

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	62
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1847agk-gak-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Special Function Register (SFR) Name	Syn	nbol	R/W	Manip	ulable Bit	Range	After Reset
					1-bit	8-bit	16-bit	
F014AH	Serial flag clear trigger register 11	SIR11L	SIR11	R/W	_			0000H
F014BH		_			-	-		
F0150H	Serial mode register 10	SMR10		R/W	_	-		0020H
F0151H								
F0152H	Serial mode register 11	SMR11		R/W	-	-		0020H
F0153H								
F0158H	Serial communication operation setting register 10	SCR10		R/W	-	-		0087H
F0159H								
F015AH	Serial communication operation setting register 11	SCR11		R/W	-	-	\checkmark	0087H
F015BH								
F0160H	Serial channel enable status register 1	SE1L	SE1	R	\checkmark	\checkmark		0000H
F0161H		-			-	-		
F0162H	Serial channel start register 1	SS1L	SS1	R/W	\checkmark	\checkmark		0000H
F0163H		_			_	-		
F0164H	Serial channel stop register 1	ST1L	ST1	R/W	\checkmark	\checkmark		0000H
F0165H		_			_	_	1	
F0166H	Serial clock select register 1	SPS1L	SPS1	R/W	_	\checkmark		0000H
F0167H		_			_	-		
F0168H	Serial output register 1	SO1		R/W	-	-		0F0FH
F0169H								
F016AH	Serial output enable register 1	SOE1L	SOE1	R/W	\checkmark	\checkmark		0000H
F016BH		_			_	-		
F0174H	Serial output level register 1	SOL1L	SOL1	R/W	_	\checkmark		0000H
F0175H		_			_	_		
F0180H	Timer counter register 00	TCR00		R	_	_		FFFFH
F0181H								
F0182H	Timer counter register 01	TCR01		R	-	-	\checkmark	FFFFH
F0183H								
F0184H	Timer counter register 02	TCR02		R	-	-	\checkmark	FFFFH
F0185H								
F0186H	Timer counter register 03	TCR03		R	-	-	\checkmark	FFFFH
F0187H								
F0188H	Timer counter register 04	TCR04		R	-	-	\checkmark	FFFFH
F0189H								
F018AH	Timer counter register 05	TCR05		R	_	-	\checkmark	FFFFH
F018BH								
F018CH	Timer counter register 06	TCR06		R	-	-	\checkmark	FFFFH
F018DH								
F018EH	Timer counter register 07	TCR07		R	-	-		FFFFH
F018FH								
F0190H	Timer mode register 00	TMR00		R/W	-	-		0000H
F0191H]							
F0192H	Timer mode register 01	TMR01		R/W	-	-		0000H
F0193H								

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PU0	0	PU06	PU05	PU04	PU03	PU02	0	0	F0030H	00H	R/W
PU1	PU17	PU16	PU15	PU14	PU13	PU12	PU11	PU10	F0031H	00H	R/W
					r	r	r				
PU3	0	0	0	0	0	0	PU31	PU30	F0033H	00H	R/W
					[[[1 1			
PU4	PU47	PU46	PU45	PU44	PU43	PU42	PU41	PU40	F0034H	00H	R/W
					1	1	1				
PU5	0	0	PU55	PU54	PU53	PU52	PU51	PU50	F0035H	00H	R/W
								1			
PU6	PU67	PU66	PU65	PU64	0	PU62	0	0	F0036H	00H	R/W
	DUZZ	DUZC	DUZE	DUZ4	DUZO	DUZO	DUZI	DUZO	E000711	0011	
PU7	PU77	PU76	PU75	PU74	PU73	PU72	PU71	PU70	F0037H	00H	R/W
PU9	0	0	0	0	0	0	PU91	PU90	F0039H	00H	R/W
103	0	0	0	0	0	0	1031	1030	1003911	0011	10/00
PU11	0	0	0	0	0	0	PU111	PU110	F003BH	00H	R/W
	•		•		Ŭ	Ŭ					
PU12	0	0	0	0	0	0	0	PU120	F003CH	00H	R/W
								11			
PU14	0	0	0	PU144	PU143	PU142	0	PU140	F003EH	00H	R/W
	PUmn		Pmn pin on-chip pull-up resistor selection								
					(m = 0	, 1, 3 to 7,	9, 11, 12,	14; n = 0 to	o 7)		
	0	On-chip	Dn-chip pull-up resistor not connected								

Figure 4-54. Format of Pull-up Resistor Option Register (78K0R/KF3-C)

<R>

Figure 4-55. Relationship Between PF6 Register and PU6 Register

PF62	PU62	Diode connection
0	0	Does not connect pull-up resistor to diode
0	1	
1	0	
1	1	Connects pull-up resistor to diode

Caution CECIO and CECIN/CECOUT pins must not be used at the same time.

Do not set PF110 and PF111 to 1 while PF62 = 1.

On-chip pull-up resistor connected

Do not set PF62 to 1 while PF110 and PF111 = 1.

1

(2) Example of setting procedure when using the external main system clock

<1> Setting P121/X1 and P122/X2/EXCLK pins (CMC register)

EXCLK	OSCSEL	0	OSCSELS	0	AMPHS1	AMPHS0	AMPH
1	1	0	0/1	0	0/1	0/1	0/1

Remark For setting of the P123/XT1 and P124/XT2 pins, see 5.6.3 (1) Example of setting procedure when oscillating the subsystem clock.

- <2> Controlling external main system clock input (CSC register) When MSTOP is cleared to 0, the input of the external main system clock is enabled.
- Cautions 1. The CMC register can be written only once after reset release, by an 8-bit memory manipulation instruction.

Therefore, it is necessary to also set the value of the OSCSELS bits at the same time. For OSCSELS bits, see 5.6.3 Example of controlling subsystem clock.

- 2. Set the external main system clock after the supply voltage has reached the operable voltage of the clock to be used (see CHAPTER 29 ELECTRICAL SPECIFICATIONS).
- (3) Example of setting procedure when using high-speed system clock as CPU/peripheral hardware clock
 - <1> Setting high-speed system clock oscillation^{Note}

(See 5.6.1 (1) Example of setting procedure when oscillating the X1 clock and (2) Example of setting procedure when using the external main system clock.)

Note The setting of <1> is not necessary when high-speed system clock is already operating.

<2> Setting the high-speed system clock as the source clock of the CPU/peripheral hardware clock and setting the division ratio of the set clock (CKC register)

MCM0	MDIV2	MDIV1	MDIV0	Selection of CPU/Peripheral Hardware Clock (fclk)
1	0	0	0	fмх
	0	0	1	fmx/2
	0	1	0	fmx/2 ²
	0	1	1	fmx/2 ³
	1	0	0	fmx/2 ⁴
	1	0	1	fmx/2 ^{5 Note}

Note Setting is prohibited when f_{MX} < 4 MHz.

(14) Port mode registers (PMxx)

These registers set input/output of ports in 1-bit units.

When using the following pins for timer output, set the port mode register (PMxx) bit and the port register (Pxx) bit corresponding to each port to 0.

- 78K0R/KF3-C: P52/T000, P16/T001/TI01/INTP5, P17/T002/TI02, P31/T003/TI03/INTP4, P42/T004/TI04, P05/T005/TI05, P06/T006/TI06, P54/T007/TI07, P64/TI10/T010 to P66/TI12/T012
- 78K0R/KG3-C: P01/T000, P16/T001/TI01/INTP5, P17/T002/TI02, P31/T003/TI03/INTP4, P42/T004/TI04, P46/T005/TI05/INTP1/RIN01, P131/T006/TI06, P145/T007/TI07, P64/TI10/T010 to P66/TI12/T012
- Example: When using P16/TO01/TI01/INTP5 for timer output Set the PM16 bit of port mode register 1 to 0. Set the P16 bit of port register 1 to 0.

When using the following pins for timer input, set the port mode register (PMxx) bit corresponding to each port to 1. At this time, the port register (Pxx) bit may be 0 or 1.

- 78K0R/KF3-C: P53/TI00, P16/T001/TI01/INTP5, P17/T002/TI02, P31/T003/TI03/INTP4, P42/T004/TI04, P05/T005/TI05, P06/T006/TI06, P54/T007/TI07, P64/TI10/T010 to P66/TI12/T012
- 78K0R/KG3-C: P00/TI00, P16/T001/TI01/INTP5, P17/T002/TI02, P31/T003/TI03/INTP4, P42/T004/TI04, P46/T005/TI05/INTP1/RIN01, P131/T006/TI06, P145/T007/TI07, P64/TI10/T010 to P66/TI12/T012

Example: When using P16/T001/TI01/INTP5 for timer input Set the PM16 bit of port mode register 1 to 1. Set the P16 bit of port register 1 to 0 or 1.

Port mode registers Pxx can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets these registers to FFH.

Figure 6-58. Example of Basic Timing of Operation as PWM Function

Remark m: Unit number, n: Channel number, p: Slave channel number (p = n+1)When m = 0: n = 0, 2, 4, 6 When m = 1: n = 0

	Software Operation	Hardware Status
Operation start	Sets TOEmp (slave) to 1 (only when operation is resumed). The TSmn (master) and TSmp (slave) bits of the TSm register are set to 1 at the same time. The TSmn and TSmp bits automatically return to 0 because they are trigger bits. Detects the TImn pin input valid edge of master channel.	TEmn and TEmp are set to 1 and the master channel enters the TImn input edge detection wait status. Counter stops operating. Master channel starts counting.
During operation	Set values of only the CISmn1 and CISmn0 bits of the TMRmn register can be changed. Set values of the TMRmp, TDRmn, TDRmp registers, TOMmn, TOMmp, TOLmn, and TOLmp bits cannot be changed. The TCRmn and TCRmp registers can always be read. The TSRmn and TSRmp registers are not used. Set values of the TOm and TOEm registers can be changed.	Master channel loads the value of TDRmn to TCRmn when the TImn pin valid input edge is detected, and the counter starts counting down. When the count value reaches TCRmn = 0000H, the INTTMmn output is generated, and the counter stops until the next valid edge is input to the TImn pin. The slave channel, triggered by INTTMmn of the master channel, loads the value of TDRmp to TCRmp, and the counter starts counting down. The output level of TOmp becomes active one count clock after generation of INTTMmn from the master channel. It becomes inactive when TCRmp = 0000H, and the counting operation is stopped. After that, the above operation is repeated.
Operation stop	The TTmn (master) and TTmp (slave) bits are set to 1 at the same time. The TTmn and TTmp bits automatically return to 0 because they are trigger bits.	TEmn, TEmp = 0, and count operation stops. TCRmn and TCRmp hold count value and stops. The TOmp output is not initialized but holds current status.
	TOEmp of slave channel is cleared to 0 and value is set to the TOmp bit.	The TOmp pin outputs the TOmp set level.
TAU stop	When holding the TOmp pin output levels is not necessary	The TOmp pin output levels is held by port function. The TOmp pin output levels go are into Hi-Z output state.
	The TAU0EN bit, TAU1EN bit of the PER0 register is cleared to 0.	Power-off status All circuits are initialized and SFR of each channel is also initialized. (The TOmp bit is cleared to 0 and the TOmp pin is set port mode.)

Figure 6-66. Operation Procedure of One-Shot Pulse Output Function (2/2)

Remark m: Unit number, n: Channel number, p: Slave channel number (p = n+1), When m = 0: n = 0, 2, 4, 6

When m = 1: n = 0

Figure 7-27. Operation When (DEV, F6, F5, F4, F3, F2, F1, F0) = (0, 0, 1, 0, 1, 1, 0, 0)

78K0R/Kx3-C

10.2 Configuration of A/D Converter

The A/D converter includes the following hardware.

(1) ANI0 to ANI15 pins

These are the analog input pins of the 16 channels of the A/D converter. They input analog signals to be converted into digital signals. Pins other than the one selected as the analog input pin can be used as I/O port pins.

Remark ANI0 to ANI11: 78K0R/KF3-C ANI0 to ANI15: 78K0R/KG3-C

(2) Sample & hold circuit

The sample & hold circuit samples each of the analog input voltages sequentially sent from the input circuit, and sends them to the A/D voltage comparator. This circuit also holds the sampled analog input voltage during A/D conversion.

(3) A/D voltage comparator

This A/D voltage comparator compares the voltage generated from the voltage tap of the array with the analog input voltage. If the analog input voltage is found to be greater than the reference voltage ($1/2 \text{ AV}_{\text{REF}}$) as a result of the comparison, the most significant bit (MSB) of the successive approximation register (SAR) is set. If the analog input voltage is less than the reference voltage ($1/2 \text{ AV}_{\text{REF}}$), the MSB of the SAR is reset.

After that, bit 10 of the SAR register is automatically set, and the next comparison is made. The voltage tap of the array is selected by the value of bit 11, to which the result has been already set.

Bit 11 = 0: (1/4 AVREF) Bit 11 = 1: (3/4 AVREF)

The voltage tap of the array and the analog input voltage are compared and bit 10 of the SAR register is manipulated according to the result of the comparison.

Analog input voltage \geq Voltage tap of array: Bit 10 = 1 Analog input voltage \leq Voltage tap of array: Bit 10 = 0

Comparison is continued like this to bit 0 of the SAR register.

(4) Array

The array generates the comparison voltage input from an analog input pin.

(5) Successive approximation register (SAR)

The SAR register is a 12-bit register that sets voltage tap data whose values from the array match the voltage values of the analog input pins, 1 bit at a time starting from the most significant bit (MSB).

If data is set in the SAR register all the way to the least significant bit (LSB) (end of A/D conversion), the contents of the SAR register (conversion results) are held in the A/D conversion result register (ADCR). When all the specified A/D conversion operations have ended, an A/D conversion end interrupt request signal (INTAD) is generated.

(14) Noise filter enable register 0 (NFEN0)

NFEN0 is used to set whether the noise filter can be used for the input signal from the serial data input pin to each channel.

Disable the noise filter of the pin used for CSI or simplified I²C communication, by clearing the corresponding bit of this register to 0.

Enable the noise filter of the pin used for UART communication, by setting the corresponding bit of this register to 1.

When the noise filter is enabled, CPU/peripheral operating clock (fcLk) is synchronized with 2-clock match detection.

NFEN0 can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 11-17. Format of Noise Filter Enable Register 0 (NFEN0)

Address: F0060H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
NFEN0	0	0	0	SNFEN20	0	SNFEN10	0	SNFEN00

SNFEN20	Use of noise filter of RxD2/SDA20/SI20/P143 pin					
0	Noise filter OFF					
1	Noise filter ON					
Set SNFEN2	Set SNFEN20 to 1 to use the RxD2 pin.					
Clear SNFEN	Clear SNFEN20 to 0 to use the SDA20, SI20, and P143 pins.					

SNFEN10	Use of noise filter of RxD1/SDA10/SI10/P03 pin				
0	Noise filter OFF				
1	Noise filter ON				
Set SNFEN10	Set SNFEN10 to 1 to use the RxD1 pin.				

Clear SNFEN10 to 0 to use the SDA10, SI10, and P03 pins.

SNFEN00	Use of noise filter of RxD0/SI00/P11 pin				
0	Noise filter OFF				
1	Noise filter ON				
	Set SNFEN00 to 1 to use the RxD0 pin. Clear SNFEN00 to 0 to use the Sl00 and P11 pins.				

Caution Be sure to clear bits 7 to 5, 3, and 1 to "0".

(1) Register setting

Figure 11-39. Example of Contents of Registers for Master Transmission/Reception of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI20) (1/2)

(a) Se	(a) Serial output register m (SOm) Sets only the bits of the target channel.															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOm	0	0	0	0	1	CKOm2 Note	CKOm1 Note		0	0	0	0	1	SOm2 Note	SOm1 Note	SOm0
						0/1	0/1	0/1						0/1	0/1	0/1
Communication starts when these bits are 1 0: Serial data output value is "0" if the data phase is forward (CKPmn = 0). If 1: Serial data output value is "1" the phase is reversed (CKPmn = 1), 1: Serial data output value is "1" communication starts when these bits are 0. 1: Serial data output value is "1" (b) Serial output enable register m (SOEm) Sets only the bits of the target channel to 1.																
(b) Se		-		-		•			-			-				
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm	0	0	0	0	0	0	0	0	0	0	0	0	0	SOEm2 Note	SOEm1 Note	SOEm0
														0/1	0/1	0/1
(c) Se	rial ch	nannel 14	13	regis 12	ter m 11	(SSm) 10	Se 9	ets onl 8	y the 7	bits o	f the t 5	arget	3	2	1	0
SSm	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 ×	SSm2 Note 0/1	SSm1 Note 0/1	SSm0 0/1
(d) Se			-													
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMRmn	CKSmn 0/1	CCSmn 0	0	0	0	0	0	STSmn 0	0	SISm0 0	1	0	0	MDmn2 0	MDmn1 0	MDmn0 0/1
Operation 0: Prescal 1: Prescal	ler outp	out cloc	k CKm) set b					. –			0: Tra	upt sou nsfer e ffer emj	nd inte	rrupt	lel n

Note Serial array unit 0 only.

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2), mn = 00 to 02, 10,

p: CSI number (p = 00, 01, 10, 20)

Setting is fixed in the CSI master transmission mode, : Setting disabled (set to the initial value)
 Setting that cannot be used in this mode (set to the initial value when not used in any mode)
 Set to 0 or 1 depending on the usage of the user

Figure 11-47. Example of Contents of Registers for Slave Transmission of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI20) (2/2)

p: CSI number (p = 00, 01, 10, 20)

: Setting is fixed in the CSI slave transmission mode, : Setting disabled (set to the initial value) : Bit that cannot be used in this mode (set to the initial value when not used in any mode)

0/1: Set to 0 or 1 depending on the usage of the user

Figure 12-2 shows a serial bus configuration example.

Figure 12-2. Serial Bus Configuration Example Using I²C Bus

Status During Arbitration	Interrupt Request Generation Timing
During address transmission	At falling edge of eighth or ninth clock following byte transfer ^{Note 1}
Read/write data after address transmission	
During extension code transmission	
Read/write data after extension code transmission	
During data transmission	
During ACK transfer period after data transmission	
When restart condition is detected during data transfer	
When stop condition is detected during data transfer	When stop condition is generated (when $SPIE = 1$) ^{Note 2}
When data is at low level while attempting to generate a restart condition	At falling edge of eighth or ninth clock following byte transfer ^{Note 1}
When stop condition is detected while attempting to generate a restart condition	When stop condition is generated (when $SPIE = 1$) ^{Note 2}
When data is at low level while attempting to generate a stop condition	At falling edge of eighth or ninth clock following byte transfer ^{Note 1}
When SCL0 is at low level while attempting to generate a restart condition	

Table 12-4. Status During Arbitration and Interrupt Request Generation Timing

- **Notes 1.** When the WTIM bit (bit 3 of IICA control register 0 (IICCTL0)) = 1, an interrupt request occurs at the falling edge of the ninth clock. When WTIM = 0 and the extension code's slave address is received, an interrupt request occurs at the falling edge of the eighth clock.
 - 2. When there is a chance that arbitration will occur, set SPIE = 1 for master device operation.

Remark SPIE: Bit 4 of IICA control register 0 (IICCTL0)

(2) Slave device operation (slave address data reception)

(a) Start ~ Address ~ Data ~ Data ~ Stop

(i) When WTIM = 0

(ii) When WTIM = 1

(3) Type C reception mode

The INTRERRn signal is generated under any of the following conditions.

- Counter < RMDLSm at the rising edge of RMIN
- RMDLLm \leq counter while RMIN is at low level
- Counter < RMDH0Sm at the falling edge of RMIN
- RMDH0Lm ≤ counter < RMDH1Sm at the falling edge of RMIN
- RMDH1Lm ≤ counter and counter after RMDH1Lm < RMERm at the falling edge of RMIN

However, before the first INTDFULLn interrupt is generated, INTRERRn signal will not be generated. The generation timing of the INTRERRn signal is shown in **Figure 14-46**.

Remark m = 02, 13, n = 0 to 3

Interrupt Type	Default		Interrupt Source	Internal/	Vector	Basic	
	Priority ^{Note 1}	Name	External	Table Address	Configuration Type ^{Note 2}		
Maskable	24	INTAD	End of A/D conversion	Internal	0034H	(A)	
	25	INTRTC	Fixed-cycle signal of real-time counter/alarm match detection		0036H		
	26	INTRTCI	Interval signal detection of real-time counter		0038H		
	27	INTKR	Key return signal detection	External	003AH	(C)	
	28	INTST2 /INTCSI20 /INTIIC20	UART2 transmission transfer end or buffer empty interrupt/CSI20 transfer end or buffer empty interrupt/IIC20 transfer end	Internal	003CH	(A)	
	29	INTRERR3	Remote control channel 3 error occurrence		003EH		
	30	INTRA3	Remote control channel 3 guide pulse detection, read request for 8-bit shift data, or data reception completion		0040H		
	31	INTTM04	End of timer array unit 0 channel 4 count or capture		0042H		
	32	INTTM05	End of timer array unit 0 channel 5 count or capture		0044H		
	33	INTTM06	End of timer array unit 0 channel 6 count or capture		0046H		
	34	INTTM07	End of timer array unit 0 channel 7 count or capture		0048H		
	35	INTSR2	UART2 reception transfer end		004AH		
	36	INTP7	Pin input edge detection	External	004CH	(B)	
	37	INTP8			004EH		
	38	INTRERR2	Remote control channel 2 error occurrence	Internal	0050H	(A)	
	39	INTRA2	Remote control channel 2 guide pulse detection, read request for 8-bit shift data, or data reception completion		0052H		
	40	INTRERR1	Remote control channel 1 error occurrence		0054H		
	41	INTTM10	End of timer array unit 1 channel 0 count or capture		0056H		
	42	INTTM11	End of timer array unit 1 channel 1 count or capture		0058H		
	43	INTTM12	End of timer array unit 1 channel 2 count or capture		005AH		
	44	INTSRE2	UART2 reception communication error occurrence		005CH		

 Table 17-1. Interrupt Source List (2/3)

- Notes 1. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 47 indicates the lowest priority.
 - 2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 17-1.

(2) When detecting level of input voltage from external input pin (EXLVI)

- When starting operation
 - <1> Mask the LVI interrupt (LVIMK = 1).
 - <2> Set bit 2 (LVISEL) of the low-voltage detection register (LVIM) to 1 (detects level of input voltage from external input pin (EXLVI)).
 - <3> Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).
 - <4> Use software to wait for the following periods of time (Total 210 μ s).
 - Operation stabilization time (10 µs (MAX.))
 - Minimum pulse width (200 µs (MIN.))
 - <5> Wait until it is checked that (input voltage from external input pin (EXLVI) ≥ detection voltage (V_{EXLVI} = 1.21 V (TYP.))) by bit 0 (LVIF) of LVIM.
 - <6> Set bit 1 (LVIMD) of LVIM to 1 (generates reset signal when the level is detected).

Figure 22-7 shows the timing of the internal reset signal generated by the low-voltage detector. The numbers in this timing chart correspond to <1> to <6> above.

- Cautions 1. Be sure to execute <1>. When LVIMK = 0, an interrupt may occur immediately after the processing in <3>.
 - 2. If input voltage from external input pin (EXLVI) \geq detection voltage (V_{EXLVI} = 1.21 V (TYP.)) when LVIMD is set to 1, an internal reset signal is not generated.
 - 3. Input voltage from external input pin (EXLVI) must be EXLVI < VDD.
- When stopping operation

Be sure to clear (0) LVIMD and then LVION by using a 1-bit memory manipulation instruction.

The dedicated flash memory programmer generates the following signals for the 78K0R/Kx3-C. See the manual of PG-FP5, FL-PR5, or MINICUBE2 for details.

	Dedicated	I Flash Memory Programmer	78K0R/KF3-C	78K0R/KG3-C	Connection
Signal Name	I/O	Pin Function	Pin Name	Pin Name	
FLMD0	Output	Mode signal	FLMD0	FLMD0	O
VDD	I/O	VDD voltage generation/power monitoring	Vdd, EVdd, AVref	Vdd, EVddo, EVdd1, AVref	0
GND	-	Ground	Vss, EVss, AVss	Vss, EVsso, EVss1, AVss	0
CLK	Output	Clock output	_	_	×
/RESET	Output	Reset signal	RESET	RESET	O
SI/RxD ^{Notes 1, 2}	Input	Receive signal	TOOL0	TOOL0	O
SO/TxD Note 2	Output	Transmit signal			
SCK	Output	Transfer clock	_	_	×

Notes 1. This pin is not required to be connected when using PG-FP5 or FL-PR5.

2. Connect SI/RxD or SO/TxD when using QB-MINI2.

Remarks 1. \bigcirc : Be sure to connect the pin.

 \times : The pin does not have to be connected.

 For the pins not to be connected the dedicated flash memory programmer, it is recommended to perform the processing described under the "Recommended Connection of Unused Pins" shown in Table 2-3. Connection of Unused Pins (78K0R/KF3-C) or Table 2-3. Connection of Unused Pins (78K0R/KG3-C).

DC Characteristics (6/12)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD0} = \text{EV}_{DD1} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{AV}_{REF} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = \text{AV}_{SS} = 0 \text{ V}$

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90, P91, P110, P111, P120, P131, P140 to P145, FLMD0, RESET	VI = VDD				1	μA
	Ілн2	P20 to P27, P150 to P157	VI = VSS, AVREF = VI	סכ			1	μA
	Ілнз	P121 to P124 (X1, X2, XT1, XT2)	Vi = Vdd	In input port			1	μA
				In resonator connection			10	μA
	Ілн4	P62	CECIO mo VI = 3.63 V				1.8	μA
Input leakage current, low	Iuli	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90, P91, P110, P111, P120, P131, P140 to P145, FLMD0, RESET	Vi = Vss				-1	μA
	ILIL2	P20 to P27, P150 to P157	$V_{I} = V_{SS},$ $AV_{REF} = V_{DD}$ $V_{I} = V_{SS}$ In input port In resonator connection $CECIO mode$ $V_{I} = V_{SS}$				-1	μA
	Іліцэ	P121 to P124 (X1, X2, XT1, XT2)					-1 -10	μΑ μΑ
	ILIL4	P62					-1.8	μA

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.
 - 2. The presence or absence of the following port pins depends on the product.
 P90: 78K0R/KF3-C only
 P00, P01, P56, P57, P80 to P87, P131, P141, P145, P154 to P157: 78K0R/KG3-C only
 - 3. For the 78K0R/KF3-C, read EVDD0 and EVDD1 as EVDD and EVSS0 and EVSS1 as EVSS.

