

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

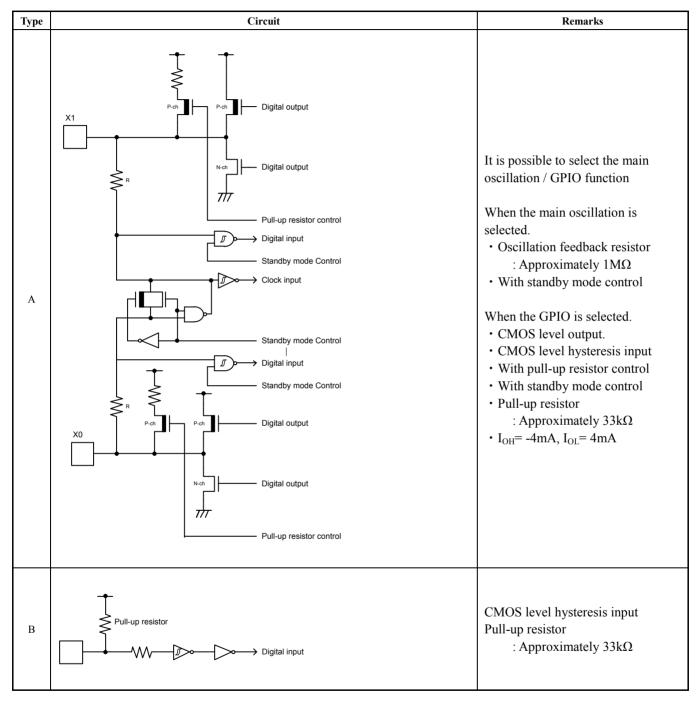
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

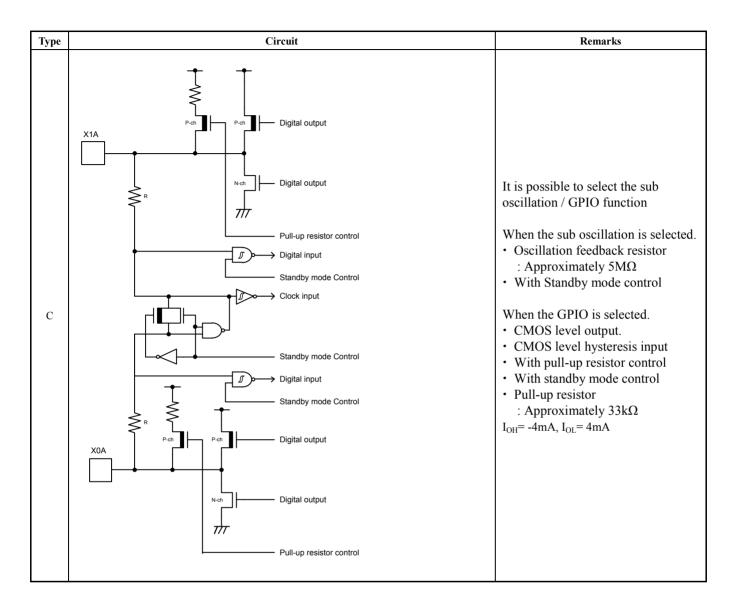
Details

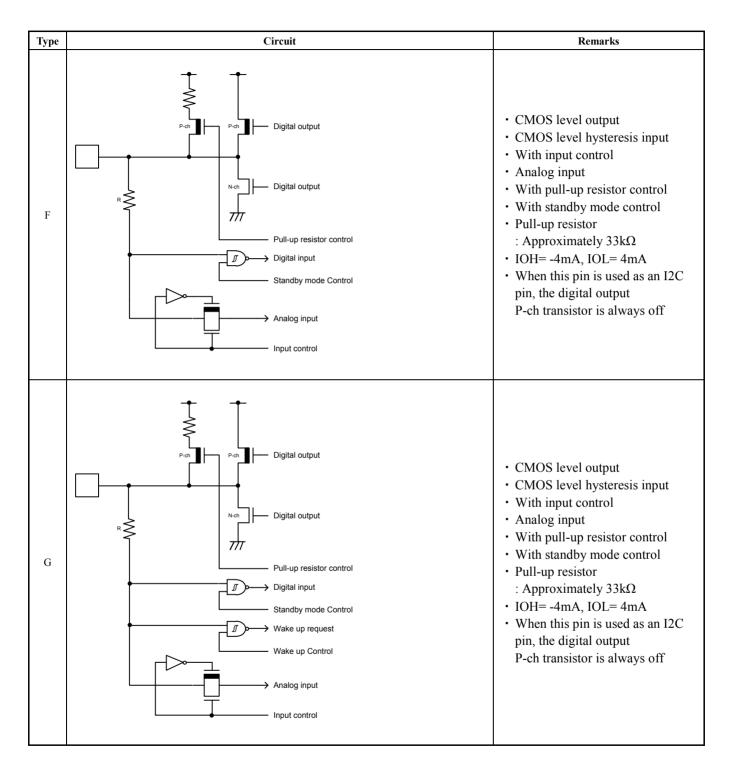
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CSIO, I ² C, LINbus, SmartCard, UART/USART
Peripherals	I ² S, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e1c12c0agv20000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong




				Pin no.	
Pin function	Pin name	Function description	LQFP-64	LQFP-48	LQFP-32
			QFN-64	QFN-48	QFN-32
	INT00_0	- External interrupt request 00 input pin	1	1	2
	INT00_1	External interrupt request of input pin	56	42	29
	INT01_0	External interrupt request 01 input pin	2	2	3
	INT02_0	External interrupt request 02 input pin	3	3	4
	INT02_1	External interrupt request of input pin	41	29	19
	INT03_0		11	10	-
	INT03_1	External interrupt request 03 input pin	44	32	-
	INT03_2		5	5	-
	INT04_0	External interrupt request 04 input hip	8	8	7
External	INT04_2	External interrupt request 04 input pin	6	6	5
Interrupt	INT05_1		38	27	-
	INT05_2	External interrupt request 05 input pin	7	7	6
	INT06_1		51	39	26
	INT06_2	External interrupt request 06 input pin	26	18	-
	INT07_2	External interrupt request 07 input pin	4	4	-
	INT08_1	External interrupt request 08 input pin	10	-	-
	INT12_1	External interrupt request 12 input pin	20	-	-
	INT13_1	External interrupt request 13 input pin	21	-	-
	INT15_1	External interrupt request 15 input pin	33	25	17
	NMIX	Non-Maskable Interrupt input pin	64	48	1
	P00		52	-	-
	P01		53	40	27
	P02		54	-	-
0.510	P03		55	41	28
GPIO	P05	General-purpose I/O port 0	56	42	29
	P0B		62	-	-
	P0C		63	-	-
	P0F		64	48	1
	P10		40	28	18
	P11		41	29	19
	P12		42	30	20
	P13		43	31	21
	P14		44	32	-
0.510	P15		45	33	-
GPIO	P1A	General-purpose I/O port 1	38	27	-
	P1B		37	26	-
	P1C		36	-	-
	P1D		35	-	-
	P1E		34	-	-
	P1F		39	-	-
	P21		51	39	26
GPIO	P22	General-purpose I/O port 2	47	35	23
	P23	1	46	34	22


5. I/O Circuit Type

6. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Spansion semiconductor devices.

6.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

(1) Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

(2) Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device.

Therefore, avoid this type of connection.

(3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

7. Handling Devices

Power Supply Pins

In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and GND pin, between AVRH pin and AVRL pin near this device.

Stabilizing Supply Voltage

A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/µs when there is a momentary fluctuation on switching the power supply.

Crystal Oscillator Circuit

Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation.

Evaluate oscillation of your using crystal oscillator by your mount board.

Sub Crystal Oscillator

This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation.

■Surface mount type

Size: More than 3.2 mm × 1.5 mm

Load capacitance: Approximately 6 pF to 7 pF

■Lead type

Load capacitance: Approximately 6 pF to 7 pF

Additional note

Additional note is described below.

- *1 In this type, when internal oscillation function is selected, digital output is disabled. (Hi-Z) pull up register is off, digital input is shut off by fixed 0.
- *2 In this type, when Digital I/O function is selected, internal oscillation function is disabled.
- *3 In this type, when analog input function is selected, digital output is disabled, (Hi-Z). pull up register is off, digital input is shut off by fixed 0.
- *4 In this type, when Digital I/O function is selected, analog input function is not available.
- *5 In this case, PCR register is initialized to "1". Pull up register is on.
- *6 This pin does not have pull up register.

LVD Current

(V_{CC}=1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter Symbol	Pin	Conditions	Va	lue	Unit	Remarks	
Falameter	Name	Conditions	Тур	Max	Unit	Reillarks	
Low-Voltage				0.15	0.3	μA	For occurrence of reset
detection circuit (LVD) power supply current	ICCLVD	VCC	At operation	0.10	0.3	μA	For occurrence of interrupt

Bipolar Vref Current

(V_{CC}=1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter Symbol Pin Name	Symbol	Pin	Conditions	Va	ue	Unit	Remarks
	Conditions	Тур	Max	Unit	Remarks		
Bipolar Vref Current	ICCBGR	VCC	At operation	100	200	μA	

Flash Memory Current

(V_{CC}=1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Baramatar	Parameter Symbol Pin		Conditions	Va	lue	Unit	Remarks
Parameter	Name Conditi	Conditions	Тур	Max	Unit	Remarks	
Flash memory write/erase current	Iccflash	VCC	At Write/Erase	4.4	5.6	mA	

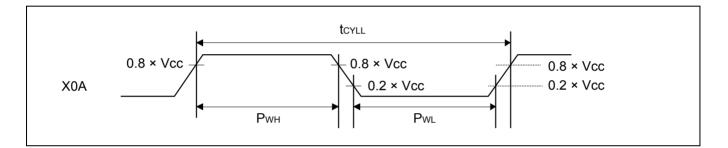
A/D converter Current

(V_{CC}=1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Conditions	Va	ue	Unit	Remarks
Falameter	Symbol	Name	Conditions	Тур	Max	Unit	Relliarks
Power supply current	I _{CCAD}	VCC	At operation	0.5	0.75	mA	
Reference power supply		AVRH	At operation	0.69	1.3	mA	AVRH=3.6 V
current (AVRH)	ICCAVRH	АУКП	At stop	0.1	1.3	μA	

11.3.2 Pin Characteristics

Damana dam	0. makes l	Dia Nama	O a se diti a se a		Value		11	Demontos
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
H level input		CMOS hysteresis	V _{CC} ≥ 2.7 V	V _{CC} × 0.8	_	V _{CC} +0.3	V	
voltage (hysteresis	V _{IHS}	input pin, MD0	V _{CC} < 2.7 V	V _{CC} × 0.7		V(() 0.0	, ,	
input)		5 V tolerant	$V_{CC} \ge 2.7 V$	V _{CC} × 0.8	_	V _{SS} +5.5	V	
		input pin	V_{CC} < 2.7 V	V _{CC} × 0.7	_	V SS 10.0	v	
L level input		CMOS hysteresis	V _{CC} ≥ 2.7 V	V _{SS} - 0.3	_	V _{CC} × 0.2	V	
voltage V _{ILS}	input pin, MD0	V_{CC} < 2.7 V			V _{CC} × 0.3			
input)		5 V tolerant	$V_{CC} \ge 2.7 V$		-	V _{CC} × 0.2		
		input pin	V _{CC} < 2.7 V	- V _{SS} - 0.3	-	V _{CC} × 0.3	V	
H level	V _{OH}	4 mA type	V _{CC} ≥ 2.7 V, I _{OH} = - 4 mA	V _{CC} - 0.5	_	V _{cc}	V	
output voltage	VON	i nii (type	V _{CC} < 2.7 V, I _{OH} = - 2 mA	V _{CC} - 0.45		•00	, ,	
L level output voltage	V _{OL}	4 mA type	$V_{CC} \ge 2.7 \text{ V},$ $I_{OL} 4 \text{ mA}$ $V_{CC} < 2.7 \text{ V},$ $I_{OL}=2 \text{ mA}$	Vss	-	0.4	V	
Input leak current	I _{IL}	-	-	- 5	-	+ 5	μA	
Pull-up			V _{CC} ≥ 2.7 V	21	33	48		
	R _{PU}	Pull-up pin	V _{CC} < 2.7 V	-	-	88	kΩ	
Input capacitance	C _{IN}	Other than VCC, VSS, AVRH	-	-	5	15	pF	



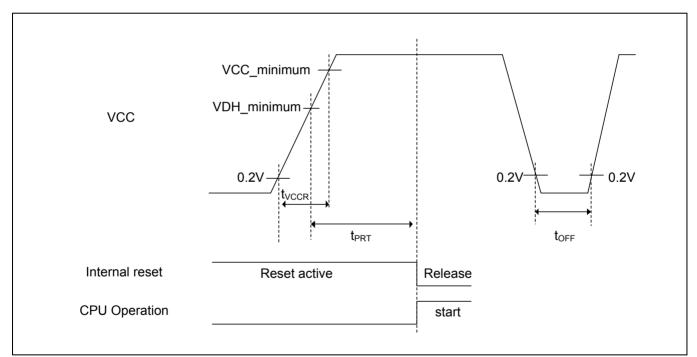
11.4.2 Sub Clock Input Characteristics

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks	
Falameter	Symbol	Name	Conditions	Min	Тур	Max	Onit	Remarks	
Input frequency	f _{CL}		-	-	32.768	-	kHz	When the crystal oscillator is connected	
		X0A, X1A	-	32	-	100	kHz	When the external clock is used	
Input clock cycle	t _{CYLL}		-	10	-	31.25	μs	When the external clock is used	
Input clock pulse width	-		Pwh/tcyll, Pwl/tcyll	45	-	55	%	When the external clock is used	

*: See "Sub crystal oscillator" in "7. Handling Devices" for the crystal oscillator used.

11.4.6 Reset Input Characteristics

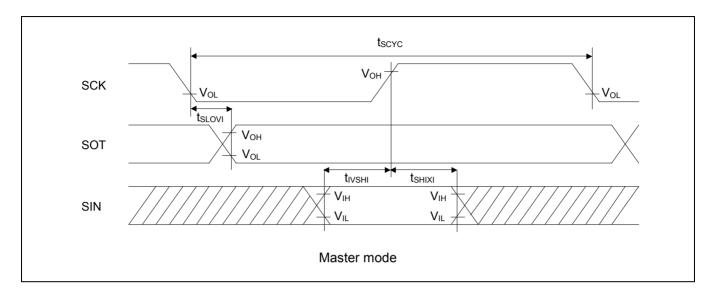

(V_{CC} = 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

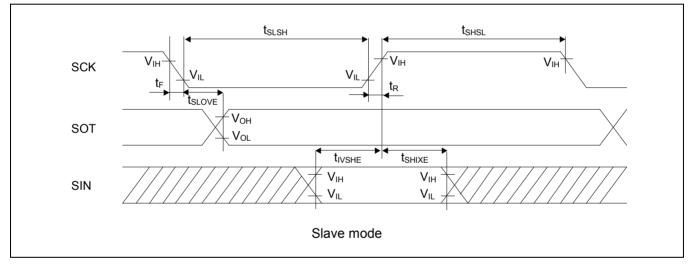
Parameter	Symbol	Pin	Conditions -	Va	lue	Unit	Remarks
	Gymbol	Name		Min	Max	onic	Remarks
Reset input time	t _{INITX}	INITX	-	500	-	ns	

11.4.7 Power-on Reset Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Valu	ue	Unit	Remarks
	Symbol	Name	Min	Max	Unit	Remarks
Power supply rising time	t _{VCCR}		0	-	ms	
Power supply shut down time	t _{OFF}	VCC	1	-	ms	
Time until releasing Power-on reset	t _{PRT}		0.43	3.4	ms	


Glossary


 \square VCC_minimum : Minimum V_{CC} of recommended operating conditions.

UDH_minimum : Minimum detection voltage of Low-Voltage detection reset.

See "11.6 Low-Voltage Detection Characteristics".

CSIO (SPI=0, SCINV=1)

Parameter	Symbol	Pin	Conditions	V _{cc} < 2	2.7V	V _{cc} ≥:	2.7V	Unit
Parameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	t _{scyc}	SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
$SCK \uparrow \to SOT \text{ delay time}$	tsнovi	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \downarrow setup time$	t _{IVSLI}	SCKx, SINx	Master mode	50	-	36	-	ns
$SCK \downarrow \to SIN$ hold time	t _{SLIXI}	SCKx, SINx		0	-	0	-	ns
Serial clock "L" pulse width	t _{sLSH}	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \uparrow \to SOT$ delay time	t _{SHOVE}	SCKx, SOTx		-	50	-	33	ns
$\text{SIN} \rightarrow \text{SCK} \downarrow \text{setup time}$	t_{IVSLE}	SCKx, SINx	Slave mode	10	-	10	-	ns
$SCK \downarrow \to SIN \text{ hold time}$	t _{SLIXE}	SCKx, SINx	- - -	20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx]	-	5	-	5	ns

$(V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_{A} = -40^{\circ}\text{C to } +105^{\circ}\text{C})$

Notes:

- The above AC characteristics are for clock synchronous mode.

- t_{CYCP} represents the APB bus clock cycle time.
 For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram".
- The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.
- External load capacitance C_L=30 pF

SPI (SPI=1, SCINV=0)

_		Pin		V _{cc} < 2	7 V	V _{cc} ≥	2 7 V	
Parameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	tscyc	SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
$SCK \uparrow \to SOT \text{ delay time}$	t _{shovi}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \downarrow setup time$	t _{IVSLI}	SCKx, SINx	Master mode	50	-	36	-	ns
$SCK \downarrow \to SIN \text{ hold time}$	t _{sLixi}	SCKx, SINx		0	-	0	-	ns
$\text{SOT} \rightarrow \text{SCK} \downarrow \text{delay time}$	t _{SOVLI}	SCKx, SOTx		2 t _{CYCP} - 30	-	2 t _{CYCP} - 30	-	ns
Serial clock "L" pulse width	t _{sLSH}	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \uparrow \to SOT$ delay time	t _{shove}	SCKx, SOTx		-	50	-	33	ns
$SIN \to SCK \downarrow setup time$	t _{IVSLE}	SCKx, SINx	Slave mode	10	-	10	-	ns
$SCK \downarrow \to SIN \text{ hold time}$	t _{SLIXE}	SCKx, SINx	-	20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx]	-	5	-	5	ns

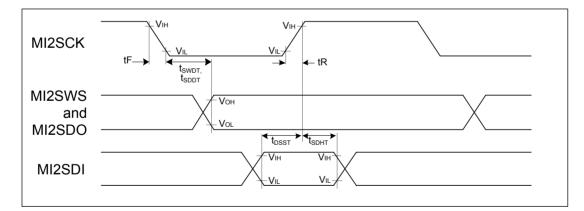
(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Notes:

- The above AC characteristics are for clock synchronous mode.

t_{CYCP} represents the APB bus clock cycle time.
 For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram".

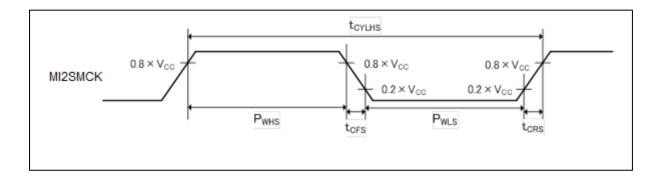
- The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.
- External load capacitance C_L=30 pF


11.4.12 I²S Timing (MFS-I2S Timing)

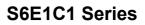
Master Mode Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbo	Pin	Conditions	V _{cc} < 2.7 V		V _{cc} ≥ 2.7 V		Unit
Farameter	Ī	Name	Conditions	Min	Max	Min	Max	Unit
MI2SCK max frequency (*1)	F _{MI2SCK}	MI2SCKx		I	6.144	-	6.144	MHz
I ² S clock cycle time (*1)	t _{ICYC}	MI2SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
I ² S clock Duty cycle	Δ	MI2SCKx		45%	55%	45%	55%	
		MI2SCKx						
$\begin{array}{l} MI2SCK \downarrow \ \rightarrow \ MI2SWS \ delay \\ time \end{array}$	t _{SWDT}	MI2ŚWS x		-30	+30	-20	+20	ns
		MI2SCKx						
$\begin{array}{l} MI2SCK\downarrow \ \rightarrow \ MI2SDO \ delay \\ time \end{array}$	t _{SDDT}	MI2SCKX MI2SDO X	С _∟ =30 рF	-30	+30	-20	+20	ns
$\begin{array}{rl} MI2SDI \ \rightarrow \ MI2SCK \ \uparrow \ setup \\ time \end{array}$	t _{DSST}	MI2SCKx , MI2SDIx		50	-	36	-	ns
$\begin{array}{rcl} MI2SCK & \uparrow & \rightarrow & MI2SDI \text{ hold} \\ time \end{array}$	t _{SDHT}	MI2SCKx , MI2SDIx		0	-	0	-	ns
MI2SCK falling time	tF	MI2SCKx		-	5	-	5	ns
MI2SCK rising time	tR	MI2SCKx		-	5	-	5	ns


*1: I²S clock should meet the multiple of PCLK(t_{ICYC}) and the frequency less than F_{MI2SCK} meantime. The detail information please refer to Chapter I²S of Communication Macro Part of Peripheral Manual.

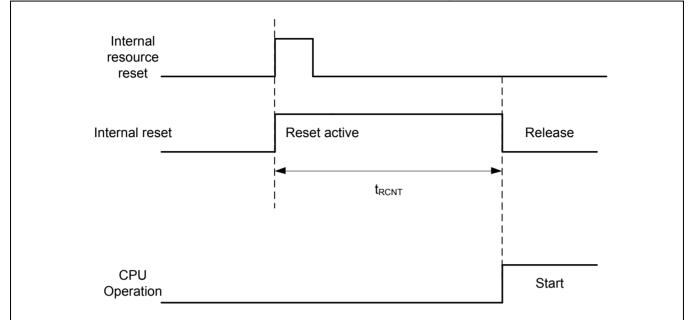
MI2SMCK Input Characteristics


·····				(V _{CC} = 1.65)	V to 3.6 V, V	/ _{SS} = 0 V	∕, T _A =- 40°C to +10
Parameter	Symbol	Pin Name	Conditions	-	lue	Unit	Remarks
Falailletei	Oymbol			Min	Max	Onit	Remarks
Input frequency	f _{CHS}	MI2SMCK	-	-	12.288	MHz	
Input clock cycle	t _{CYLHS}	-	-	81.3	-	ns	
Input clock pulse width	-	-	P _{WHS} /t _{CYLHS} P _{WLS} /t _{CYLHS}	45	55	%	When using external clock
Input clock rise time and fall time	t _{CFS} t _{CRS}	-	-	-	5	ns	When using external clock

MI2SMCK Output Characteristics

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40^{\circ}C to +105 $^{\circ}C$)

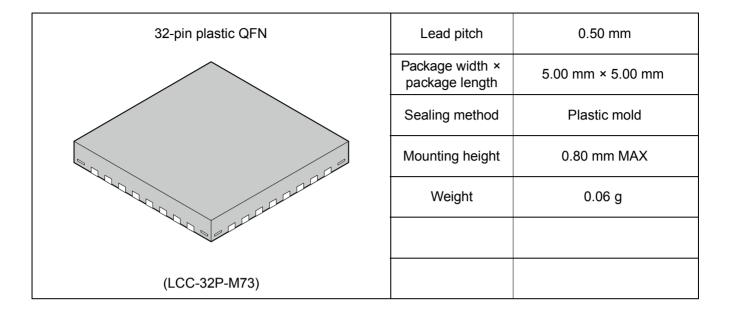
Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks	
Falameter	Symbol	Fill Name	Conditions	Min	Max	Unit	Relliaiks	
Output frequency f _{CHS} MI2SMCK		-	25	MHz	V _{CC} ≥ 2.7 V			
		-	20	MHz	V _{CC} < 2.7 V			

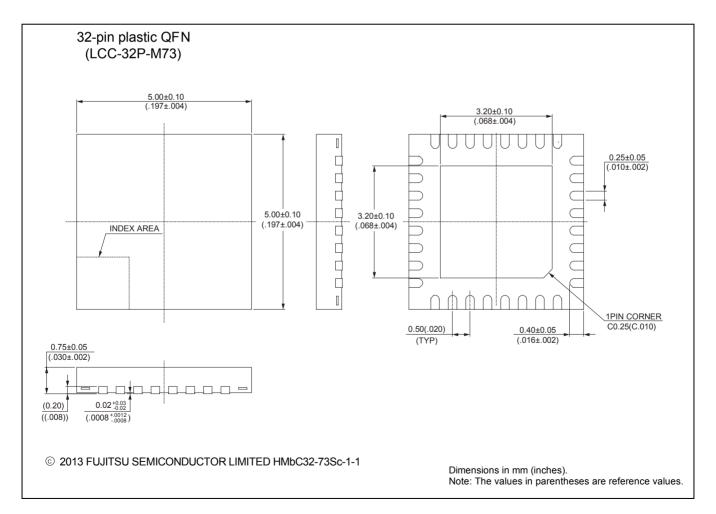

11.6.2 Low-Voltage Detection Interrupt

(T_A=-40°C to +105°C)

Paramotor	Parameter Symbo Conditions			Value		Uni	Remarks
Falameter			Min	Тур	Max	t	Rellars
Detected voltage	VDL	SVHI=00100	1.56	1.70	1.84	V	When voltage drops
Released voltage	VDH		1.61	1.75	1.89	V	When voltage rises
Detected voltage	VDL	SVHI=00101	1.61	1.75	1.89	V	When voltage drops
Released voltage	VDH		1.66	1.80	1.94	V	When voltage rises
Detected voltage	VDL	SVHI=00110	1.66	1.80	1.94	V	When voltage drops
Released voltage	VDH		1.70	1.85	2.00	V	When voltage rises
Detected voltage	VDL	SVHI=00111	1.70	1.85	2.00	V	When voltage drops
Released voltage	VDH		1.75	1.90	2.05	V	When voltage rises
Detected voltage	VDL	SVHI=01000	1.75	1.90	2.05	V	When voltage drops
Released voltage	VDH		1.79	1.95	2.11	V	When voltage rises
Detected voltage	VDL	SVHI=01001	1.79	1.95	2.11	V	When voltage drops
Released voltage	VDH		1.84	2.00	2.16	V	When voltage rises
Detected voltage	VDL	SVHI=01010	1.84	2.00	2.16	V	When voltage drops
Released voltage	VDH		1.89	2.05	2.21	V	When voltage rises
Detected voltage	VDL	SVHI=01011	1.89	2.05	2.21	V	When voltage drops
Released voltage	VDH		1.93	2.10	2.27	V	When voltage rises
Detected voltage	VDL	SVHI=01100	2.30	2.50	2.70	V	When voltage drops
Released voltage	VDH		2.39	2.60	2.81	V	When voltage rises
Detected voltage	VDL	SVHI=01101	2.39	2.60	2.81	V	When voltage drops
Released voltage	VDH		2.48	2.70	2.92	V	When voltage rises
Detected voltage	VDL	SVHI=01110	2.48	2.70	2.92	V	When voltage drops
Released voltage	VDH		2.58	2.80	3.02	V	When voltage rises
Detected voltage	VDL	SVHI=01111	2.58	2.80	3.02	V	When voltage drops
Released voltage	VDH		2.67	2.90	3.13	V	When voltage rises
Detected voltage	VDL	SVHI=10000	2.67	2.90	3.13	V	When voltage drops
Released voltage	VDH		2.76	3.00	3.24	V	When voltage rises
Detected voltage	VDL	SVHI=10001	2.76	3.00	3.24	V	When voltage drops
Released voltage	VDH		2.85	3.10	3.35	V	When voltage rises
Detected voltage	VDL	SVHI=10010	2.85	3.10	3.35	V	When voltage drops
Released voltage	VDH		2.94	3.20	3.46	V	When voltage rises
Detected voltage	VDL	SVHI=10011	2.94	3.20	3.46	V	When voltage drops
Released voltage	VDH		3.04	3.30	3.56	V	When voltage rises
LVD stabilization wait time	T _{LVDW}	-	-	-	8160 × t _{CYCP} *	μs	
LVD detection delay time	T _{LVDDL}	-	-	-	200	μs	

*: t_{CYCP} represents the APB1 bus clock cycle time.


Operation Example of Return from Low Power Consumption Mode (by Internal Resource Reset*)


*: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.

Notes:

- The return factor is different in each Low-Power consumption modes.
 See "Chapter: Low Power Consumption Mode" and "Operations of Standby Modes" in FM0+ Family Peripheral Manual.
- When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "Chapter: Low Power Consumption Mode" in "FM0+ Family Peripheral Manual".
- The time during the power-on reset/low-voltage detection reset is excluded. See "11.4.7 Power-on Reset Timing in 11.4 AC Characteristics in 11. Electrical Characteristics" for the detail on the time during the power-on reset/low -voltage detection reset.
- When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is
 necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time.
- The internal resource reset means the watchdog reset and the CSV reset.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless
Spansion Products	spansion.com/products

PSoC® Solutions psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

Cypress, the Cypress logo, Spansion[®], the Spansion logo, MirrorBit[®], MirrorBit[®] EclipseTM, ORNANDTM, Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks and registered trademarks of Cypress Semiconductor Corp. ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.