

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	62
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1846agk-gak-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Special Function Register (SFR) Name	Symbol	R/W	Manipu	ulable Bit	Range	After Reset	
				1-bit	8-bit	16-bit		
F0017H	A/D port configuration register	ADPC	R/W	_	\checkmark	-	10H	
F0030H	Pull-up resistor option register 0	PU0	R/W		\checkmark	-	00H	
F0031H	Pull-up resistor option register 1	PU1	R/W		\checkmark	-	00H	
F0033H	Pull-up resistor option register 3	PU3	R/W	\checkmark	\checkmark	-	00H	
F0034H	Pull-up resistor option register 4	PU4	R/W	\checkmark	\checkmark	-	00H	
F0035H	Pull-up resistor option register 5	PU5	R/W	\checkmark	\checkmark	-	00H	
F0036H	Pull-up resistor option register 6	PU6	R/W	\checkmark	\checkmark	-	00H	
F0037H	Pull-up resistor option register 7	PU7	R/W	\checkmark	\checkmark	-	00H	
F0038H	Pull-up resistor option register 8 ^{Note}	PU8	R/W	\checkmark	\checkmark	-	00H	
F0039H	Pull-up resistor option register 9	PU9	R/W	\checkmark	\checkmark	_	00H	
F003BH	Pull-up resistor option register 11	PU11	R/W	\checkmark	\checkmark	_	00H	
F003CH	Pull-up resistor option register 12	PU12	R/W	\checkmark	\checkmark	-	00H	
F003DH	Pull-up resistor option register 13 ^{Note}	PU13	R/W	\checkmark	\checkmark	_	00H	
F003EH	Pull-up resistor option register 14	PU14	R/W	\checkmark	\checkmark	_	00H	
F0040H	Port input mode register 0	PIM0	R/W	\checkmark	\checkmark	_	00H	
F0041H	Port input mode register 1	PIM1	R/W	\checkmark	\checkmark	_	00H	
F0046H	Port input mode register 6	PIM6	R/W	\checkmark	\checkmark	_	00H	
F004EH	Port input mode register 14	PIM14	R/W	\checkmark	\checkmark	_	00H	
F0050H	Port output mode register 0	POM0	R/W	\checkmark	\checkmark	_	00H	
F0051H	Port output mode register 1	POM1	R/W	\checkmark	\checkmark	_	00H	
F005EH	Port output mode register 14	POM14	R/W	\checkmark	\checkmark	_	00H	
F0060H	Noise filter enable register 0	NFEN0	R/W	\checkmark	\checkmark	_	00H	
F0061H	Noise filter enable register 1	NFEN1	R/W	\checkmark	\checkmark	_	00H	
F0062H	Noise filter enable register 2	NFEN2	R/W	\checkmark	\checkmark	_	00H	
F0076H	Port function register 6	PF6	R/W	\checkmark	\checkmark	_	00H	
F007BH	Port function register 11	PF11	R/W	\checkmark	\checkmark	-	00H	
F00E0H	Multiplication/division data register C (L)	MDCL	R	-	-	\checkmark	0000H	
F00E2H	Multiplication/division data register C (H)	MDCH	R	-	-	\checkmark	0000H	
F00E8H	Multiplication/division control register	MDUC	R/W	\checkmark	\checkmark	-	00H	
F00F0H	Peripheral enable register 0	PER0	R/W	\checkmark	\checkmark	-	00H	
F00F1H	Peripheral enable register 1	PER1	R/W	\checkmark	\checkmark	-	00H	
F00F3H	Operation speed mode control register	OSMC	R/W	-	\checkmark	-	00H	
F00F4H	Regulator mode control register	RMC	R/W	-	\checkmark	-	00H	
F00F6H	20 MHz internal high-speed oscillation control register	DSCCTL	R/W	\checkmark	\checkmark	-	00H	
F00FEH	BCD adjust result register	BCDADJ	R	-	\checkmark	-	Undefined	
F0100H	Serial status register 00	SSR00L SSR00	R	-	\checkmark	\checkmark	0000H	
F0101H		_		_	_			
F0102H	Serial status register 01	SSR01L SSR01	R	-	\checkmark	\checkmark	0000H	
F0103H		_		-	-			
F0104H	Serial status register 02	SSR02L SSR02	R	-	\checkmark	\checkmark	0000H	
F0105H		_		-	-	1		
F0106H	Serial status register 03	SSR03L SSR03	R	-	\checkmark	\checkmark	0000H	
F0107H		_		-	-			

Table 3-6.	Extended	SFR	(2nd	SFR)	List ((1/7)
------------	----------	-----	------	------	--------	-------

Note 78K0R/KG3-C only

Address: FF	Address: FFFA3H After reset: 07H R/W														
Symbol	7	6	5	4	3	2	1	0							
OSTS	0	0	0	0 0		OSTS2	OSTS1	OSTS0							
	OSTS2	OSTS1	OSTS0	Oscillation stabilization time selection											
						fx = 10 MHz	fx =	20 MHz							
	0	0	0	2 ⁸ /fx		25.6 <i>μ</i> s	Setting	prohibited							
	0	0	1	2 ⁹ /fx		51.2 <i>μ</i> s	25.6 <i>μ</i> s								
	0	1	0	2 ¹⁰ /fx		102.4 <i>μ</i> s	51.2 <i>μ</i> s								
	0	1	1	2 ¹¹ /fx		204.8 <i>µ</i> s	102.4 <i>μ</i> s	S							
	1	0	0	2 ¹³ /fx		819.2 <i>μ</i> s	409.6 <i>μ</i>	S							
	1	0	1	2 ¹⁵ /fx		3.27 ms	1.64 ms								
	1	1	0	2 ¹⁷ /fx		13.11 ms	6.55 ms								
	1	1	1	2 ¹⁸ /fx		26.21 ms	13.11 m	S							

Figure 5-5. Format of Oscillation Stabilization Time Select Register (OSTS)

Cautions 1. To set the STOP mode when the X1 clock is used as the CPU clock, set the OSTS register before executing the STOP instruction.

- 2. Setting the oscillation stabilization time to 20 μ s or less is prohibited.
- 3. Change the setting of the OSTS register before setting the MSTOP bit of the clock operation status control register (CSC) to 0.
- 4. Do not change the value of the OSTS register during the X1 clock oscillation stabilization time.
- 5. The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS.

In the following cases, set the oscillation stabilization time of OSTS to the value greater than or equal to the count value which is to be checked by the OSTC register.

- If the X1 clock starts oscillation while the internal high-speed oscillation clock or subsystem clock is being used as the CPU clock.
- If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock with the X1 clock oscillating. (Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after the STOP mode is released.)
- 6. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

Remark fx: X1 clock oscillation frequency

Address: F0	Address: F00F0H After reset: 00H R/W													
Symbol	ool <7>		<5>	<4>	<3>	<2>	<1>	<0>						
PER0	RTCEN	0	ADCEN	IICAEN	IICAEN SAU1EN		TAU1EN	TAU0EN						
Address: F00F1H After reset: 00H R/W														
Symbol 7		6	<5>	<4> 3		2	1	0						
PER1	0	0	REMEN	CECEN	0	0	0	0						

Figure 5-8.	Format of F	Peripheral	Enable	Registers	(2/3)
-------------	-------------	------------	--------	-----------	-------

SAU1EN	Control of serial array unit 1 input clock supply
0	Stops input clock supply.SFR used by the serial array unit 1 cannot be written.The serial array unit 1 is in the reset status.
1	Supplies input clock.SFR used by the serial array unit 1 can be read and written.

SAU0EN	Control of serial array unit 0 input clock supply
0	Stops input clock supply.SFR used by the serial array unit 0 cannot be written.The serial array unit 0 is in the reset status.
1	Supplies input clock.SFR used by the serial array unit 0 can be read and written.

TAU1EN	Control of timer array unit 1 input clock supply
0	Stops input clock supply.SFR used by timer array unit 1 cannot be written.Timer array unit 1 is in the reset status.
1	Supplies input clock. SFR used by timer array unit 1 can be read and written.

TAU0EN	Control of timer array unit 0 input clock supply
0	Stops input clock supply.SFR used by timer array unit 0 cannot be written.Timer array unit 0 is in the reset status.
1	Supplies input clock.SFR used by timer array unit 0 can be read and written.

Caution Be sure to clear bit 6 of the PER0 register, and bits 0 to 3, 6, and 7 of the PER1 register to 0.

(12) Timer output mode register m (TOMm)

TOMm is used to control the timer output mode of each channel.

When a channel is used for the single-operation function, set the corresponding bit of the channel to be used to 0. When a channel is used for the combination-operation function (PWM output, one-shot pulse output, or multiple PWM output), set the corresponding bit of the master channel to 0 and the corresponding bit of the slave channel to 1.

The setting of each channel n by this register is reflected at the timing when the timer output signal is set or reset while the timer output is enabled (TOEmn = 1).

TOMm can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of TOMm can be set with an 8-bit memory manipulation instruction with TOMmL. Reset signal generation clears this register to 0000H.

Figure 6-21. Format of Timer Output Mode Register m (TOMm)

Address: F01	BEH, F	01BFH	After	reset: (0000H	R/W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOM0	0	0	0	0	0	0	0	0	том	ТОМ	том	ТОМ	ТОМ	том	том	том
									07	06	05	04	03	02	01	00
Address: F01E6, F01E7H			After re	eset: 00	00H	R/W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOM1	0	0	0	0	0	0	0	0	0	0	0	0	0	том	том	том
														12	11	10
	том					Co	ontrol of	timer o	utput m	ode of	channe	n				
	mn															
	0	Master	r chann	el outpu	ut mode	(to pro	duce to	ggle ou	tput by	timer in	terrupt	request	signal	(INTTM	mn))	
	1			•	mode (errupt re				• •	•	•) of the	master	channe	l, and

Caution Be sure to clear bits 15 to 8 of TOM0 and bits 15 to 3 of TOM1 to "0".

Remark m: Unit number, n: Channel number, p: Slave channel number

When m = 0

n = 0 to 7 (n = 0, 2, 4, 6 for master channel)

n (where p is a consecutive integer greater than n)

When m = 1

n = 0 to 2 (n = 0 for master channel)

n (where <math display="inline">p is a consecutive integer greater than n)

6) 10-bit A/D conversion result register (ADCR)

The A/D conversion result is loaded from the successive approximation register to this register each time A/D conversion is completed, and the ADCR register holds the A/D conversion result in its higher 10 bits (the lower 6 bits are fixed to 0).

(7) 8-bit A/D conversion result register (ADCRH)

The A/D conversion result is loaded from the successive approximation register to this register each time A/D conversion is completed, and the ADCRH register stores the higher 8 bits of the A/D conversion result.

(8) Controller

This circuit controls the conversion time of an input analog signal that is to be converted into a digital signal, as well as starting and stopping of the conversion operation. When A/D conversion has been completed, this controller generates INTAD.

(9) AVREF pin

This pin inputs the reference voltage of the A/D converter, the power supply pins and A/D converter of the comparator. When all pins of ports 2 and 15 are used as the analog port pins, make the potential of AV_{REF} be such that 2.7 V \leq AV_{REF} \leq V_{DD}. When one or more of the pins of ports 2 and 15 are used as the digital port pins, make AV_{REF} the same potential as V_{DD}.

The analog signal input to ANI0 to ANI10 is converted into a digital signal, based on the voltage applied across AV_{REF} and AVss.

Remark ANI0 to ANI11: 78K0R/KF3-C ANI0 to ANI15: 78K0R/KG3-C

(10) AVss pin

This is the ground potential pin of the A/D converter. Always use this pin at the same potential as that of the Vss pin even when the A/D converter is not used.

Figure 11-7. Format of Serial Communication Operation Setting Register mn (SCRmn) (2/3)

Address: F0118H, F0119H (SCR00) to F011EH, F011FH (SCR03), After reset: 0087H R/W F0158H, F0159H (SCR10), F015AH, F015BH (SCR11)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SCRmn	TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	DLS	DLS	DLS
	mn	mn	mn	mn		mn	mn1	mn0	mn		mn1	mn0		mn2	mn1	mn0

EOC	Selection of masking of error interrupt signal (INTSREx ($x = 0$ to 3))
mn	
0	Masks error interrupt INTSREx (INTSRx is not masked).
1	Enables generation of error interrupt INTSREx (INTSRx is masked if an error occurs).
	OCmn = 0 in the CSI mode, simplified I ² C mode, and during UART transmission ^{Note 1} . OCmn = 1 during UART reception.

PTC	PTC	Setting of parity bit in UART mode					
mn1	mn0	Transmission	Reception				
0	0	Does not output the parity bit.	Receives without parity				
0	1	Outputs 0 parity ^{Note 2} .	No parity judgment				
1	0	Outputs even parity.	Judged as even parity.				
1	1	Outputs odd parity.	Judges as odd parity.				
Be su	Be sure to set PTCmn1, PTCmn0 = 0, 0 in the CSI mode and simplified I^2 C mode.						

DIR	Selection of data transfer sequence in CSI and UART modes
mn	
0	Inputs/outputs data with MSB first.
1	Inputs/outputs data with LSB first.
Be sur	re to clear DIRmn = 0 in the simplified I^2C mode.

SLC	SLC	Setting of stop bit in UART mode					
mn1	mn0						
0	0	No stop bit					
0	1	Stop bit length = 1 bit					
1	0	Stop bit length = 2 bits					
1	1	Setting prohibited					
	When the transfer end interrupt is selected, the interrupt is generated when all stop bits have been completely transferred.						

Set 1 bit (SLCmn1, SLCmn0 = 0, 1) during UART reception and in the simplified I^2 C mode. Set no stop bit (SLCmn1, SLCmn0 = 0, 0) in the CSI mode.

Notes 1. When not using CSI01 with EOC01 = 0, error interrupt INTSRE0 may be generated.

2. 0 is always added regardless of the data contents.

Caution Be sure to clear bits 3, 6, and 11 to "0". Be sure to set bit 2 to "1".

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10, 11

(1) Register setting

Figure 11-23. Example of Contents of Registers for Master Transmission of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI20) (1/2)

(a) Serial output register m (SOm) ... Sets only the bits of the target channel.

(a) 00	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOm	0	0	0	0	1	CKOm2 Note	CKOm1 Note 0/1	СКОт0 0/1	0	0	0	0	1	SOm2 Note	SOm1 Note 0/1	SOm0 0/1
if the data If the phas	Communication starts when these bits are 1 if the data phase is forward (CKPmn = 0). 0: Serial data output value is "0" 1: Serial data output value is "1" If the phase is reversed (CKPmn = 1), communication starts when these bits are 0. 1: Serial data output value is "1" (b) Serial output enable register m (SOEm) Sets only the bits of the target channel to 1.															
(b) Se	rial ou	utput	enable	e regis	ster m	(SOE	m)	Sets o	only th	ne bits	of the	e targ	et cha	nnel t	o 1.	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm	0	0	0	0	0	0	0	0	0	0	0	0	0	SOEm2 Note	SOEm1 Note 0/1	SOEm0 0/1
(c) Se	rial ch	nanne	l start	regis	ter m	(SSm)	Se	ts onl	y the	bits o	f the t	arget	chanr	el to	1.	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSm	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 ×	SSm2 Note 0/1	SSm1 Note 0/1	^{SSm0} 0/1
(d) Se	rial m	ode re	egiste	r mn (SMRr	nn)										
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMRmn	CKSmn 0/1	CCSmn 0	0	0	0	0	0	STSmn 0	0	SISm0 0	1	0	0	MDmn2 0	MDmn1 0	MDmn0 0/1
0: Prescal	Operation clock (fмск) of channel n 0: Prescaler output clock CKm0 set by the SPSm register 1: Prescaler output clock CKm1 set by the SPSm register									0: Tra	nsfer e	irces of nd inte pty inte	•	iel n		

Note Serial array unit 0 only.

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2), mn = 00 to 02, 10,

p: CSI number (p = 00, 01, 10, 20)

: Setting is fixed in the CSI master transmission mode, : Setting disabled (set to the initial value)

 \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode)

0/1: Set to 0 or 1 depending on the usage of the user

Figure 11-70. Example of Contents of Registers for UART Transmission of UART (UART0, UART1, UART2) (2/2)

- **Note** Before transmission is started, be sure to set to 1 when the SOLmn bit of the target channel is set to 0, and set to 0 when the SOLmn bit of the target channel is set to 1. The value varies depending on the communication data during communication operation.
- Remark m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), q: UART number (q = 0 to 2)
 Setting is fixed in the UART transmission mode, : Setting disabled (set to the initial value)
 Setting is fixed in this mode (set to the initial value when not used in any mode)
 0/1: Set to 0 or 1 depending on the usage of the user

	Starting setting for resumption
(Essential)	Port manipulation
(Selective)	Changing setting of SPSm register
(Selective)	Changing setting of SDRm register
(Selective)	Changing setting of SMRmn register
(Selective)	Changing setting of SCRmn register
(Selective)	Changing setting of SOLmn register
(Essential)	Changing setting of SOEm register
(Essential)	Changing setting of SOm register
(Essential)	Changing setting of SOEm register
(Essential)	Port manipulation
(Essential)	Writing to SSm register
(Essential)	Starting communication

Figure 11-73. Procedure for Resuming UART Transmission

Disable data output of the target channel by setting a port register and a port mode register.

Change the setting if an incorrect division ratio of the operation clock is set.

Change the setting if an incorrect transfer baud rate is set.

Change the setting if the setting of the SMRmn register is incorrect.

Change the setting if the setting of the SCRmn register is incorrect.

Change the setting if the setting of the SOLmn register is incorrect.

Clear the SOEmn bit to 0 and stop output.

Manipulate the SOmn bit and set an initial output level.

Set the SOEmn bit to 1 and enable output.

Enable data output of the target channel by setting a port register and a port mode register.

Set the SSmn bit of the target channel to 1 to set SEmn = 1.

Set transmit data to the TXDq register (bits 7 to 0 of the SDRmn register) and start communication.

Figure 11-91. Example of Contents of Registers for Data Transmission of Simplified I²C (IIC10, IIC20) (2/2)

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 02, 10, r: IIC number (r = 10, 20) : Setting is fixed in the IIC mode, : Setting disabled (set to the initial value) ×: Bit that cannot be used in this mode (set to the initial value when not used in any mode) 0/1: Set to 0 or 1 depending on the usage of the user

(11) Start condition generator

This circuit generates a start condition when the STT bit is set to 1. However, in the communication reservation disabled status (IICRSV bit = 1), when the bus is not released (IICBSY bit = 1), start condition requests are ignored and the STCF bit is set to 1.

(12) Stop condition generator

This circuit generates a stop condition when the SPT bit is set to 1.

(13) Bus status detector

This circuit detects whether or not the bus is released by detecting start conditions and stop conditions. However, as the bus status cannot be detected immediately following operation, the initial status is set by the STCEN bit.

 Remark
 STT bit:
 Bit 1 of IICA control register 0 (IICCTL0)

 SPT bit:
 Bit 0 of IICA control register 0 (IICCTL0)

 IICRSV bit:
 Bit 0 of IICA flag register (IICF)

 IICBSY bit:
 Bit 6 of IICA flag register (IICF)

 STCF bit:
 Bit 7 of IICA flag register (IICF)

 STCEN bit:
 Bit 1 of IICA flag register (IICF)

(6) Overrun error

If receiving the next data is completed before reading data from the reception buffer register (CRXD) during follower operation, an overrun error occurs. An error interrupt (INTERR) is generated, the overrun error flag (OERR) is set, and the CRXD buffer value is overwritten by a new value. Afterward, logical 1 is returned during direct address communication and logical 0 is returned during broadcast communication at the ACK transmission timing of the block in which an overrun error occurred. The failure of reception is reported to the initiator, and the reception standby state is entered. INTCE operates according to the setting of CESEL1 and CESEL0.

Figure 13-65. Overrun Error (When Three Bits Are Set as Signal-Free Time)

An error occurs when the next reception data is not read within this period.

Address: F0330H, F0342H After reset: 00H R/W Symbol 4 2 1 0 7 6 5 3 RMCN102 RMEN02 RMNCW02 RMPRS02 RMIN02 RMMD102 RMMD002 RMCK102 RMCK002 Note 1 Note 1 RMCN113 RMEN13 RMNCW13 RMPRS13 RMIN13 RMMD113 RMMD013 0 0

Figure 14-8. Format of Remote Controller Receive Control 1 Register m (RMCN1m) (2/2)

RMINm Note 2	Remote controller input invert control
0	Does not invert signal of remote control receive data input pin (default).
1	Inverts signal of remote control receive data input pin.

RMBDm Notes 2, 3	RMMD1m Note 2	RMMD0m Note 2	Remote controller reception mode
0	0	0	Type A reception mode (guide pulse (half clock) provided) (default)
0	0	1	Type B reception mode (guide pulse (1 clock) provided)
0	1	0	Type C reception mode (guide pulse not provided)
0	1	1	Setting prohibited
1	0	0	Setting prohibited
1	0	1	Type B1 reception mode (guide pulse (1 cycle) provided)
1	1	0	Type C1 reception mode (guide pulse not provided)
1	1	1	Setting prohibited

RMCK102	RMCK002	Selection of source clock (fREM) of remote controller counter						
Note 4	Note 4	Selection clock	fmain = 2 MHz	fmain = 5 MHz	fmain = 10 MHz	fmain = 20 MHz		
0	0	fmain/2 ⁷	15.625 kHz	39.063 kHz	78.125 kHz	156.250 kHz		
0	1	fmain/2 ⁸	7.813 kHz	19.531 kHz	39.063 kHz	78.125 kHz		
1	0	fmain/2 ⁹	3.906 kHz	9.766 kHz	19.531 kHz	39.063 kHz		
1	1	fsuв	32.768 kHz					

Notes 1. The RMCK102 and RMCK002 bits are only provided in the RMCN102 register. Bits 1 and 0 of the RMCN113 register are read-only and 0 is read.

- **2.** Set this bit when RMENm = 0.
- 3. RMBDm bit is bit 0 of the RMCN2m register
- 4. Specify the remote controller receiver source clock by using RMCK102 and RMCK002. The clock selected by using this register is the source clock of all channels. Therefore, set the register when the operation of all channels is stopped (RMENm = 0).

Remarks 1 m = 02, 13

 $\label{eq:main} \textbf{2} \quad f_{\text{MAIN}} = 2 \text{ to } 20 \text{ MHz} \text{ , } \text{fsub} = 32.768 \text{ kHz}$

CHAPTER 17 INTERRUPT FUNCTIONS

17.1 Interrupt Function Types

The following two types of interrupt functions are used.

(1) Maskable interrupts

These interrupts undergo mask control. Maskable interrupts can be divided into four priority groups by setting the priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H).

Multiple interrupt servicing can be applied to low-priority interrupts when high-priority interrupts are generated. If two or more interrupt requests, each having the same priority, are simultaneously generated, then they are processed according to the priority of vectored interrupt servicing. For the priority order, see **Table 17-1**.

A standby release signal is generated and STOP and HALT modes are released.

External interrupt requests and internal interrupt requests are provided as maskable interrupts. External: 9, internal: 39

(2) Software interrupt

This is a vectored interrupt generated by executing the BRK instruction. It is acknowledged even when interrupts are disabled. The software interrupt does not undergo interrupt priority control.

17.2 Interrupt Sources and Configuration

The 78K0R/KG3-C has a total of 49 interrupt sources including maskable interrupts and software interrupts. In addition, they also have up to five reset sources (see **Table 17-1**). The vector codes that store the program start address when branching due to the generation of a reset or various interrupt requests are two bytes each, so interrupts jump to a 64 K address of 00000H to 0FFFFH.

Figure 22-11. Example of Software Processing After Reset Release (1/2)

• If supply voltage fluctuation is 50 ms or less in vicinity of LVI detection voltage

Note A flowchart is shown on the next page.

- **Remarks 1.** If bit 2 (LVISEL) of the low voltage detection register (LVIM) is set to "1", the meanings of the above words change as follows.
 - Supply voltage (V_{DD}) \rightarrow Input voltage from external input pin (EXLVI)
 - Detection voltage (VLVI) \rightarrow Detection voltage (VEXLVI = 1.21 V)
 - **2.** m = 0, 1, n = 0 to 7, mn = 00 to 07, 10 to 12

Figure 25-2. Example of Wiring Adapter for Flash Memory Writing (78K0R/KG3-C)

- Notes 1. This pin is not required to be connected when using PG-FP5 or FL-PR5.
 - 2. Connect SI/RxD or SO/TxD when using QB-MINI2.

The dedicated flash memory programmer generates the following signals for the 78K0R/Kx3-C. See the manual of PG-FP5, FL-PR5, or MINICUBE2 for details.

	Dedicated	I Flash Memory Programmer	78K0R/KF3-C	78K0R/KG3-C	Connection
Signal Name	I/O	Pin Function	Pin Name	Pin Name	
FLMD0	Output	Mode signal	FLMD0	FLMD0	O
Vdd	I/O	VDD voltage generation/power monitoring	Vdd, EVdd, AVref	Vdd, EVddo, EVdd1, AVref	0
GND	-	Ground	Vss, EVss, AVss	Vss, EVsso, EVss1, AVss	0
CLK	Output	Clock output	_	_	×
/RESET	Output	Reset signal	RESET	RESET	O
SI/RxD ^{Notes 1, 2}	Input	Receive signal	TOOL0	TOOL0	O
SO/TxD Note 2	Output	Transmit signal			
SCK	Output	Transfer clock	_	_	×

Notes 1. This pin is not required to be connected when using PG-FP5 or FL-PR5.

2. Connect SI/RxD or SO/TxD when using QB-MINI2.

Remarks 1. \bigcirc : Be sure to connect the pin.

 \times : The pin does not have to be connected.

 For the pins not to be connected the dedicated flash memory programmer, it is recommended to perform the processing described under the "Recommended Connection of Unused Pins" shown in Table 2-3. Connection of Unused Pins (78K0R/KF3-C) or Table 2-3. Connection of Unused Pins (78K0R/KG3-C).

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Operation		Flag	
Group				Note 1	Note 2		Z	AC	CY
Condition	BF	saddr.bit, \$addr20	4	3/5 ^{Note 3}	-	$PC \leftarrow PC + 4 + jdisp8$ if (saddr).bit = 0		-	
al branch		sfr.bit, \$addr20	4	3/5 ^{Note 3}	-	$PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 0			
		A.bit, \$addr20	3	3/5 ^{Note 3}	-	$PC \leftarrow PC + 3 + jdisp8$ if A.bit = 0			
		PSW.bit, \$addr20	4	3/5 ^{Note 3}	-	$PC \leftarrow PC + 4 + jdisp8$ if PSW.bit = 0			
		[HL].bit, \$addr20	3	3/5 ^{Note 3}	6/7	$PC \leftarrow PC + 3 + jdisp8$ if (HL).bit = 0			
		ES:[HL].bit, \$addr20	4	4/6 ^{Note 3}	7/8	$PC \leftarrow PC + 4 + jdisp8$ if (ES, HL).bit = 0			
	BTCLR	saddr.bit, \$addr20	4	3/5 ^{Note 3}	-	$PC \leftarrow PC + 4 + jdisp8$ if (saddr).bit = 1 then reset (saddr).bit			
		sfr.bit, \$addr20	4	3/5 ^{Note 3}		$PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 1 then reset sfr.bit			
		A.bit, \$addr20	3	3/5 ^{Note 3}	-	$PC \leftarrow PC + 3 + jdisp8$ if A.bit = 1 then reset A.bit			
		PSW.bit, \$addr20	4	3/5 ^{Note 3}	-	$PC \leftarrow PC + 4 + jdisp8$ if PSW.bit = 1 then reset PSW.bit	×	×	×
		[HL].bit, \$addr20	3	3/5 ^{Note 3}	-	$PC \leftarrow PC + 3 + jdisp8$ if (HL).bit = 1 then reset (HL).bit			
		ES:[HL].bit, \$addr20	4	4/6 ^{Note 3}	-	$PC \leftarrow PC + 4 + jdisp8$ if (ES, HL).bit = 1 then reset (ES, HL).bit			
Conditional	SKC	-	2	1	_	Next instruction skip if CY = 1			
skip	SKNC	-	2	1	_	Next instruction skip if CY = 0			
	SKZ	-	2	1	-	Next instruction skip if Z = 1			
	SKNZ	-	2	1	-	Next instruction skip if $Z = 0$			
	SKH	-	2	1	-	Next instruction skip if $(Z \lor CY) = 0$			
	SKNH	-	2	1	-	Next instruction skip if $(Z \lor CY) = 1$			
CPU	SEL	RBn	2	1	-	$RBS[1:0] \leftarrow n$			
control	NOP	_	1	1	-	No Operation			
	EI	_	3	4	-	$IE \leftarrow 1(Enable Interrupt)$			
	DI	_	3	4	-	$IE \leftarrow 0(Disable Interrupt)$			
	HALT	_	2	3	-	Set HALT Mode			
	STOP	_	2	3	-	Set STOP Mode			

Table 28-5. Operation List (1	17/17)
-------------------------------	--------

Notes 1. When the internal RAM area, SFR area, or extended SFR area is accessed, or for an instruction with no data access.

- 2. When the program memory area is accessed.
- 3. This indicates the number of clocks "when condition is not met/when condition is met".
- **Remarks 1.** One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).
 - 2. This number of clocks is for when the program is in the internal ROM (flash memory) area. When fetching an instruction from the internal RAM area, the number of clocks is twice the number of clocks plus 3, maximum.
 - **3.** n indicates the number of register banks (n = 0 to 3)

(2) Serial interface: Serial array unit (4/17)

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2)

78K0R/Kx3-C User's Manual: Hardware

Publication Date:	Rev.0.01	Mar 1, 2010
	Rev.2.00	Sep 30, 2011
Published by:	Renesas Electronics Corporation	