E·X Renesas Electronics America Inc - <u>UPD78F1849AGC-UEU-AX Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	CSI, I²C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	80
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1849agc-ueu-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

12.5.15 Cautions	565
12.5.16 Communication operations	566
12.5.17 Timing of I ² C interrupt request (INTIICA) occurrence	574
12.6 Timing Charts	595
CHAPTER 13 CEC TRANSMISSION/RECEPTION CIRCUIT	610
13.1 Functions of CEC Transmission/Reception Circuit	610
13.2 Configuration of CEC Transmission/Reception Circuit	613
13.3 Term Description	614
13.4 Registers Controlling Transmission/Reception Circuit	615
13.5 Start Bit and Data Bit Registers	
13.5.1 Specifying low-level width and bit width of CEC transmission data	632
13.5.2 Checking CEC reception data timing	634
13.5.3 Determining CEC reception data logic (1 or 0)	637
13.5.4 Specifying bit width for detecting errors, signal-free time, and bus locking	638
13.6 Operation of CEC Transmission/Reception Circuit	639
13.6.1 CEC transmission/reception data format	639
13.6.2 Communication types	639
13.6.3 Bit timing	640
13.6.4 Header/data block	641
13.6.5 EOM (End of Message)	641
13.6.6 ACK (Acknowledge)	642
13.7 CEC Communication Functions	643
13.7.1 Communication bit width adjustment function	643
13.7.2 Receive bit timing check function	644
13.7.3 Initial CEC communication settings	645
13.7.4 CEC transmission	648
13.7.5 CEC reception	651
13.7.6 Error detection function	658
13.7.7 Clearing error flag	
13.7.8 Signal-free time	
CHAPTER 14 REMOTE CONTROLLER RECEIVER	670
14.1 Remote Controller Receiver Functions	
14.2 Remote Controller Receiver Configuration	671
14.3 Registers to Control Remote Controller Receiver	
14.4 Compare Registers of Remote Controller Receiver	
14.5 Operation of Remote Controller Receiver	
14.5.1 Format of type A reception mode	
14.5.2 Operation flow of type A reception mode	
14.5.3 Format of type B reception mode	
14.5.4 Operation flow of type B reception mode	
14.5.5 Format of type C reception mode	710

Address	Special Function Register (SFR) Name	Syn	nbol	R/W	Manipu	ulable Bit	Range	After Reset
					1-bit	8-bit	16-bit	
F01C0H	Timer counter register 10	TCR10		R	_	_	\checkmark	FFFFH
F01C1H								
F01C2H	Timer counter register 11	TCR11		R	_	_	\checkmark	FFFFH
F01C3H								
F01C4H	Timer counter register 12	TCR12		R	-	-	\checkmark	FFFFH
F01C5H								
F01C8H	Timer mode register 10	TMR10		R/W	_	_	\checkmark	0000H
F01C9H								
F01CAH	Timer mode register 11	TMR11		R/W	_	_	\checkmark	0000H
F01CBH								
F01CCH	Timer mode register 12	TMR12		R/W	_	_	\checkmark	0000H
F01CDH								
F01D0H	Timer status register 10	TSR10L	TSR10	R	_	\checkmark	\checkmark	0000H
F01D1H		_			_	_		
F01D2H	Timer status register 11	TSR11L	TSR11	R	_	\checkmark	\checkmark	0000H
F01D3H		_			_	_		
F01D4H	Timer status register 12	TSR12L	TSR12	R	_	\checkmark	\checkmark	0000H
F01D5H		_			_	_		
F01D8H	Timer channel enable status register 1	TE1L	TE1	R	\checkmark		\checkmark	0000H
F01D9H		_			-	-		
F01DAH	Timer channel start register 1	TS1L	TS1	R/W	\checkmark	\checkmark	\checkmark	0000H
F01DBH		-			-	-		
F01DCH	Timer channel stop register 1	TT1L	TT1	R/W	\checkmark	\checkmark	\checkmark	0000H
F01DDH		_			_	-		
F01DEH	Timer clock select register 1	TPS1L	TPS1	R/W	-	V	V	0000H
F01DFH		-			-	-		
F01E0H	Timer output register 1	TO1L	TO1	R/W	_	V	N	0000H
F01E1H		-		-			1	
F01E2H	l imer output enable register 1	TOE1L	TOE1	R/W	N	N	N	0000H
F01E3H	The second section of the set		TOLA		_		-1	000011
F01E4H	limer output level register 1	TOLIL	TOLI	R/W		N	Ň	0000H
	Timer output mode register 1		TOM1			-	2	0000
			TONT	U/ AA	_	• _	v	00000
E0230H	IICA control register 0			R/W	N	V		00H
F0231H			,	R/W	N	۰ ۷		00H
F0232H	IICA low-level width setting register			R/W	_	1	_	FEH
E022211	IICA high lovel width setting register					1		БЕЛ
F023311	Slave address register	SVA		R/W		۰ ۷		00H
F0300H	CEC local address setting register	CADR		R/W			2	0000
F0302H	CEC control register 1	CECCTI	1	R/M	V	V	_	00001
F0304H	CEC transmission start bit width satting register	STATE		B/M	· ·	· _	N	
F0306H	CEC transmission start bit low width setting register	STATI		B/M	_	_	v V	
FOSORH	CEC transmission logical 0 low width setting register			B/M	_	_	1	
F0304H	CEC transmission logical 1 low width setting register			B/W	_	_	1	0000H

Table 3-6.	Extended	SFR	(2nd	SFR)	List	(5/7))
------------	----------	-----	------	------	------	-------	---

Figure 4-46. Block Diagram of P141 and P145

- P14: Port register 14
- PU14: Pull-up resistor option register 14
- PM14: Port mode register 14
- RD: Read signal
- WR××: Write signal

Caution 3. Some operations can also be executed while VDD < 2.7 V (For details, figures of CHAPTER 29 ELECTRICAL SPECIFICATIONS AC Characteristics (1) Basic operation.

Remark While the microcontroller is operating, a clock that is not used as the CPU clock can be stopped via software settings. The internal high-speed oscillation clock and high-speed system clock can be stopped by executing the STOP instruction (see (4) in 5.6.1 Example of controlling high-speed system clock, (3) in 5.6.2 Example of controlling internal high-speed oscillation clock, and (3) in 5.6.3 Example of controlling subsystem clock).

Figure 5-15. Clock Generator Operation When Power Supply Voltage Is Turned On (When LVI Default Start Function Stopped Is Set (Option Byte: LVIOFF = 1) and Changing to 20 MHz Internal High-Speed Oscillation Clock)

- <1> When the power is turned on, an internal reset signal is generated by the power-on-clear (POC) circuit.
- <2> When the power supply voltage exceeds 1.61 V (TYP.), the reset is released and the internal high-speed oscillator automatically starts oscillation.
- <3> The CPU starts operation on the internal high-speed oscillation clock after a reset processing such as waiting for the voltage of the power supply or regulator to stabilize has been performed after reset release.
- <4> Set DSCON = 1 by software.
- <5> Switch the clock by setting SELDSC = 1 by software after waiting for 100 μ s.
- **Note** The internal reset processing time includes the oscillation accuracy stabilization time of the internal high-speed oscillation clock.
- Cautions 1. To use the 20 MHz internal high-speed oscillation clock, use bits 2 and 1 (FRQSEL2 and FRQSEL1) of the option byte (000C1H) to set the frequency to 20 MHz in advance (for details, see CHAPTER 24 OPTION BYTE).

6.8.3 Operation as multiple PWM output function

By extending the PWM function and using two or more slave channels, many PWM output signals can be produced. For example, when using two slave channels, the period and duty factor of an output pulse can be calculated by the following expressions.

```
Pulse period = {Set value of TDRmn (master) + 1} × Count clock period
Duty factor 1 [%] = {Set value of TDRmp (slave 1)}/{Set value of TDRmn (master) + 1} × 100
Duty factor 2 [%] = {Set value of TDRmq (slave 2)}/{Set value of TDRmn (master) + 1} × 100
```

Remark Although the duty factor exceeds 100% if the set value of TDRmp (slave 1) > {set value of TDRmn (master) + 1} or if the {set value of TDRmq (slave 2)} > {set value of TDRmn (master) + 1}, it is summarized into 100% output.

TCRmn of the master channel operates in the interval timer mode and counts the periods.

TCRmp of the slave channel 1 operates in one-count mode, counts the duty factor, and outputs a PWM waveform from the TOmp pin. TCRmp loads the value of TDRmp to TCRmp, using INTTMmn of the master channel as a start trigger, and start counting down. When TCRmp = 0000H, TCRmp outputs INTTMmp and stops counting until the next start trigger (INTTMmn of the master channel) has been input. The output level of TOmp becomes active one count clock after generation of INTTMmn from the master channel, and inactive when TCRmp = 0000H.

In the same way as TCRmp of the slave channel 1, TCRmq of the slave channel 2 operates in one-count mode, counts the duty factor, and outputs a PWM waveform from the TOmq pin. TCRmq loads the value of TDRmq to TCRmq, using INTTMmn of the master channel as a start trigger, and starts counting down. When TCRmq = 0000H, TCRmq outputs INTTMmq and stops counting until the next start trigger (INTTMmn of the master channel) has been input. The output level of TOmq becomes active one count clock after generation of INTTMmn from the master channel, and inactive when TCRmq = 0000H.

When channel 0 is used as the master channel as above, as for the timer array unit 0, up to seven types of PWM signals can be generated, while as for the timer array unit 1, up to two types of PWM signals can be generated.

Caution To rewrite both TDRmn of the master channel and TDRmp of the slave channel 1, write access is necessary at least twice. Since the values of TDRmn and TDRmp are loaded to TCRmn and TCRmp after INTTMmn is generated from the master channel, if rewriting is performed separately before and after generation of INTTMmn from the master channel, the TOmp pin cannot output the expected waveform. To rewrite both TDRmn of the master and TDRmp of the slave, be sure to rewrite both the registers immediately after INTTMmn is generated from the master channel (This applies also to TDRmq of the slave channel 2).

```
Remark m: Unit number, n: Channel number, p: Slave channel number 1 (n+1), q: Slave channel number 2 (n+2)

When m = 0

n = 0, 2, 4

n  (where p and q are a consecutive integer greater than n)

When <math>m = 1

n = 0
```

n (where p and q are a consecutive integer greater than n (p = 1, q = 2))

CHAPTER 7 REAL-TIME COUNTER

7.1 Functions of Real-Time Counter

The real-time counter has the following features.

- Having counters of year, month, week, day, hour, minute, and second, and can count up to 99 years.
- Constant-period interrupt function (period: 1 month to 0.5 seconds)
- Alarm interrupt function (alarm: week, hour, minute)
- Interval interrupt function
- Pin output function of 1 Hz
- Pin output function of 512 Hz or 16.384 kHz or 32.768 kHz

7.2 Configuration of Real-Time Counter

The real-time counter includes the following hardware.

Table 7-1. Configuration of Real-Time Counter

Item	Configuration
Control registers	Peripheral enable register 0 (PER0)
	Real-time counter control register 0 (RTCC0)
	Real-time counter control register 1 (RTCC1)
	Real-time counter control register 2 (RTCC2)
	Sub-count register (RSUBC)
	Second count register (SEC)
	Minute count register (MIN)
	Hour count register (HOUR)
	Day count register (DAY)
	Week count register (WEEK)
	Month count register (MONTH)
	Year count register (YEAR)
	Watch error correction register (SUBCUD)
	Alarm minute register (ALARMWM)
	Alarm hour register (ALARMWH)
	Alarm week register (ALARMWW)
	Port mode registers 1 and 3 (PM1, PM3)
	Port registers 1 and 3 (P1, P3)

7.3 Registers Controlling Real-Time Counter

The real-time counter is controlled by the following 16 registers.

- Peripheral enable register 0 (PER0)
- Real-time counter control register 0 (RTCC0)
- Real-time counter control register 1 (RTCC1)
- Real-time counter control register 2 (RTCC2)
- Sub-count register (RSUBC)
- Second count register (SEC)
- Minute count register (MIN)
- Hour count register (HOUR)
- Day count register (DAY)
- Week count register (WEEK)
- Month count register (MONTH)
- Year count register (YEAR)
- Watch error correction register (SUBCUD)
- Alarm minute register (ALARMWM)
- Alarm hour register (ALARMWH)
- Alarm week register (ALARMWW)
- Port mode registers 1, 3 (PM1, PM3)
- Port registers 1, 3 (P1, P3)

Figure 7-22. Procedure for Writing Real-Time Counter

Note Be sure to confirm that RWST = 0 before setting STOP mode.

Caution Complete the series of operations of setting RWAIT to 1 to clearing RWAIT to 0 within 1 second.

Remark SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR may be written in any sequence. All the registers do not have to be set and only some registers may be written.

(3) Processing flow (in single-transmission/reception mode)

Figure 11-65. Timing Chart of Slave Transmission/Reception (in Single-Transmission/Reception Mode) (Type 1: DAPmn = 0, CKPmn = 0)

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2), mn = 00 to 02, 10, p: CSI number (p = 00, 01, 10, 20)

SMRmn Register	nn SPSm Register Operation Clock (fмск) er							ock (fмск) ^{Note 1}		
CKSmn	PRS	PRS	PRS	PRS	PRS	PRS	PRS	PRS		fclk = 20 MHz
	m13	m12	m11	m10	m03	m02	m01	m00		
0	х	х	х	х	0	0	0	0	fclk	20 MHz
	х	х	х	х	0	0	0	1	fclк/2	10 MHz
	х	х	х	Х	0	0	1	0	fclк/2 ²	5 MHz
	х	х	х	Х	0	0	1	1	fclk/2³	2.5 MHz
	х	х	х	х	0	1	0	0	fc∟ĸ/2⁴	1.25 MHz
	х	х	х	х	0	1	0	1	fc∟ĸ/2⁵	625 kHz
	х	х	х	Х	0	1	1	0	fclk/2 ⁶	313 kHz
	х	х	х	х	0	1	1	1	fclк/2 ⁷	156 kHz
	х	х	х	х	1	0	0	0	fclk/2 ⁸	78.1 kHz
	Х	Х	Х	Х	1	0	0	1	fclк/2 ⁹	39.1 kHz
	Х	Х	Х	Х	1	0	1	0	fclk/2 ¹⁰	19.5 kHz
	Х	Х	Х	Х	1	0	1	1	fclk/2 ¹¹	9.77 kHz
	Х	х	х	Х	1	1	1	1	INTTM02 if m :	= 0 ^{Note 2} ,
									Setting prohibit	ed if m = 1
1	0	0	0	0	Х	Х	Х	Х	fclk	20 MHz
	0	0	0	1	Х	Х	Х	Х	fclк/2	10 MHz
	0	0	1	0	х	х	Х	х	fclк/2 ²	5 MHz
	0	0	1	1	х	х	х	х	fclk/2 ³	2.5 MHz
	0	1	0	0	х	х	Х	х	fc∟ĸ/2⁴	1.25 MHz
	0	1	0	1	х	х	х	х	fс∟к/2⁵	625 kHz
	0	1	1	0	х	х	х	х	fclĸ/2 ⁶	313 kHz
	0	1	1	1	Х	х	Х	Х	fclk/2 ⁷	156 kHz
	1	0	0	0	х	х	х	х	fclk/2 ⁸	78.1 kHz
	1	0	0	1	х	х	х	х	fclк/2 ⁹	39.1 kHz
	1	0	1	0	х	х	х	х	fськ/2 ¹⁰	19.5 kHz
	1	0	1	1	х	х	х	х	fськ/2 ¹¹	9.77 kHz
	1	1	1	1	х	х	х	х	INTTM02 if m :	= 0 ^{Note 2} ,
									Setting prohibit	ed if m = 1
	Other than above									ed

Table 11-2. Selection of Operation Clock

- **Notes 1.** When changing the clock selected for f_{CLK} (by changing the system clock control register (CKC) value), do so after having stopped (STm = 000FH) the operation of the serial array unit (SAU). When selecting INTTM02 for the operation clock, also stop the timer array unit (TAU0) (TT0 = 00FFH).
 - 2. SAU0 can be used at the fixed division ratio of the subsystem clock regardless of the fcLk frequency by setting TAU0 and SAU0 as follows.

<TAU0> Select fsub/4 as the input clock of channel 2 of TAU0. (Set TIS02 to 1.)

<SAU0> Select INTTM02 by using the SPS0 register.

However, when changing f_{CLK} , SAU0 and TAU0 must be stopped as described in Note 1 above.

Remarks 1. X: Don't care

2. m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2), mn = 00 to 02, 10

(3) Slave operation

The processing procedure of the slave operation is as follows.

Basically, the slave operation is event-driven. Therefore, processing by the INTIICA interrupt (processing that must substantially change the operation status such as detection of a stop condition during communication) is necessary.

In the following explanation, it is assumed that the extension code is not supported for data communication. It is also assumed that the INTIICA interrupt servicing only performs status transition processing, and that actual data communication is performed by the main processing.

Therefore, data communication processing is performed by preparing the following three flags and passing them to the main processing instead of INTIICA.

<1> Communication mode flag

This flag indicates the following two communication statuses.

- Clear mode: Status in which data communication is not performed
- Communication mode: Status in which data communication is performed (from valid address detection to stop condition detection, no detection of ACK from master, address mismatch)

<2> Ready flag

This flag indicates that data communication is enabled. Its function is the same as the INTIICA interrupt for ordinary data communication. This flag is set by interrupt servicing and cleared by the main processing. Clear this flag by interrupt servicing when communication is started. However, the ready flag is not set by interrupt servicing when the first data is transmitted. Therefore, the first data is transmitted without the flag being cleared (an address match is interpreted as a request for the next data).

<3> Communication direction flag

This flag indicates the direction of communication. Its value is the same as the TRC bit.

(4) CEC reception start bit maximum bit width setting register (STATBH)

STATBH sets the maximum value of the bit width of the start bit during a reception. STATBH can be set by a 16-bit memory manipulation instruction and rewritten only when CECE = 0. Reset signal generation clears this register to 0000H.

Figure 13-26. Format of CEC Reception Start Bit Maximum Bit Width Setting Register (STATBH)

Address:	F0316H	Afte	er reset	: 0000	H R	W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
STATBH	0	0	0	0	0	0	0			S	TATBH	l8 to S⁻	ГАТВН	0		

Remark Bit width = (Set values of STATBH8 to STATBH0 + 1) × Clock cycle of fcec

(5) CEC reception logical 0 minimum low width setting register (LGC0LL)

LGC0LL is a 9-bit register that sets the minimum value of the low-level width of logical 0 during a reception. LGC0LL can be set by a 16-bit memory manipulation instruction and rewritten only when CECE = 0. Reset signal generation clears this register to 0000H.

Figure 13-27. Format of CEC Reception Logical 0 Minimum Low Width Setting Register (LGC0LL)

Address:	F0318H	Afte	er reset	: 0000	H R	W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LGC0LL	0	0	0	0	0	0	0			L	.GC0LL	_8 to L0	GCOLLO)		

Remark Low-level width = (Set values of LGC0LL8 to LGC0LL0 + 1) × Clock cycle of fcec

(6) CEC reception logical 0 maximum low width setting register (LGC0LH)

LGC0LH is a 9-bit register that sets the maximum value of the low-level width of logical 0 during a reception. LGC0LH can be set by a 16-bit memory manipulation instruction and rewritten only when CECE = 0. Reset signal generation clears this register to 0000H.

Figure 13-28. Format of CEC Reception Logical 0 Maximum Low Width Setting Register (LGC0LH)

Address:	F031AH	Aft	er rese	t: 0000	DH R	/W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LGC0LH	0	0	0	0	0	0	0			L	GC0LH	18 to LO	GCOLH	0		
_															-	

Remark Low-level width = (Set values of LGC0LH8 to LGC0LH0 + 1) \times Clock cycle of fcec

(10) CEC reception data bit maximum bit width setting register (DATBH)

DATBH is a 9-bit register that sets the maximum value of the bit width of the data bit during a reception. DATBH can be set by a 16-bit memory manipulation instruction and rewritten only when CECE = 0. Reset signal generation clears this register to 0000H.

Figure 13-32. Format of CEC Reception Data Bit Maximum Bit Width Setting Register (DATBH)

Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DATBH 0 0 0 0 0 0 0 DATBH8 to DATBH0 DATBH0	Address:	F0322H	Afte	er reset	t: 0000	H R	/W										
DATBH 0 0 0 0 0 0 0 DATBH8 to DATBH0	Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DATBH	0	0	0	0	0	0	0				DATBH	8 to D	ATBH0			

Remark Bit width = (Set values of DATBH8 to DATBH0 + 1) \times Clock cycle of fcec

13.5.3 Determining CEC reception data logic (1 or 0)

The timing at which receive data is judged to be 1 or 0 is set by the following register.

(1) CEC reception data sampling time setting register (NOMT)

NOMT is a 9-bit register that determines the sampling time of data during a reception. NOMT can be set by a 16-bit memory manipulation instruction and rewritten only when CECE = 0. Reset signal generation clears this register to 0000H.

Figure 13-33. Format of CEC Reception Data Sampling Time Setting Register (NOMT)

Address:	F030EH	l Aft	er rese	t: 000	OH R	R/W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NOMT	0	0	0	0	0	0	0	0 NOMT8 to NOMT0								
Re	mark	Sam	pling t	ime =	(Set v	alues	of NO	MT8 to	NOM	T0 + 1) × C	lock cy	ycle of	fcec		

Set this register within a period of LGC1LH < NOMT < LGC0LL.

(9) Remote controller receive DH1S compare register m (RMDH1Sm) (Type A, B, or C reception mode only)
 This register is used to detect the high level of remote controller data 1 (short side).

 RMDH1Sm is set with an 8-bit memory manipulation instruction.
 Reset signal generation sets RMDH1Sm to 00H.

Figure 14-22. Format of Remote Controller Receive DH1S Compare Register m (RMDH1Sm)

Address: F03	3AH, F034CH	After reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
RMDH1Sm								

Cautions 1. Write this register while RMENm = 0.

2. This register is shared with the lower eight bits of the RMDB1Sm register for cycle detection (type B1/type C1). If the RMBDm bit of the RMCN2m register is 0, this register is valid as the RMDH1Sm register. If the RMBDm bit is 1, this register is used as the lower eight bits of RMDB1Sm.

Remark m = 02, 13

(10) Remote controller receive DH1L compare register m (RMDH1Lm) (Type A, B, or C reception mode only) This register is used to detect the high level of remote controller data 1 (long side). RMDH1Lm is set with an 8-bit memory manipulation instruction.
Reserve a standard control and a st

Reset signal generation sets RMDH1Lm to 00H.

Figure 14-23. Format of Remote Controller Receive DH1L Compare Register m (RMDH1Lm)

Address: F033BH, F034DH		After reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
RMDH1Lm								

Cautions 1. Write this register while RMENm = 0.

2. This register is shared with the higher eight bits of the RMDB1Sm register for cycle detection (type B1/type C1). If the RMBDm bit of the RMCN2m register is 0, this register is valid as the RMDH1Lm register. If the RMBDm bit is 1, this register is used as the higher eight bits of RMDB1Sm.

Remark m = 02, 13

(3) Multiplication/division data register C (MDCL, MDCH)

The MDCH and MDCL registers store remainder value of the operation result in the division mode. They are not used in the multiplication mode.

MDCH and MDCL can be read by a 16-bit manipulation instruction.

Reset signal generation clears these registers to 0000H.

Figure 15-4. Format of Multiplication/Division Data Register C (MDCH, MDCL)

Caution The MDCH and MDCL values read during division operation processing (while the multiplication/division control register (MDUC) is 81H) will not be guaranteed.

Table 15-4. Functions of MDCH and MDCL During Operation Execution

DIVMODE	Operation Mode	Setting	Operation Result
0	Multiplication mode	_	_
1	Division mode	_	MDCH: Remainder (higher 16 bits)
			MDCL: Remainder (lower 16 bits)

Remark DIVMODE: Bit 7 of the multiplication/division control register (MDUC)

The register configuration differs between when multiplication is executed and when division is executed, as follows.

- Register configuration during multiplication

 Multiplier A>
 Multiplier B>
 Product>

 MDAL (bits 15 to 0) × MDAH (bits 15 to 0) = [MDBH (bits 15 to 0), MDBL (bits 15 to 0)]
- Register configuration during division

<Dividend> <Divisor>
[MDAH (bits 15 to 0), MDAL (bits 15 to 0)] + [MDBH (bits 15 to 0), MDBL (bits 15 to 0)] =
 <Quotient> <Remainder>
[MDAH (bits 15 to 0), MDAL (bits 15 to 0)] … [MDCH (bits 15 to 0), MDCL (bits 15 to 0)]

15.4 Operations of Multiplier/Divider

15.4.1 Multiplication operation

- · Initial setting
 - <1> Set bit 7 (DIVMODE) of the multiplication/division control register (MDUC) to 0.
 - <2> Set the multiplicand to the multiplication/division data register A (L) (MDAL).
 - <3> Set the multiplier to the multiplication/division data register A (H) (MDAH). (There is no preference in the order of executing steps <2> and <3>. Multiplication operation is automatically started when the multiplier and multiplicand are set to MDAH and MDAL, respectively.)
- During operation processing
 - <4> Wait for at least one clock. The operation will end when one clock has been issued.
- Operation end
 - <5> Read the product (lower 16 bits) from the multiplication/division data register B (L) (MDBL).
 - <6> Read the product (higher 16 bits) from the multiplication/division data register B (H) (MDBH). (There is no preference in the order of executing steps <5> and <6>.)
- Next operation
 - <7> To execute multiplication operation next, start from the "Initial setting" for multiplication operation.
 - <8> To execute division operation next, start from the "Initial setting" in **15.4.2 Division operation**.

Remark Steps <1> to <7> correspond to <1> to <7> in Figure 15-6.

3	5 5		(,
"0" <1>				
Initial value = 0		0003H	FF	FFH
Initial value = 0		0002H		FFFFH
Initial value = 0		<4> 0006H	http://www.commercedimensionality.com/	FFFE000H
	"0" <1> Initial value = 0 Initial value = 0 Initial value = 0	"0" <1> Initial value = 0 Initial value = 0	"0" <1> Initial value = 0 0003H Initial value = 0 0002H Initial value = 0 0006H <4>	= 0 $ $

Figure 15-6. Timing Diagram of Multiplication Operation (0003H × 0002H)

22.2 Configuration of Low-Voltage Detector

The block diagram of the low-voltage detector is shown in Figure 22-1.

Figure 22-1. Block Diagram of Low-Voltage Detector

22.3 Registers Controlling Low-Voltage Detector

The low-voltage detector is controlled by the following registers.

- Low-voltage detection register (LVIM)
- Low-voltage detection level select register (LVIS)
- Port mode register 12 (PM12)

(1) Low-voltage detection register (LVIM)

This register sets low-voltage detection and the operation mode. This register can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation clears this register to 00H.

(1) Basic operation (3/6)

Minimum instruction execution time during main system clock operation (FSEL = 1, RMC = 00H)

Cautions 1. To set the FSEL bit to 0, set f_{CLK} to 10 MHz or less in advance.

- 2. Only the following operations are possible in the shaded section above:
 - Using the CPU (executing instructions)

The CPU clock is a fraction of the 8 MHz internal high-speed oscillation clock ($f_{\rm H}/2^5$ to $f_{\rm H}/2$ (250 kHz to 4 MHz)).

- Reading or writing the internal RAM
- Using the low-voltage detector (LVI)
- Using the interval timer function of the timer array unit (TAU)
- Specifying the mode of the standby function (STOP or HALT mode)
- Setting up the control registers of the clock generator (except those of the clock and buzzer output controllers)

However, the clock can be switched only if the clock cycle time after the clock has been switched will be within the guaranteed operating range.

- Using the watchdog timer (WDT) (including the internal low-speed oscillator)
- **Remark** FSEL: Bit 0 of the operation speed mode control register (OSMC)
 - RMC: Regulator mode control register

78K0R/Kx3-C User's Manual: Hardware

Publication Date:	Rev.0.01	Mar 1, 2010
	Rev.2.00	Sep 30, 2011
Published by:	Renesas E	lectronics Corporation