LQFP-32
			QFN-64	QFN-48	QFN-32
	INT00_0	- External interrupt request 00 input pin	1	1	2
	INT00_1	External interrupt request of input pin	56	42	29
	INT01_0	External interrupt request 01 input pin	2	2	3
	INT02_0	External interrupt request 02 input pin	3	3	4
	INT02_1	External interrupt request of input pin	41	29	19
	INT03_0		11	10	-
	INT03_1	External interrupt request 03 input pin	44	32	-
	INT03_2		5	5	-
	INT04_0	External interrupt request 04 input hip	8	8	7
External	INT04_2	External interrupt request 04 input pin	6	6	5
Interrupt	INT05_1	External interrupt request OF input his	38	27	-
	INT05_2	External interrupt request 05 input pin	7	7	6
	INT06_1	External interrupt request 06 input his	51	39	26
	INT06_2	External interrupt request 06 input pin	26	18	-
	INT07_2	External interrupt request 07 input pin	4	4	-
	INT08_1	External interrupt request 08 input pin	10	-	-
	INT12_1	External interrupt request 12 input pin	20	-	-
	INT13_1	External interrupt request 13 input pin	21	-	-
	INT15_1	External interrupt request 15 input pin	33	25	17
	NMIX	Non-Maskable Interrupt input pin	64	48	1
	P00		52	-	-
	P01		53	40	27
	P02		54	-	-
	P03		55	41	28
GPIO	P05	General-purpose I/O port 0	56	42	29
	P0B		62	-	-
	P0C		63	-	-
	P0F		64	48	1
	P10		40	28	18
	P11		41	29	19
	P12		42	30	20
	P13		43	31	21
	P14		44	32	-
	P15		45	33	-
GPIO	P1A	General-purpose I/O port 1	38	27	-
	P1B		37	26	-
	P1C		36	-	-
	P1D		35	-	-
	P1E		34	-	-
	P1F		39	-	-
	P21		51	39	26
GPIO	P22	General-purpose I/O port 2	47	35	23
	P23		46	34	22

Latch-Up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- (2) Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Spansion semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

6.2 Precautions for Package Mounting

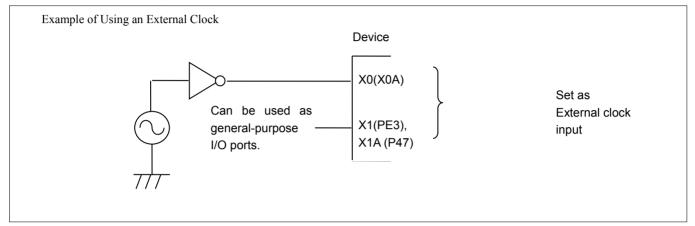
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Spansion's recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Spansion recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.



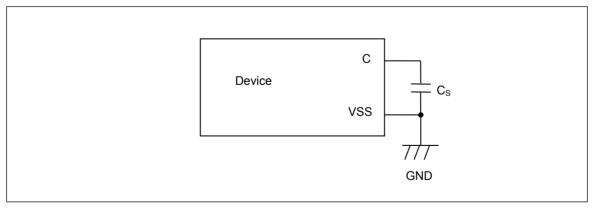
Using an External Clock

When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port.

Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port.

However in the Deep Standby mode, an external clock as an input of the sub clock cannot be used.

Handling when Using Multi-Function Serial Pin as I²C Pin


If it is using the multi-function serial pin as I^2C pins, P-ch transistor of digital output is always disabled. However, I^2C pins need to keep the electrical characteristic like other pins and not to connect to the external I^2C bus system with power OFF.

C Pin

This series contains the regulator. Be sure to connect a smoothing capacitor (C_S) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor.

A smoothing capacitor of about 4.7 μ F would be recommended for this series.

Incidentally, the C pin becomes floating in Deep standby mode.

Mode Pins (MD0)

Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise.

Notes on Power-on

Turn power on/off in the following order or at the same time.

Turning on : VCC \rightarrow AVRH Turning off : AVRH \rightarrow VCC

Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider the case of receiving wrong data due to noise; perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data.

Differences in Features Among the Products with Different Memory Sizes and Between Flash Memory Products and MASK Products

The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash memory products and MASK products are different because chip layout and memory structures are different.

If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.

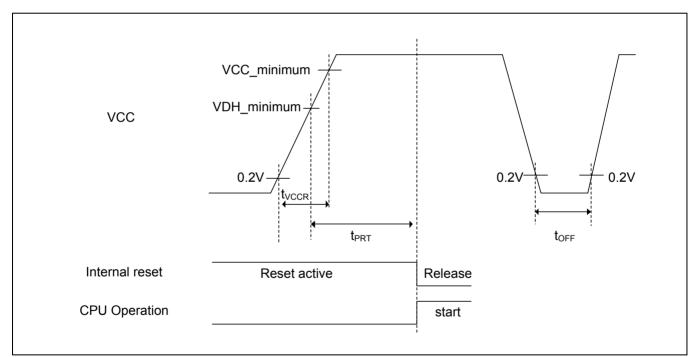
Pull-Up Function of 5 V Tolerant I/O

Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O.

Handling when Using Debug Pins

When debug pins (SWDIO/SWCLK) are set to GPIO or other peripheral functions, set them as output only; do not set them as input.

11.4.6 Reset Input Characteristics


(V_{CC} = 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks
T drameter	Cymbol	Name		Min	Max	onic	Remarks
Reset input time	t _{INITX}	INITX	-	500	-	ns	

11.4.7 Power-on Reset Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Symbol Pin Value		Unit	Remarks	
Farameter	Symbol	Name	Min	Max	Unit	Remarks
Power supply rising time	t _{VCCR}		0	-	ms	
Power supply shut down time	t _{OFF}	VCC	1	-	ms	
Time until releasing Power-on reset	t _{PRT}		0.43	3.4	ms	

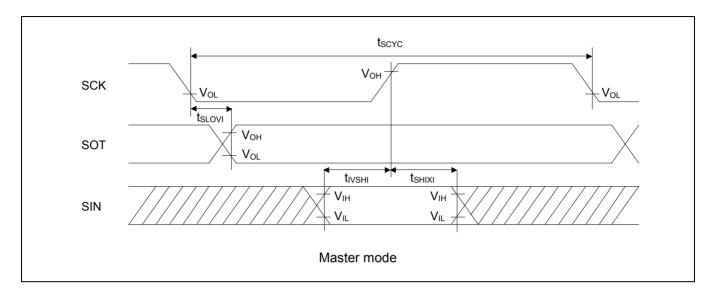
Glossary

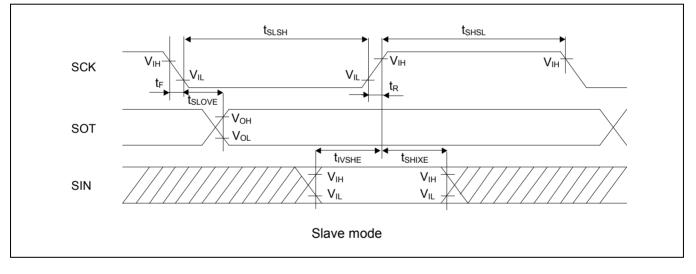
 \square VCC_minimum : Minimum V_{CC} of recommended operating conditions.

UDH_minimum : Minimum detection voltage of Low-Voltage detection reset.

See "11.6 Low-Voltage Detection Characteristics".

11.4.9 CSIO/SPI/UART Timing


CSIO (SPI=0, SCINV=0)


				(V _{CC} = 1.6	65 V to 3.6	V, V _{SS} = 0 V	, T _A =- 40°	C to +10
Parameter	Symbol	Pin	Conditions	V _{cc} < 2		V _{cc} ≥		Unit
i didinotor	Oymoor	name	Conditione	Min	Max	Min	Max	onic
Serial clock cycle time	t _{SCYC}	SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{sLOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \uparrow setup \ time$	t _{ivshi}	SCKx, SINx	Master mode	50	-	36	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{shixi}	SCKx, SINx		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVE}	SCKx, SOTx	Slave mode	-	50	-	30	ns
$SIN \to SCK \uparrow setup time$	t _{IVSHE}	SCKx, SINx	Slave mode	10	-	10	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXE}	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx	1	-	5	-	5	ns

Notes:

- The above AC characteristics are for clock synchronous mode. -
- t_{CYCP} represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram".
- The characteristics are only applicable when the relocate port numbers are the same. _ For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.
- External load capacitance C_L=30 pF

SPI (SPI=1, SCINV=1)

						, v , v , v ,		
Parameter	Symbol	Pin	Conditions	V _{cc} < 2	2.7 V	V _{cc} ≥2	2.7 V	Unit
Farameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	t _{scyc}	SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \uparrow setup \ time$	tıvsнı	SCKx, SINx	Master mode	50	-	36	-	ns
$SCK \uparrow \to SIN$ hold time	t _{SHIXI}	SCKx, SINx		0	-	0	-	ns
$\text{SOT} \rightarrow \text{SCK} \uparrow \text{delay time}$	t _{sovнi}	SCKx, SOTx		2 t _{CYCP} - 30	-	2 t _{CYCP} - 30	-	ns
Serial clock "L" pulse width	t _{sLSH}	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \downarrow \rightarrow SOT$ delay time	t _{SLOVE}	SCKx, SOTx		-	50	-	33	ns
$\text{SIN} \rightarrow \text{SCK} \uparrow \text{setup time}$	t _{IVSHE}	SCKx, SINx	Slave mode	10	-	10	-	ns
$\text{SCK} \uparrow \rightarrow \text{SIN}$ hold time	t _{SHIXE}	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

$(V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_{A} = -40^{\circ}\text{C to } +105^{\circ}\text{C})$

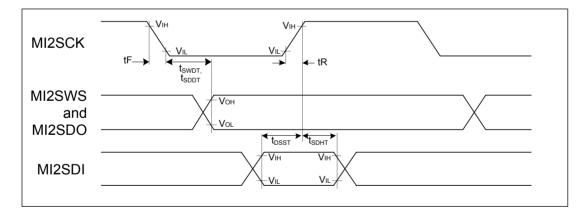
Notes:

- The above AC characteristics are for clock synchronous mode.

t_{CYCP} represents the APB bus clock cycle time.
For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram".

- The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.

- External load capacitance C_L=30 pF


11.4.12 I²S Timing (MFS-I2S Timing)

Master Mode Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbo	Pin	Conditions	V _{cc} <	2.7 V	V _{cc} ≥	Unit	
Farameter	Ī	Name	Conditions	Min	Max	Min	Max	Unit
MI2SCK max frequency (*1)	F _{MI2SCK}	MI2SCKx		I	6.144	-	6.144	MHz
I ² S clock cycle time (*1)	t _{ICYC}	MI2SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
I ² S clock Duty cycle	Δ	MI2SCKx		45%	55%	45%	55%	
		MI2SCKx						
$\begin{array}{l} MI2SCK \downarrow \ \rightarrow \ MI2SWS \ delay \\ time \end{array}$	t _{SWDT}	MI2ŚWS x		-30	+30	-20	+20	ns
		MI2SCKx						
$\begin{array}{l} MI2SCK\downarrow \ \rightarrow \ MI2SDO \ delay \\ time \end{array}$	t _{SDDT}	MI2SCKX MI2SDO X	C∟=30 pF	-30	+30	-20	+20	ns
$\begin{array}{rl} MI2SDI \ \rightarrow \ MI2SCK \ \uparrow \ setup \\ time \end{array}$	t _{DSST}	MI2SCKx , MI2SDIx		50	-	36	-	ns
$\begin{array}{rcl} MI2SCK & \uparrow & \rightarrow & MI2SDI \text{ hold} \\ time \end{array}$	t _{SDHT}	MI2SCKx , MI2SDIx		0	-	0	-	ns
MI2SCK falling time	tF	MI2SCKx		-	5	-	5	ns
MI2SCK rising time	tR	MI2SCKx		-	5	-	5	ns

*1: I²S clock should meet the multiple of PCLK(t_{ICYC}) and the frequency less than F_{MI2SCK} meantime. The detail information please refer to Chapter I²S of Communication Macro Part of Peripheral Manual.

11.5 12-bit A/D Converter

Electrical Characteristics of A/D Converter (Preliminary Values)

			,	(Vcc	= 1.65 V to 3.6	V, V _{SS} =	0 V, T_A =- 40°C to +10
Parameter	Symbol	Symbol Pin Name				Unit	Remarks
	Symbol	Pin Name	Min	Value Typ	Max	Unit	Remarks
Resolution	-	-	-	-	12	bit	
Integral Nonlinearity	-	-	- 4.5	-	4.5	LSB	
Differential Nonlinearity	-	-	- 2.5	-	+ 2.5	LSB	
Zero transition voltage	V _{ZT}	ANxx	- 15	-	+ 15	mV	
Full-scale transition voltage	V _{FST}	ANxx	AVRH - 15	-	AVRH + 15	mV	
			1.0	-	-		V _{CC} ≥ 2.7 V
Conversion time* ¹	-	-	4.0	-	-	μs	$1.8 \le V_{CC} \le 2.7 \text{ V}$
			10	-	-		$1.65 \le V_{CC} \le 1.8 \text{ V}$
			0.3	-			$V_{CC} \ge 2.7 V$
Sampling time *2	Ts	-	1.2	-	10	μs	$1.8 \le V_{CC} \le 2.7 \text{ V}$
			3.0	-			1.65 ≤ V _{CC} < 1.8 V
			50	-			V _{CC} ≥ 2.7 V
Compare clock cycle *3	Tcck	-	200	-	1000	ns	$1.8 \le V_{CC} \le 2.7 \text{ V}$
			500	-			$1.65 \le V_{CC} < 1.8 \text{ V}$
State transition time to operation permission	Tstt	-	-	-	1.0	μs	
Analog input capacity	C _{AIN}	_	_	-	7.5	pF	
	-7414				2.2		V _{CC} ≥ 2.7 V
Analog input resistance	R _{AIN}	-	-	-	5.5	kΩ	$1.8 \le V_{CC} \le 2.7 \text{ V}$
					10.5		$1.65 \le V_{CC} < 1.8 V$
Interchannel disparity	-	_	-	-	4	LSB	
Analog port input leak current	-	ANxx	-	_	5	μA	
Analog input voltage	_	ANxx	V _{SS}	-	AVRH	V	
	_	AVRH	2.7	-	V _{cc}	V	VCC ≥ 2.7V
Reference voltage			Vcc				VCC < 2.7V
	-	AVRL	V _{SS}	-	V _{SS}	V	<u> </u>

The conversion time is the value of sampling time (t_s) + compare time (t_c) .

The minimum conversion time is computed according to the following conditions:

 $V_{CC} \ge 2.7 V$ sampling time=0.3 µs, compare time=0.7 µs

 $1.8 \le V_{CC} < 2.7 \text{ V}$ sampling time=1.2 µs, compare time=2.8 µs

 $1.65 \le V_{CC} < 1.8 V$ sampling time=3.0 µs, compare time=7.0 µs

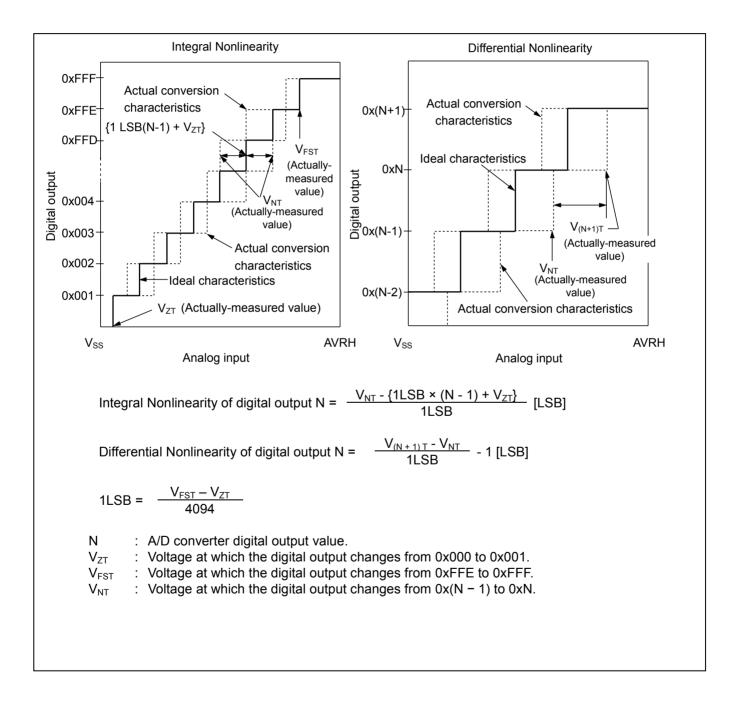
Ensure that the conversion time satisfies the specifications of the sampling time (t_s) and compare clock cycle (t_{CCK}). For details of the settings of the sampling time and compare clock cycle, refer to "Chapter: A/D Converter" in "FM0+ Family Peripheral Manual Analog Macro Part".

The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing.

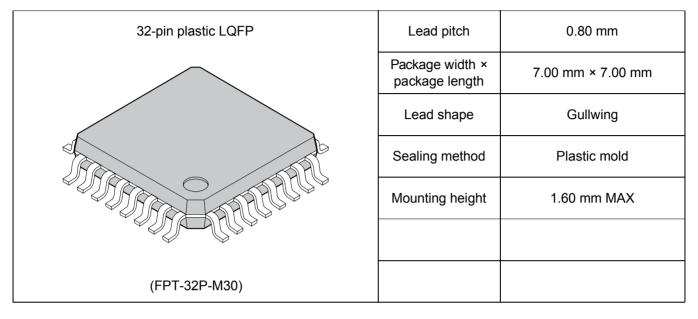
For the number of the APB bus to which the A/D Converter is connected, see "8. Block Diagram".

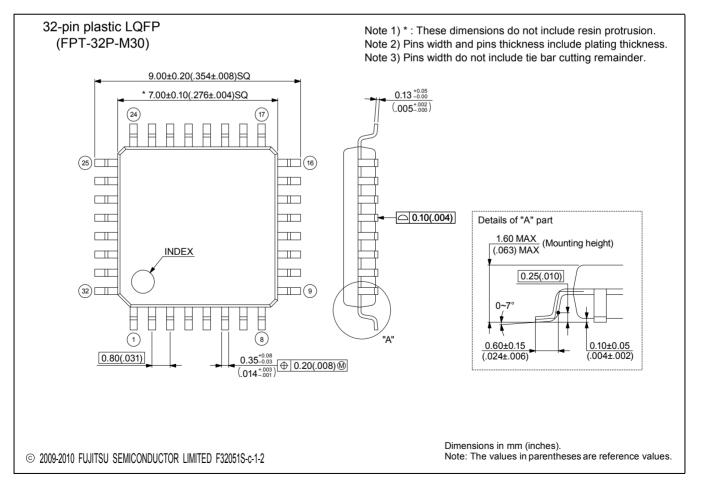
The base clock (HCLK) is used to generate the sampling time and the compare clock cycle.

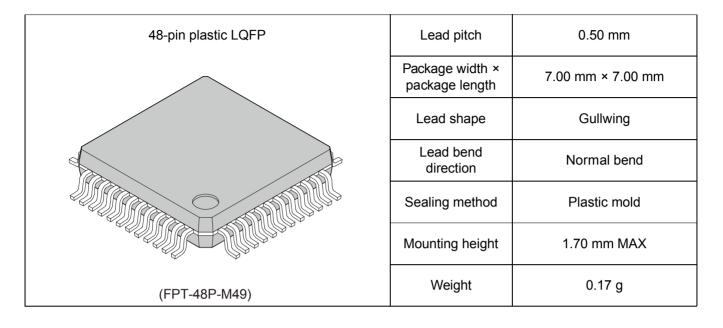
*2: The required sampling time varies according to the external impedance. Set a sampling time that satisfies (Equation 1).

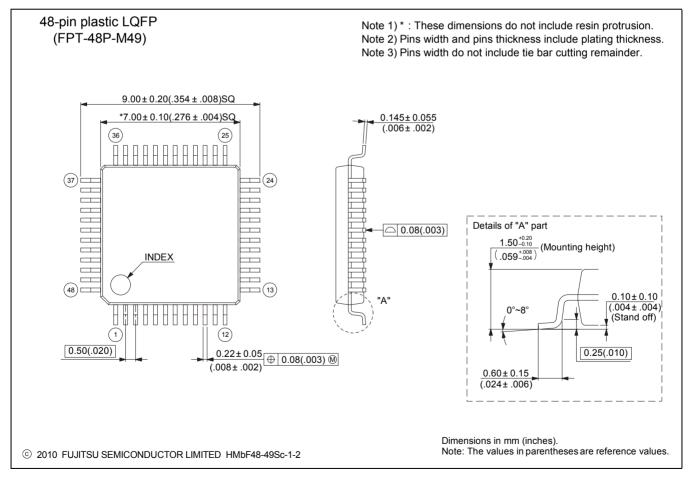

*3: The compare time (t_c) is the result of (Equation 2).

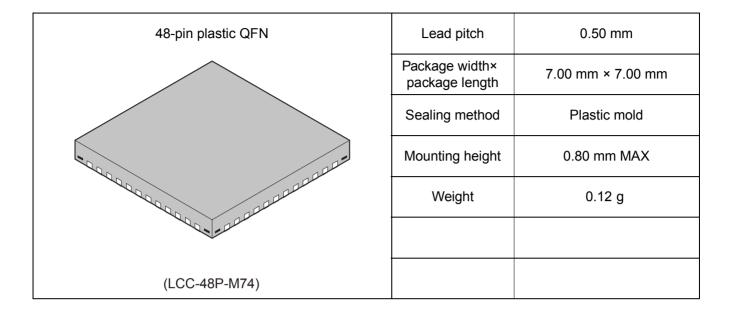
*1:

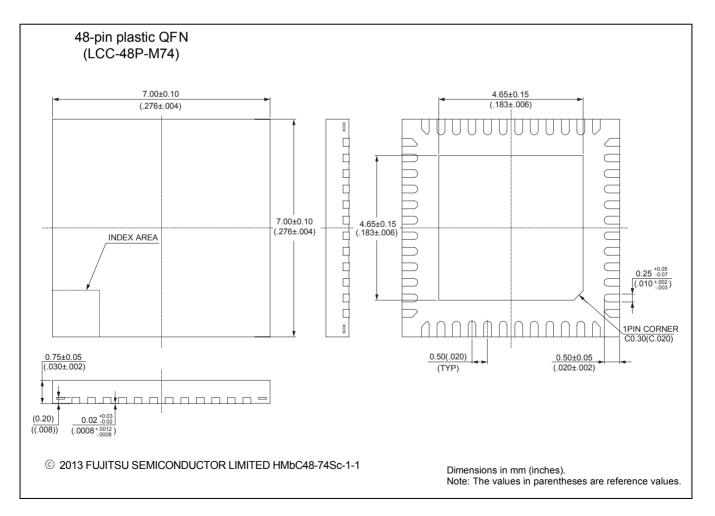

Definitions of 12-bit A/D Converter Terms


- Resolution: Analog variation that is recognized by an A/D converter.
- Integral Nonlinearity: Deviation of the line between the zero-transition point (0b0000000000 $\leftarrow \rightarrow$ 0b00000000001) and the full-scale transition point (0b11111111110 $\leftarrow \rightarrow$ 0b1111111111) from the actual conversion characteristics.
- Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB.




13. Package Dimensions





Document History

Document Title: S6E1C1 Series 32-bit ARM[®] Cortex[®]-M0+ FM0+ Microcontroller Document Number: 002-00234

Revision	ECN	Orig. of Submission Change Date		Description of Change
**	4896074	TEKA	08/31/2015	New Spec.
*A	4955136	TEKA	10/9/2015	AC/DC characteristics updated. Typo fixed in "List of Pin Functions".