

Welcome to E-XFL.COM

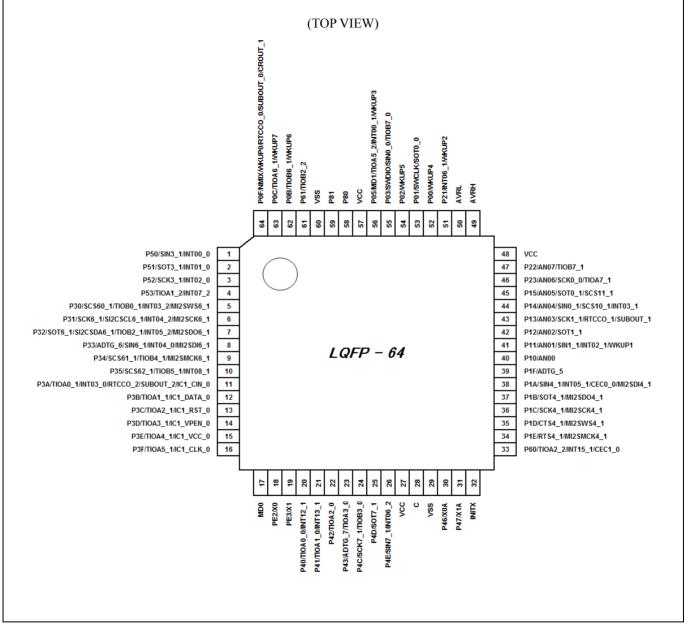
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

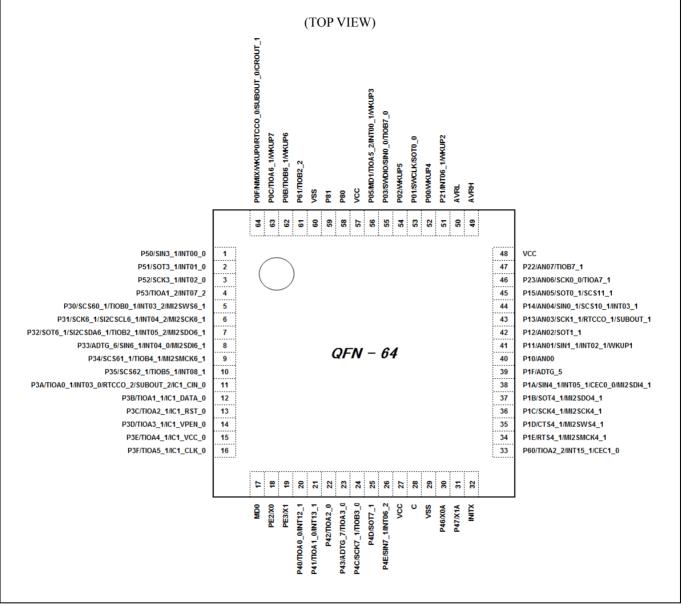
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CSIO, I ² C, LINbus, SmartCard, UART/USART
Peripherals	I ² S, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e1c12b0agp20000


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Pin Assignment

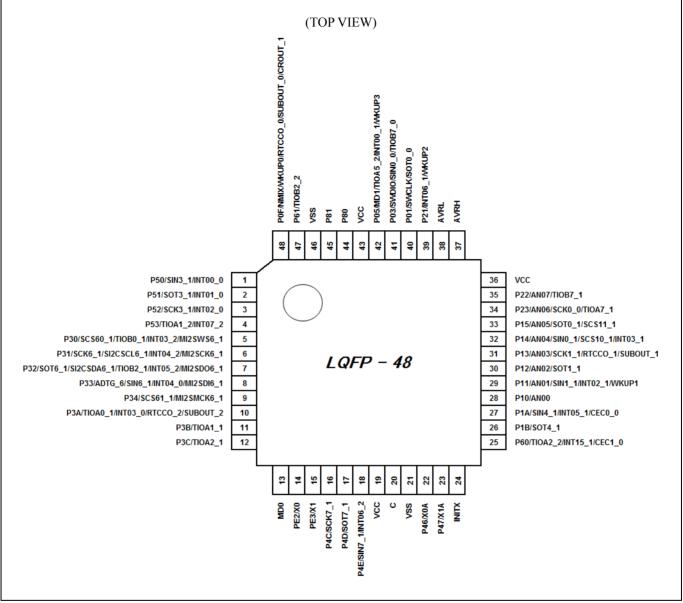
FPT-64P-M38


Note:

The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used.

S6E1C1 Series

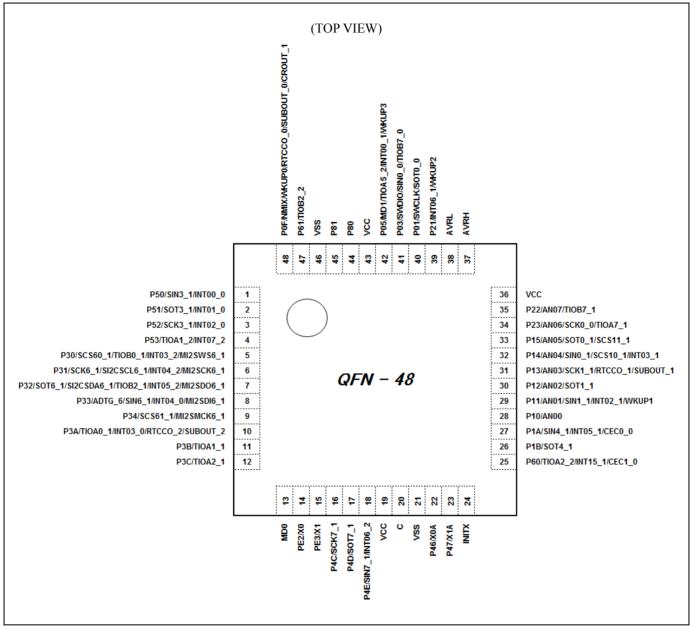
LCC-64P-M25



Note:

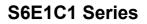
The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used.

FPT-48P-M49



Note:

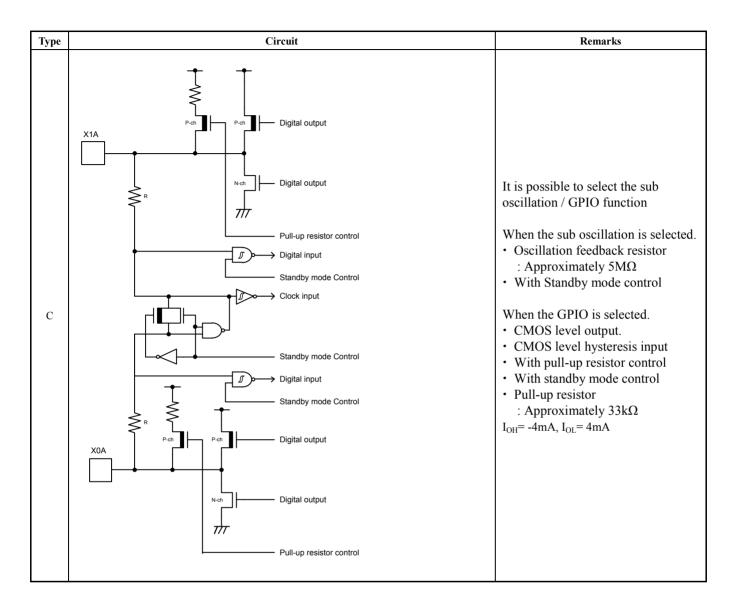
The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The
channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register
(EPFR) to select the pin to be used.



LCC-48P-M74

Note:

The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used.


	Pin no.			I/O circuit	Pin state	
LQFP-64	LQFP-48	LQFP-32	Pin Function	type	type	
QFN-64	QFN-48	QFN-32				
		-	P33	_		
		-	ADTG_6			
8	8		SIN6_1	Н	К	
		-	INT04_0	_		
			MI2SDI6_1			
		-	P33	_		
-	-	7 -	ADTG_6	— н	к	
		-	SIN6_1			
			INT04_0			
		-	P34			
9	-		SCS61_1	D	к	
			TIOB4_1	4		
			MI2SMCK6_1			
		F	P34			
-	9		SCS61_1	D	K	
			MI2SMCK6_1			
		_	P35	_		
10	-		SCS62_1	D	к	
			TIOB5_1	_		
			INT08_1			
		_	P3A		к	
		_	TIOA0_1	D		
11	-		INT03_0			
			RTCCO_2			
			SUBOUT_2	_		
			IC1_CIN_0			
			P3A	_		
			TIOA0_1			
-	10		INT03_0	D	К	
			RTCCO_2			
			SUBOUT_2			
			P3B			
12	-	-	TIOA1_1	D	К	
			IC1_DATA_0			
_	11		P3B	D	к	
-		-	TIOA1_1			
			P3C			
13	-	- [TIOA2_1	D	К	
			IC1_RST_0			
	12		P3C		K	
-	12		TIOA2_1	D	К	
			P3D			
14	-		TIOA3_1	D	К	
			IC1_VPEN_0	7		

				Pin no.	
Pin function	Pin name	Function description	LQFP-64	LQFP-48	LQFP-32
			QFN-64	QFN-48	QFN-32
	P30		5	5	-
	P31		6	6	5
	P32		7	7	6
	P33		8	8	7
	P34		9	9	-
GPIO	P35	General-purpose I/O port 3	10	-	-
GFIO	P3A	General-purpose 1/O port 3	11	10	-
	P3B		12	11	-
	P3C		13	12	-
	P3D		14	-	-
	P3E		15	-	-
	P3F		16	-	-
	P40		20	-	-
	P41		21	-	-
	P42]	22	-	-
	P43		23	-	-
GPIO	P46	General-purpose I/O port 4	30	22	14
	P47		31	23	15
	P4C		24	16	-
	P4D		25	17	-
	P4E		26	18	-
	P50		1	1	2
	P51		2	2	3
GPIO	P52	General-purpose I/O port 5	3	3	4
	P53		4	4	-
	P60		33	25	17
GPIO	P61	General-purpose I/O port 6	61	47	-
	P80		58	44	30
GPIO	P81	General-purpose I/O port 8	59	45	31
	PE2		18	14	9
GPIO	PE3	General-purpose I/O port E	19	15	10
	SIN0_0	Multi-function serial interface ch.0 input	55	41	28
	SIN0_1	pin	44	32	-
	SOT0_0	Multi-function serial interface ch.0 output	50	40	07
	(SDA0_0)	pin. This pin operates as SOT0 when	53	40	27
M. 14: f	SOT0_1	used as a UART/CSIO/LIN pin (operation mode 0 to 3) and as SDA0	45	00	
Multi-function Serial 0	(SDA0_1)	when used as an I2C pin (operation mode 4).	45	33	-
	SCK0_0 (SCL0_0)	Multi-function serial interface ch.0 clock I/O pin. This pin operates as SCK0 when used as a CSIO pin (operation mode 2) and as SCL0 when used as an I2C pin (operation mode 4).	46	34	22

Туре

This indicates a pin status type that is shown in "pin list table" in "4. List of Pin Functions"

Selected Pin function

This indicates a pin function that is selected by user program.

CPU state

This indicates a state of the CPU that is shown below.

- Reset state.
 CPU is initialized by Power-on reset or a reset due to low Power voltage supply.
- (2) Reset state.

CPU is initialized by INITX input signal or system initialization after power on reset.

- (3) Run mode or SLEEP mode state.
- (4) Timer mode, RTC mode or STOP mode state.
- The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "0". Timer mode, RTC mode or STOP mode state.
- (5) The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "1".
- (6) Deep standby STOP mode or Deep standby RTC mode state,
- The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "0" Deep standby STOP mode or Deep standby RTC mode state,
- (7) The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "1" Run mode state after returning from Deep Standby mode.
- (8) (I/O state hold function(CONTX) is fixed at 1)

Each pin status

The meaning of the symbols in the pin status table is as follows.

- IS Digital output is disabled. (Hi-Z) Pull up register is off. Digital input is shut off by fixed 0.
- IE Digital output is disabled. (Hi-Z) Pull up register is off. Digital input is not shut off.
- IP Digital output is disabled. (Hi-Z) Pull up register is defined by the value of the PCR register. Digital input is not shut off.
- IE/IS Digital output is disabled. (Hi-Z) Pull up register is off. Digital input is shut off in case of the OSC stop. Digital input is not shut off in case of the OSC operation.
- OE The OSC is in operation state. However, it may be stopped in some operation mode of the CPU.
- For detail, see chapter "Low Power Consumption Mode" in peripheral manual.
- OS The OSC is in stop state. (Hi-Z)
- PC Digital output and pull up register is controlled by the register in the GPIO or peripheral function. Digital input is not shut off
- CP Digital output is controlled by the register in the GPIO or peripheral function. Pull up register is off. Digital input is not shut off.
- HC Digital output and pull up register is maintained the status that is immediately prior to entering the current CPU state. Digital input is not shut off
- HS Digital output and pull up register is maintained the status that is immediately prior to entering the current CPU state. Digital input is shut off
- GS Digital output and pull up register is copied the GPIO status that is immediately prior to entering the current CPU state and the status is maintained. Digital input is shut off

11.2 Recommended Operating Conditions

(V_{SS}= 0.0 V)

Parameter	Symbol	Conditions	Va	lue	Unit	Remarks
Falailletei	Symbol	Conditions	Min	Max	Unit	Reinarks
Power supply voltage	V _{CC}	-	1.65 * ²	3.6	V	
	AVRH	-	2.7	V _{CC}	V	V _{CC} ≥ 2.7 V
Analog reference voltage			V _{CC}	V _{CC}	V	V _{CC} < 2.7 V
	AVRL	-	VSS	VSS	V	
Smoothing capacitor	Cs	-	1	10	μF	For regulator*1
Operating temperature	Та	-	- 40	+ 105	°C	

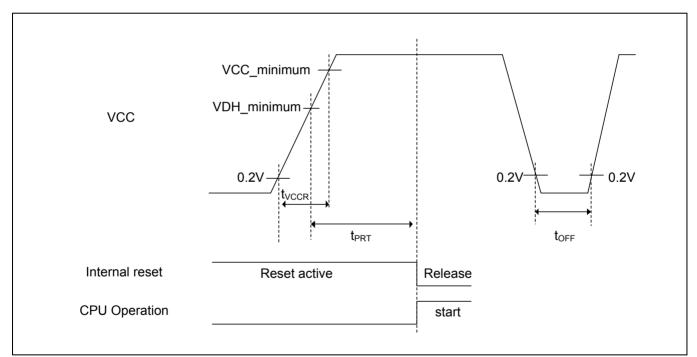
*1: See "C Pin" in "7. Handling Devices" for the connection of the smoothing capacitor.

*2: In between less than the minimum power supply voltage reset / interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR (including Main PLL is used) or built-in Low-speed CR is possible to operate only.

<WARNING>

- 1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
- 2. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
- 3. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet.
- 4. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

11.4.6 Reset Input Characteristics


(V_{CC} = 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks	
Farameter	Cymbol	Name	Conditions	Min	Max	onic	Remarks	
Reset input time	t _{INITX}	INITX	-	500	-	ns		

11.4.7 Power-on Reset Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

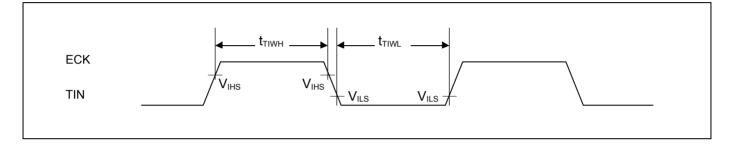
Parameter	Symbol	Pin	Valu	ue	Unit	Remarks
Farameter	Symbol	Name	Min	Max	Unit	Remarks
Power supply rising time	t _{VCCR}		0	-	ms	
Power supply shut down time	t _{OFF}	VCC	1	-	ms	
Time until releasing Power-on reset	t _{PRT}		0.43	3.4	ms	

Glossary

 \square VCC_minimum : Minimum V_{CC} of recommended operating conditions.

UDH_minimum : Minimum detection voltage of Low-Voltage detection reset.

See "11.6 Low-Voltage Detection Characteristics".



11.4.8 Base Timer Input Timing

Timer Input Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin Name	Conditions	Va	ue	Unit	Remarks
Falameter	eter Symbol Pin Na				Max	Unit	Remains
Input pulse width	t _{tiwh} , t _{tiwl}	TIOAn/TIOBn (when using as ECK, TIN)	-	2 t _{CYCP}	-	ns	

Trigger Input Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin Name	Conditions	Va	ue	Unit	Remarks
Farameter	Symbol	Fill Name	Conditions	Min	Max	Unit	Rellidiks
Input pulse width	t _{тrgн} , t _{trgl}	TIOAn/TIOBn (when using as TGIN)	-	2 t _{CYCP}	-	ns	

Note:

t_{CYCP} indicates the APB bus clock cycle time. For the number of the APB bus to which the Base Timer has been connected, see "8. Block Diagram".

11.4.9 CSIO/SPI/UART Timing

CSIO (SPI=0, SCINV=0)

				(V _{CC} = 1.6	65 V to 3.6	V, V _{SS} = 0 V	T _A =- 40°0	C to +10
Parameter	Symbol	Pin	Conditions	V _{cc} < 2		V _{cc} ≥		Unit
i urumotor	Cymbol	name	Conditione	Min	Max	Min	Max	01110
Serial clock cycle time	t _{SCYC}	SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{sLOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \uparrow setup \ time$	t _{ivsni}	SCKx, SINx	Master mode	50	-	36	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{shixi}	SCKx, SINx		0	-	0	-	ns
Serial clock "L" pulse width	t _{sLSH}	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVE}	SCKx, SOTx	Slave mode	-	50	-	30	ns
$SIN \to SCK \uparrow setup time$	t _{IVSHE}	SCKx, SINx	Slave mode	10	-	10	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXE}	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx	1	-	5	-	5	ns

Notes:

The above AC characteristics are for clock synchronous mode. -

 t_{CYCP} represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram".

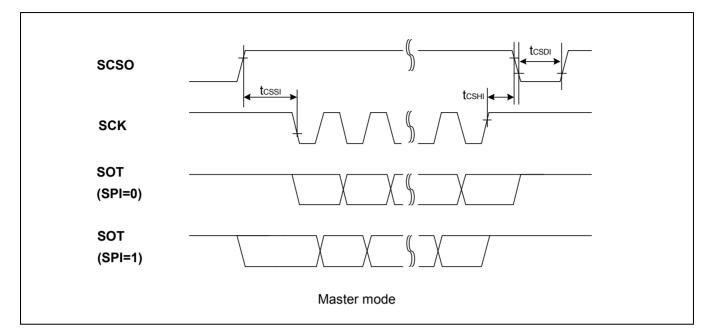
- The characteristics are only applicable when the relocate port numbers are the same. _ For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.
- External load capacitance C_L=30 pF

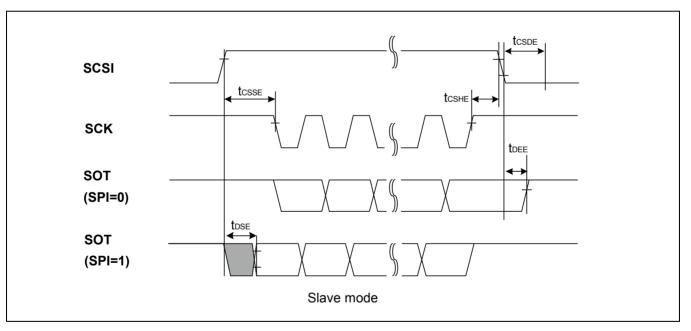
SPI (SPI=1, SCINV=1)

Parameter	Symbol	Pin	Conditions	V _{cc} < 2	2.7 V	V _{cc} ≥2	2.7 V	Unit
Farameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	t _{scyc}	SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \uparrow setup \ time$	tıvsнı	SCKx, SINx	Master mode	50	-	36	-	ns
$SCK \uparrow \to SIN$ hold time	t _{SHIXI}	SCKx, SINx		0	-	0	-	ns
$\text{SOT} \rightarrow \text{SCK} \uparrow \text{delay time}$	t _{sovнi}	SCKx, SOTx		2 t _{CYCP} - 30	-	2 t _{CYCP} - 30	I	ns
Serial clock "L" pulse width	t _{sLSH}	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \downarrow \rightarrow SOT$ delay time	t _{SLOVE}	SCKx, SOTx		-	50	-	33	ns
$\text{SIN} \rightarrow \text{SCK} \uparrow \text{setup time}$	t _{IVSHE}	SCKx, SINx	Slave mode	10	-	10	-	ns
$SCK \uparrow \to SIN$ hold time	t _{SHIXE}	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

$(V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_{A} = -40^{\circ}\text{C to } +105^{\circ}\text{C})$

Notes:


- The above AC characteristics are for clock synchronous mode.


t_{CYCP} represents the APB bus clock cycle time.
 For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram".

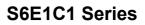
- The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.

- External load capacitance C_L=30 pF

When Using CSIO/SPI Chip Select (SCINV=1, CSLVL=0)

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Conditions	V _{cc} < 2	2.7 V	V _{cc} ≥2	Unit	
Falameter	Symbol	Conditions	Min	Max	Min	Мах	Unit
SCS↑→SCK↑ setup time	t _{cssi}		(*1)-50	(*1)+0	(*1)-50	(*1)+0	ns
$SCK \downarrow \rightarrow SCS \downarrow$ hold time	t _{CSHI}	Master mode	(*2)+0	(*2)+50	(*2)+0	(*2)+50	ns
SCS deselect time	t _{CSDI}		(*3)-50	(*3)+50	(*3)-50	(*3)+50	ns
SCS↑→SCK↑ setup time	t _{CSSE}		3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
$SCK\downarrow \rightarrow SCS\downarrow$ hold time	t _{CSHE}		0	-	0	-	ns
SCS deselect time	t _{CSDE}	Slave mode	3t _{CYCP} +30	-	$3t_{CYCP}+30$	-	ns
SCS↑→SOT delay time	t _{DSE}		-	55	-	40	ns
$SCS\downarrow \rightarrow SOT$ delay time	t _{DEE}		0	-	0	-	ns


*1: CSSU bit value × serial chip select timing operating clock cycle.

*2: CSHD bit value × serial chip select timing operating clock cycle.

Notes:

- t_{CYCP} indicates the APB bus clock cycle time.
 For information about the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram".
- For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual".
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed.
- When the external load capacitance C_L =30 pF.

^{*3:} CSDS bit value × serial chip select timing operating clock cycle. Irrespective of CSDS bit setting, 5t_{CYCP} or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again.

11.6.2 Low-Voltage Detection Interrupt

(T_A=-40°C to +105°C)

Parameter	Symbo	Conditions		Value		Uni	Remarks
Falameter	Ī		Min	Тур	Max	t	Kelliarks
Detected voltage	VDL	SVHI=00100	1.56	1.70	1.84	V	When voltage drops
Released voltage	VDH		1.61	1.75	1.89	V	When voltage rises
Detected voltage	VDL	SVHI=00101	1.61	1.75	1.89	V	When voltage drops
Released voltage	VDH		1.66	1.80	1.94	V	When voltage rises
Detected voltage	VDL	SVHI=00110	1.66	1.80	1.94	V	When voltage drops
Released voltage	VDH		1.70	1.85	2.00	V	When voltage rises
Detected voltage	VDL	SVHI=00111	1.70	1.85	2.00	V	When voltage drops
Released voltage	VDH		1.75	1.90	2.05	V	When voltage rises
Detected voltage	VDL	SVHI=01000	1.75	1.90	2.05	V	When voltage drops
Released voltage	VDH		1.79	1.95	2.11	V	When voltage rises
Detected voltage	VDL	SVHI=01001	1.79	1.95	2.11	V	When voltage drops
Released voltage	VDH		1.84	2.00	2.16	V	When voltage rises
Detected voltage	VDL	SVHI=01010	1.84	2.00	2.16	V	When voltage drops
Released voltage	VDH		1.89	2.05	2.21	V	When voltage rises
Detected voltage	VDL	SVHI=01011	1.89	2.05	2.21	V	When voltage drops
Released voltage	VDH		1.93	2.10	2.27	V	When voltage rises
Detected voltage	VDL	SVHI=01100	2.30	2.50	2.70	V	When voltage drops
Released voltage	VDH		2.39	2.60	2.81	V	When voltage rises
Detected voltage	VDL	SVHI=01101	2.39	2.60	2.81	V	When voltage drops
Released voltage	VDH		2.48	2.70	2.92	V	When voltage rises
Detected voltage	VDL	SVHI=01110	2.48	2.70	2.92	V	When voltage drops
Released voltage	VDH		2.58	2.80	3.02	V	When voltage rises
Detected voltage	VDL	SVHI=01111	2.58	2.80	3.02	V	When voltage drops
Released voltage	VDH		2.67	2.90	3.13	V	When voltage rises
Detected voltage	VDL	SVHI=10000	2.67	2.90	3.13	V	When voltage drops
Released voltage	VDH		2.76	3.00	3.24	V	When voltage rises
Detected voltage	VDL	SVHI=10001	2.76	3.00	3.24	V	When voltage drops
Released voltage	VDH		2.85	3.10	3.35	V	When voltage rises
Detected voltage	VDL	SVHI=10010	2.85	3.10	3.35	V	When voltage drops
Released voltage	VDH		2.94	3.20	3.46	V	When voltage rises
Detected voltage	VDL	SVHI=10011	2.94	3.20	3.46	V	When voltage drops
Released voltage	VDH		3.04	3.30	3.56	V	When voltage rises
LVD stabilization wait time	T _{LVDW}	-	-	-	8160 × t _{CYCP} *	μs	
LVD detection delay time	T _{LVDDL}	-	-	-	200	μs	

*: t_{CYCP} represents the APB1 bus clock cycle time.

11.7 Flash Memory Write/Erase Characteristics

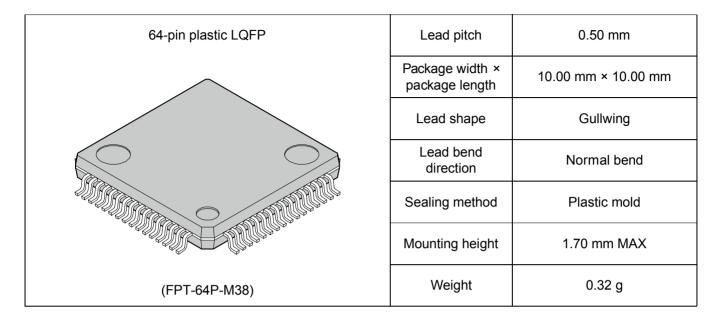
(V_{CC}=1.65 V to 3.6 V, T_A=- 40°C to +105°C)

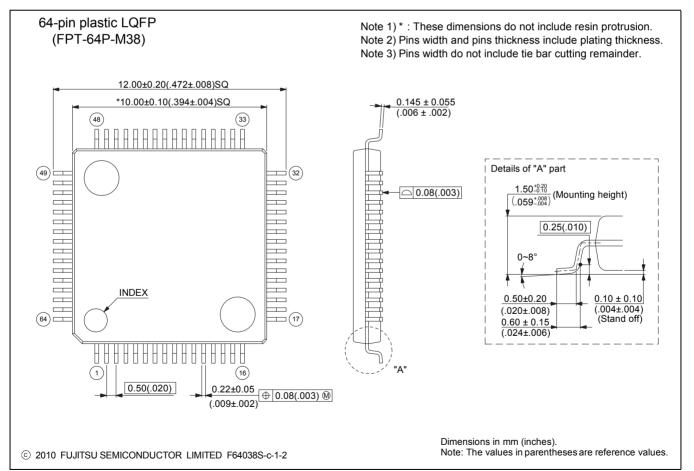
Parameter		Value			Unit	Remarks	
		Min	Тур	Max	Unit	Rellidiks	
Sector erase time	Large sector	-	1.1	2.7	S	The sector erase time includes the time of writing prior to internal erase.	
	Small sector	-	0.3	0.9			
Halfword (16-bit) write time		-	30	528	μs	The halfword (16-bit) write time excludes the system-level overhead.	
Chip erase time		-	4.5	11.7	s	The chip erase time includes the time of writing prior to internal erase.	

*: The typical value is immediately after shipment, the maximum value is guarantee value under 10,000 cycle of erase/write.

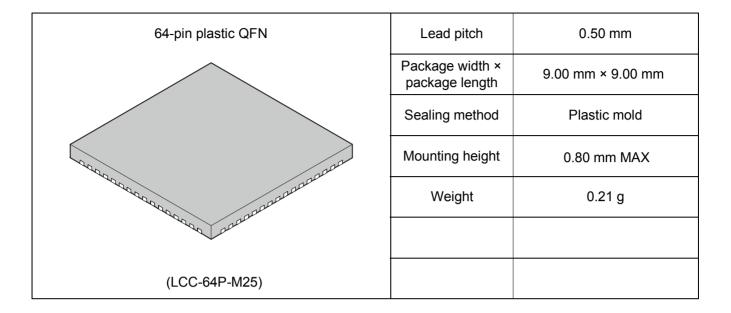
Write/Erase Cycle and Data Hold Time

Write/Erase Cycle		Data Hold Time (Year)	Remarks
	1,000	20*	
10,000 10*		10*	


*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature acceleration test result into average temperature value at + 85°C).



12. Ordering Information


Part number	On-chip Flash memory [Kbyte]	On-Chip SRAM [Kbyte]	Package	Packing
S6E1C12D0AGV20000	128	16	Plastic • LQFP (0.50 mm pitch), 64 pins	Trov
S6E1C11D0AGV20000	64	12	(FPT-64P-M38)	Tray
S6E1C12C0AGV20000	128	16	Plastic • LQFP (0.50 mm pitch), 48 pins	Tray
S6E1C11C0AGV20000	64	12	(FPT-48P-M49)	
S6E1C12B0AGP20000	128	16	Plastic • LQFP (0.80 mm pitch), 32 pins	Tray
S6E1C11B0AGP20000	64	12	(FPT-32P-M30)	
S6E1C12D0AGN20000	128	16	Plastic • QFN64 (0.50 mm pitch), 64 pins	Tray
S6E1C11D0AGN20000	64	12	(LCC-64P-M25)	
S6E1C12C0AGN20000	128	16	Plastic • QFN48 (0.50 mm pitch), 48 pins	Tray
S6E1C11C0AGN20000	64	12	(LCC-48P-M74)	
S6E1C12B0AGN20000	128	16	Plastic • QFN32 (0.50 mm pitch), 32 pins	Tray
S6E1C11B0AGN20000	64	12	(LCC-32P-M73)	

