

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CSIO, I ² C, LINbus, SmartCard, UART/USART
Peripherals	I ² S, LVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-WFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e1c11d0agn20000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FPT-32P-M30

Note:

The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used.

4. List of Pin Functions

List of Pin Numbers

The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used.

	Pin no.					
LQFP-64	LQFP-48	LQFP-32	Pin Function		Pin State	
QFN-64	QFN-48	QFN-32		туре	туре	
			P50			
1	1	2	SIN3_1	D	К	
			INT00_0	1		
			P51			
2	2	3	SOT3_1	D	К	
			INT01_0]		
			P52			
3	3	4	SCK3_1	D	К	
			INT02_0			
			P53			
4	4	-	TIOA1_2	D	К	
			INT07_2			
			P30			
			SCS60_1			
5	5	-	TIOB0_1	D	K	
			INT03_2			
			MI2SWS6_1			
			P31			
			SCK6_1			
6	6	-	SI2CSCL6_1	Н	К	
			INT04_2			
			MI2SCK6_1			
			P31			
_	_	5	SCK6_1	Ц	ĸ	
-	_	5	SI2CSCL6_1		IX IX	
			INT04_2			
			P32			
			SOT6_1			
7	7	_	SI2CSDA6_1	Ц	к	
,	1	_	TIOB2_1		IX IX	
			INT05_2			
			MI2SDO6_1			
			P32			
			SOT6_1			
-	-	6	SI2CSDA6_1	Н	К	
			TIOB2_1			
			INT05_2			

	Pin no.			VO oirouit	Din ototo	
LQFP-64	LQFP-48	LQFP-32	Pin Function		Pin State	
QFN-64	QFN-48	QFN-32		type	type	
			P33			
			ADTG_6			
8	8	-	SIN6_1	н	К	
			INT04_0			
			MI2SDI6_1			
			P33			
		7	ADTG_6		K	
-	-	/	SIN6_1	п	ĸ	
			INT04_0			
			P34			
0			SCS61_1		K	
9	-	-	TIOB4_1	D	ĸ	
			MI2SMCK6_1			
			P34			
-	9	-	SCS61_1	D	К	
			MI2SMCK6_1			
			P35			
10			SCS62_1		K	
10	-	-	TIOB5_1		N	
			INT08_1	-		
			P3A			
			TIOA0_1	-		
11	-		INT03_0		K	
11		-	RTCCO_2		n	
			SUBOUT_2			
			IC1_CIN_0	-		
			P3A			
			TIOA0_1			
-	10	-	INT03_0	D	К	
			RTCCO_2			
			SUBOUT_2			
			P3B			
12	-	-	TIOA1_1	D	К	
			IC1_DATA_0			
	11		P3B	П	K	
-		-	TIOA1_1		n	
			P3C			
13	-	-	TIOA2_1	D	К	
			IC1_RST_0			
	10		P3C		K	
-	12	-	TIOA2_1	U	r.	
			P3D			
14	-	-	TIOA3_1	D	К	
			IC1_VPEN_0]		

	Pin no.				D .
LQFP-64	LQFP-48	LQFP-32	Pin Function	I/O circuit	Pin state
QFN-64	QFN-48	QFN-32		type	type
			P1E		
34	-	-	RTS4 1	D	К
-			MI2SMCK4 1		
			P1D		
35	-	-	CTS4_1		к
			MI2SWS4_1		
			P1C		
36	-	-	SCK4_1		к
			MI2SCK4_1		
			P1B		
37	_	_	SOT4_1		к
57	_	_	MI2SD04_1		
-	26	-		D	К
			<u> </u>		
				-	
20		-	SIN4_1		K
38	-	-	IN105_1	Н	ĸ
			CEC0_0	_	
			MI2SDI4_1		
			P1A	_	
-	27	-	SIN4_1	- н	K
			INT05_1		
			CEC0_0		
30	_	_	P1F	D	к
00			ADTG_5		
40	28	18	P10	F	
40	20	10	AN00	I	J
			P11		
			AN01		
41	29	19	SIN1_1	G	J
			INT02_1		
			WKUP1		
			P12		
42	30	20	AN02	F	J
			SOT1 1		
			P13		
			AN03		
43	31	21	SCK1 1	F	J
-	-		RTCCO 1		-
			SUBOUT 1	-	
			P14		
			AN04	-	
44	32	_		- F	.1
	52	-	SCS10_1		0
			INITO2 1	-	
	1	1	111103_1	1	1

	Pin no.				
LQFP-64	LQFP-48	LQFP-32	Pin Function	I/O circuit	Pin state
QFN-64	QFN-48	QFN-32		туре	туре
			P15		
			AN05	1 _	
45	33	-	SOT0 1		J
				-	
			 P23		
			AN06	-	
46	34	22	SCK0_0	- F	J
			TIOA7 1	-	
			P22		
47	35	23	AN07	- F	.
.,	00	20			0
18	36	24			
40	30	24		-	-
49	37	-		-	-
50	30	25	AVRL	-	-
54			P21		
51	39	26	IN106_1	_ E	ĸ
			WKUP2		
52	-	-	P00	E	К
			WKUP4		
			P01	_	
53	40	27	SWCLK	D	K
			SOT0_0		
54	_	_	P02	F	к
01			WKUP5		
			P03		
55	11	28	SWDIO		ĸ
55	41	20	SIN0_0	D	N
			TIOB7_0		
			P05		
			MD1]	
56	42	29	TIOA5_2	E	к
			INT00_1	-	
			WKUP3	_	
57	43	-	VCC	-	-
58	44	30	P80	J	G
59	45	31	P81	J	G
60	46	32	VSS	-	-
	-		P61		
61	47	-	TIOB2 2	Н	К
62	_	-	TIOR6 1	F	к
02	_	_	WKIIP6		
62					K
03	-	-			Ň
	1	1	WKUP/	1	

List of Pin Functions

The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used.

				Pin no.			
Pin function	Pin name	Function description	LQFP-64	LQFP-48	LQFP-32		
			QFN-64	QFN-48	QFN-32		
	ADTG_5		39	-	-		
ADC	ADTG_6	A/D converter external trigger input pin	8	8	7		
	ADTG_7		23	-	-		
	AN00		40	28	18		
	AN01		41	29	19		
	AN02		42	30	20		
400	AN03	A/D converter analog input pin.	43	31	21		
ADC	AN04	ANxx describes ADC ch.xx.	44	32	-		
	AN05		45	33	-		
	AN06	1	46	34	22		
	AN07	1	47	35	23		
	TIOA0_0		20	-	-		
Base Timer 0	TIOA0_1	Base timer ch.0 TIOA pin	11	10	-		
	TIOB0_1	Base timer ch.0 TIOB pin	5	5	-		
	TIOA1_0		21	-	-		
Base Timer 1	TIOA1_1	Base timer ch.1 TIOA pin	12	11	-		
	TIOA1_2	1	4	4	-		
	TIOA2_0		22	-	-		
	TIOA2_1	Base timer ch.2 TIOA pin	13	12	-		
Base Timer 2	TIOA2_2		33	25	17		
	TIOB2_1		7	7	6		
	TIOB2_2	Base timer ch.2 TIOB pin	61	47	-		
	TIOA3_0		23	-	-		
Base Timer 3	TIOA3_1	Base timer ch.3 TIOA pin	14	-	-		
	TIOB3_0	Base timer ch.3 TIOB pin	24	-	-		
Dece Timer 4	TIOA4_1	Base timer ch.4 TIOA pin	15	-	-		
Base Timer 4	TIOB4_1	Base timer ch.4 TIOB pin	9	-	-		
	TIOA5_1	Deep times of 5 TIOA sis	16	-	-		
Base Timer 5	TIOA5_2	Base timer ch.5 HOA pin	56	42	29		
	TIOB5_1	Base timer ch.5 TIOB pin	10	-	-		
Dece Timer C	TIOA6_1	Base timer ch.6 TIOA pin	63	-	-		
Base Timer o	TIOB6_1	Base timer ch.6 TIOB pin	62	-	-		
	TIOA7_1	Base timer ch.7 TIOA pin	46	34	22		
Base Timer 7	TIOB7_0		55	41	28		
	TIOB7_1	Base timer cn.7 TIOB pin	47	35	23		
Dobuggor	SWCLK	Serial wire debug interface clock input pin	53	40	27		
Debugger	SWDIO	Serial wire debug interface data input / output pin	55	41	28		

			Pin no.			
Pin function	Pin name	Function description	LQFP-64	LQFP-48	LQFP-32	
			QFN-64	QFN-48	QFN-32	
	INT00_0	Eutomol interrupt request 00 input nin	1	1	2	
	INT00_1	External interrupt request 00 input pin	56	42	29	
	INT01_0	External interrupt request 01 input pin	2	2	3	
	INT02_0	Eutomol interrupt request 02 input nin	3	3	4	
	INT02_1	External interrupt request 02 input pin	41	29	19	
	INT03_0		11	10	-	
	INT03_1	External interrupt request 03 input pin	44	32	-	
	INT03_2		5	5	-	
	INT04_0		8	8	7	
External	INT04_2	External interrupt request 04 input pin	6	6	5	
Interrupt	INT05 1		38	27	-	
	INT05 2	External interrupt request 05 input pin	7	7	6	
	INT06_1		51	39	26	
	INT06 2	External interrupt request 06 input pin	26	18	-	
	INT07 2	External interrupt request 07 input pin	4	4	-	
	INT08 1	External interrupt request 08 input pin	10	-	-	
	INT12 1	External interrupt request 12 input pin	20	-	-	
	INT13 1	External interrupt request 13 input pin	21	-	-	
	INT15 1	External interrupt request 15 input pin	33	25	17	
	NMIX	Non-Maskable Interrupt input pin	64	48	1	
	P00		52	-	-	
	P01		53	40	27	
	P02		54	-	-	
	P03		55	41	28	
GPIO	P05	General-purpose I/O port 0	56	42	29	
	P0B		62	-	-	
	P0C		63	-	-	
	P0F		64	48	1	
	P10		40	28	18	
	P11		41	29	19	
	P12		42	30	20	
	P13		43	31	21	
	P14		44	32	-	
	P15		45	33	-	
GPIO	P1A	General-purpose I/O port 1	38	27	-	
	P1B		37	26	-	
	P1C		36	-	-	
	P1D		35	-	-	
	P1E	1	34	-	-	
	P1F	1	39	-	-	
	P21		51	39	26	
GPIO	P22	General-purpose I/O port 2	47	35	23	
	P23]	46	34	22	

6. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Spansion semiconductor devices.

6.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

(1) Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

(2) Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device.

Therefore, avoid this type of connection.

(3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

9. Memory Map

Memory Map (1)

Memory Map (2)

*: See "S6E1C1/C3 Series Flash Programming Manual" to check details of the Flash memory.

Peripheral Address Map

Start address	End address	Bus	Peripheral
0x4000_0000	0x4000_0FFF		Flash memory I/F register
0x4000_1000	0x4000_FFFF	- AHB	Reserved
0x4001_0000	0x4001_0FFF		Clock/Reset Control
0x4001 1000	0x4001 1FFF	_	Hardware Watchdog Timer
0x4001 2000	0x4001 2FFF		Software Watchdog Timer
 0x4001 3000		APB0	Reserved
 0x4001 5000			Dual-Timer
 0x4001_6000			Reserved
0x4002 0000	0x4002 0FFF		Reserved
0x4002_1000	0x4002_3FFF		Reserved
0x4002_4000	0x4002_4FFF		Reserved
0x4002_5000	0x4002_5FFF		Base Timer
0x4002_6000	0x4002_6FFF	_	Reserved
0x4002_7000	0x4002_7FFF	-	A/D Converter
0x4002_8000	0x4002_DEFE	-	Reserved
0x4002_6000	0x4002_DITT	-	Built in CB trimming
0x4002_E000		_	Bosonvod
0x4002_F000	0x4002_FFFF	_	
0x4003_0000	0x4003_0FFF	_	External Interrupt Controller
0x4003_1000	0x4003_1FFF	-	
0x4003_2000	0x4003_2FFF	_	Reserved
0x4003_3000	0x4003_3FFF	_	GPIO
0x4003_4000	0x4003_4FFF	APB1	HDMI-CEC/Remote Control Receiver
0x4003_5000	0x4003_5FFF	_	Low-Voltage Detection / DS mode / Vref Calibration
0x4003_0000	0x4003_0FFF	_	Reserved
0x4003 7800	0x4003 79FF	-	I2C Slave
0x4003 7A00	0x4003 7FFF		Reserved
			Multi-function Serial Interface
		-	CRC
 0x4003_A000		-	Watch Counter
0x4003_B000	0x4003_BFFF		Real-time clock
0x4003_C000	0x4003_C0FF		Low-speed CR Prescaler
0x4003_C100	0x4003_C7FF		Peripheral Clock Gating
0x4003_C800	0x4003_C8FF		Reserved
0x4003_C900	0x4003_C9FF		Smart Card Interface
0x4003_CA00	0x4003_CAFF		MFS-I2S Clock Generator
0x4003_CB00	0x4003_FFFF		Reserved
0x4004_0000	UX4004_FFFF	-	Reserved
0x4005_0000		AHB	
0x4006 2000	0x41FF FFFF	-	Reserved

Туре

This indicates a pin status type that is shown in "pin list table" in "4. List of Pin Functions"

Selected Pin function

This indicates a pin function that is selected by user program.

CPU state

This indicates a state of the CPU that is shown below.

- Reset state.
 CPU is initialized by Power-on reset or a reset due to low Power voltage supply.
- (2) Reset state.

CPU is initialized by INITX input signal or system initialization after power on reset.

- (3) Run mode or SLEEP mode state.
- Timer mode, RTC mode or STOP mode state. (4)
- The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "0".
 Timer mode, RTC mode or STOP mode state.
- (5) The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "1".
- (6) Deep standby STOP mode or Deep standby RTC mode state,
- The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "0" Deep standby STOP mode or Deep standby RTC mode state,
- (7) The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "1" Run mode state after returning from Deep Standby mode.
- (8) (I/O state hold function(CONTX) is fixed at 1)

Each pin status

The meaning of the symbols in the pin status table is as follows.

- IS Digital output is disabled. (Hi-Z) Pull up register is off. Digital input is shut off by fixed 0.
- IE Digital output is disabled. (Hi-Z) Pull up register is off. Digital input is not shut off.
- IP Digital output is disabled. (Hi-Z) Pull up register is defined by the value of the PCR register. Digital input is not shut off.
- IE/IS Digital output is disabled. (Hi-Z) Pull up register is off. Digital input is shut off in case of the OSC stop. Digital input is not shut off in case of the OSC operation.
- OE The OSC is in operation state. However, it may be stopped in some operation mode of the CPU.
- For detail, see chapter "Low Power Consumption Mode" in peripheral manual.
- OS The OSC is in stop state. (Hi-Z)
- PC Digital output and pull up register is controlled by the register in the GPIO or peripheral function. Digital input is not shut off
- CP Digital output is controlled by the register in the GPIO or peripheral function. Pull up register is off. Digital input is not shut off.
- HC Digital output and pull up register is maintained the status that is immediately prior to entering the current CPU state. Digital input is not shut off
- HS Digital output and pull up register is maintained the status that is immediately prior to entering the current CPU state. Digital input is shut off
- GS Digital output and pull up register is copied the GPIO status that is immediately prior to entering the current CPU state and the status is maintained. Digital input is shut off

11.2 Recommended Operating Conditions

(V_{SS}= 0.0 V)

Paramotor	Symbol	Conditions	Va	lue	Unit	Romarks	
Falalletei	Symbol	Conditions	Min	Min Max		IVEIIIdI NS	
Power supply voltage	V _{CC}	-	1.65 * ²	3.6	V		
	AVRH	-	2.7	V _{CC}	V	V _{CC} ≥2.7 V	
Analog reference voltage			V _{CC}	V _{CC}	V	V _{CC} < 2.7 V	
	AVRL	-	VSS	VSS	V		
Smoothing capacitor	Cs	-	1	10	μF	For regulator*1	
Operating temperature	Та	-	- 40	+ 105	°C		

*1: See "C Pin" in "7. Handling Devices" for the connection of the smoothing capacitor.

*2: In between less than the minimum power supply voltage reset / interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR (including Main PLL is used) or built-in Low-speed CR is possible to operate only.

<WARNING>

- 1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
- 2. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
- 3. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet.
- 4. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

Peripheral Current Dissipation

Cleak			E.,	oguopov (MU-)			
CIOCK	Peripheral	Conditions	Fr	equency (MHZ)	40	Unit	Remarks
System	•		8	20	40		
	GPIO	At all ports operation	0.05	0.12	0.23		
HCLK	DSTC	At 2ch operation	0.02	0.06	0.10	ША	
	Base timer	At 4ch operation	0.02	0.05	0.10		
	ADC	At 1 unit operation	0.04	0.10	0.21		
PCLK1	Multi-function serial	At 1ch operation	0.01	0.03	0.06	mA	
	MFS-I2S	At 1ch operation	0.02	0.05	0.08		
	Smart Card I/F	At 1ch operation	0.04	0.08	0.18		

11.4.4 Operating Conditions of Main PLL

(In the Case of Using the Main Clock as the Input Clock of the PLL)

 $(V_{CC}= 1.65 \text{ V to } 3.6 \text{ V}, \text{ V}_{SS}= 0 \text{ V}, \text{ T}_{A}=-40^{\circ}\text{C to }+105^{\circ}\text{C})$

Poromotor	Symbol	Value			Unit	Pomarka
Farameter	Symbol	Min	Тур	Мах	Unit	Rellidiks
PLL oscillation stabilization wait time* ¹ (LOCK UP time)	t _{LOCK}	50	-	-	μs	
PLL input clock frequency	FPLLI	8	-	16	MHz	
PLL multiple rate	-	5	-	18	multiple	
PLL macro oscillation clock frequency	F _{PLLO}	75	-	150	MHz	
Main PLL clock frequency* ²	FCLKPLL	-	-	40	MHz	

*1: The wait time is the time it takes for PLL oscillation to stabilize.

*2: For details of the main PLL clock (CLKPLL), refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual".

11.4.5 Operating Conditions of Main PLL

(In the Case of Using the Built-in High-Speed CR Clock as the Input Clock of the Main PLL)

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Value			Unit	Pomarka
Falameter	Symbol	Min	Тур	Max	Onit	Remarks
PLL oscillation stabilization wait time* ¹ (LOCK UP time)	t _{LOCK}	50	-	-	μs	
PLL input clock frequency	F _{PLLI}	7.84	8	8.16	MHz	
PLL multiple rate	-	9	-	18	multiple	
PLL macro oscillation clock frequency	F _{PLLO}	75	-	150	MHz	
Main PLL clock frequency* ²	F _{CLKPLL}	-	-	40.8	MHz	

*1: The wait time is the time it takes for PLL oscillation to stabilize.

*2: For details of the main PLL clock (CLKPLL), refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual".

Note:

For the main PLL source clock, input the high-speed CR clock (CLKHC) whose frequency and temperature have been trimmed. When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account and prevent the master clock from exceeding the maximum frequency.

When Using CSIO/SPI Chip Select (SCINV=1, CSLVL=1)

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Paramotor	Symbol	Conditions	V _{cc} < 2	2.7 V	V _{cc} ≥ 2	Unit	
Falameter	Symbol	Conditions	Min	Мах	Min	Мах	Onit
$SCS \downarrow \rightarrow SCK \uparrow$ setup time	t _{cssi}		(*1)-50	(*1)+0	(*1)-50	(*1)+0	ns
$SCK \downarrow \rightarrow SCS \uparrow$ hold time	t _{CSHI}	Master mode	(*2)+0	(*2)+50	(*2)+0	(*2)+50	ns
SCS deselect time	t _{CSDI}		(*3)-50	(*3)+50	(*3)-50	(*3)+50	ns
SCS↓→SCK↑ setup time	t _{CSSE}		3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
$SCK \downarrow \rightarrow SCS \uparrow$ hold time	t _{CSHE}		0	-	0	-	ns
SCS deselect time	t _{CSDE}	Slave mode	$3t_{CYCP}+30$	-	3t _{CYCP} +30	-	ns
SCS↓ \rightarrow SOT delay time	t _{DSE}		-	55	-	40	ns
SCS↑→SOT delay time	t _{DEE}		0	-	0	-	ns

*1: CSSU bit value × serial chip select timing operating clock cycle.

*2: CSHD bit value × serial chip select timing operating clock cycle.

Notes:

- t_{CYCP} indicates the APB bus clock cycle time.
 For information about the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram".
- For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual".
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed.
- When the external load capacitance C_L =30 pF.

^{*3:} CSDS bit value × serial chip select timing operating clock cycle. Irrespective of CSDS bit setting, 5t_{CYCP} or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again.

11.4.10 External Input Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Paramotor	Symbol	Din Namo	Conditions	Value		Unit	Remarks	
Falameter	Symbol	Fill Maille	Conditions	Min	Max	Unit		
Input pulse width	t _{inh,} t _{inl}	ADTGx	-	2 t _{CYCP} * ¹	_	ns	A/D converter trigger input	
		INT00 to INT08, INT12, INT13, INT15, NMIX	*2	2 t _{CYCP} +100* ¹	I	ns	External	
			*3	500	-	ns	interrupt, NMI	
		WKUPx	*4	500	-	ns	Deep standby wake up	

*1: t_{CYCP} represents the APB bus clock cycle time. For the number of the APB bus to which the Multi-function Timer is connected and that of the APB bus to which the External Interrupt Controller is connected, see "8. Block Diagram".

*2: In Run mode and Sleep mode

*3: In Timer mode, RTC mode and Stop mode

*4: In Deep Standby RTC mode and Deep Standby Stop mode

11.5 12-bit A/D Converter

Electrical Characteristics of A/D Converter (Preliminary Values)

Dowows of our	Cumphiel	Din Nome	Value			Linit	Deveender
Falameter	Symbol	Pin Name	Min	Тур	Max	Unit	Remarks
Resolution	-	-	-	-	12	bit	
Integral Nonlinearity	-	-	- 4.5	-	4.5	LSB	
Differential Nonlinearity	-	-	- 2.5	-	+ 2.5	LSB	
Zero transition voltage	V _{ZT}	ANxx	- 15	-	+ 15	mV	
Full-scale transition voltage	V _{FST}	ANxx	AVRH - 15	-	AVRH + 15	mV	
Conversion time* ¹	-	-	1.0	-	-		V _{CC} ≥ 2.7 V
			4.0	-	-	μs	$1.8 \le V_{CC} \le 2.7 \text{ V}$
			10	-	-		$1.65 \le V_{CC} \le 1.8 \text{ V}$
Sampling time ^{*2}	Ts	-	0.3	-			$V_{CC} \ge 2.7 V$
			1.2	-	10	μs	$1.8 \le V_{CC} \le 2.7 \text{ V}$
			3.0	-			$1.65 \le V_{CC} < 1.8 V$
Compare clock cycle * ³	Tcck	-	50	-	1000	ns	$V_{CC} \ge 2.7 V$
			200	-			$1.8 \le V_{CC} \le 2.7 \text{ V}$
			500	-			1.65 ≤ V _{CC} < 1.8 V
State transition time to operation permission	Tstt	-	-	-	1.0	μs	
Analog input capacity	CAIN	-	-	-	7.5	pF	
Analog input resistance	RAIN	-	-	-	2.2	kΩ	V _{CC} ≥ 2.7 V
					5.5		1.8 ≤ V _{CC} < 2.7 V
					10.5		$1.65 \le V_{CC} < 1.8 V$
nterchannel disparity	-	-	-	-	4	LSB	
Analog port input leak	-	ANxx	-	-	5	μA	
Analog input voltage	-	ANxx	V _{SS}	-	AVRH	V	
Reference voltage	-	AVRH	2.7 Vcc	-	V _{cc}	V	$VCC \ge 2.7V$ $VCC \le 2.7V$
	-	AVRL	Vee	-	Vee	V	100 12.11

*1: The conversion time is the value of sampling time (t_s) + compare time (t_c) .

The minimum conversion time is computed according to the following conditions:

 $V_{CC} \ge 2.7 V$ sampling time=0.3 µs, compare time=0.7 µs

 $1.8 \le V_{CC} < 2.7 \text{ V}$ sampling time=1.2 µs, compare time=2.8 µs

 $1.65 \le V_{CC} < 1.8 V$ sampling time=3.0 µs, compare time=7.0 µs

Ensure that the conversion time satisfies the specifications of the sampling time (t_s) and compare clock cycle (t_{CCK}). For details of the settings of the sampling time and compare clock cycle, refer to "Chapter: A/D Converter" in "FM0+ Family Peripheral Manual Analog Macro Part".

The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing.

For the number of the APB bus to which the A/D Converter is connected, see "8. Block Diagram".

The base clock (HCLK) is used to generate the sampling time and the compare clock cycle.

*2: The required sampling time varies according to the external impedance. Set a sampling time that satisfies (Equation 1).

*3: The compare time (t_c) is the result of (Equation 2).

11.8.2 Return Factor: Reset

The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation.

Return Count Time

 $(V_{CC}=1.65 \text{ V to } 3.6 \text{ V}, T_{A}=-40^{\circ}\text{C to } +105^{\circ}\text{C})$

Parameter			Value		Unit	Bomarka	
Current Mode	Mode to return	Symbol	Тур	Max*	Unit	Remarks	
High-speed CR Sleep mode Main Sleep mode PLL Sleep mode			20	22	μs	When High-speed CR is enabled	
Low-speed CR Sleep mode			50	106	μs	When High-speed CR is enabled	
Sub Sleep mode			112	137	μs	When High-speed CR is enabled	
High-speed CR Timer mode Main Timer mode PLL Timer mode	High-speed CR Run mode	t _{rcnt}	20	22	μs	When High-speed CR is enabled	
Low-speed CR Timer mode			87	159	μs		
Sub Timer mode			148 209 µs				
Stop mode RTC mode			45	68	μs		
Deep Standby RTC mode Deep Standby Stop mode			43	281	μs		

*: The maximum value depends on the accuracy of built-in CR.

Operation Example of Return from Low-Power Consumption Mode (by INITX)

