

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08pa4vwj

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Parameter Classification

Field	Description	Values
В	Operating temperature range (°C)	 M = -40 to 125 V = -40 to 105
СС	Package designator	 WJ = 20-SOIC TJ = 20-TSSOP TG = 16-TSSOP DC = 8-DFN SC = 8-SOIC

^{1.} From June 1, 2017, (blank) and A share the same mask set version.

2.4 Example

This is an example part number:

MC9S08PA4AVWJ

3 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

5

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

 Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V_{HBM}	Electrostatic discharge voltage, human body model		+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model		+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 125°C	-100	+100	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test.
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass +100/-100 mA I-test with I_{DD} current limit at 200 mA.
 - I/O pins pass +20/-100 mA I-test with I_{DD} current limit at 1000mA.
 - Supply groups pass 1.5 Vccmax.
 - RESET pin was only tested with negative I-test due to product conditioning requirement.

General

Nonswitching electrical specifications 5.1

5.1.1 **DC** characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 2. DC characteristics

Symbol	С		Descriptions		Min	Typical ¹	Max	Unit
_	_	Oper	ating voltage	_	2.7	_	5.5	٧
V _{OH}	С	Output high voltage	All I/O pins, standard- drive strength	5 V, I _{load} = -5 mA	V _{DD} - 0.8	_	_	V
	С			3 V, I _{load} = -2.5 mA	V _{DD} - 0.8	_	_	V
	С		High current drive pins, high-drive	5 V, I _{load} = -20 mA	V _{DD} - 0.8	_	_	V
	С		strength ²	3 V, I _{load} = -10 mA	V _{DD} - 0.8	_	_	V
I _{OHT}	D	Output high	Max total I _{OH} for all	5 V	_	_	-100	mA
		current	ports	3 V	_	_	-50	
V _{OL}	С	Output low voltage	All I/O pins, standard- drive strength	5 V, I _{load} = 5 mA	_	_	0.8	V
	С		3 V, I _{load} = 2.5 mA	_	_	0.8	V	
	С		High current drive pins, high-drive	5 V, I _{load} =20 mA	_	_	0.8	V
	С		strength ²	3 V, I _{load} = 10 mA	_	_	0.8	V
I _{OLT}	D	Output low	Max total I _{OL} for all	5 V	_	_	100	mA
		current	ports	3 V	_	_	50	
V _{IH}	Р	Input high	All digital inputs	V _{DD} >4.5V	$0.70 \times V_{DD}$	_	_	V
	С	voltage		V _{DD} >2.7V	$0.75 \times V_{DD}$	_	_	
V _{IL}	Р	Input low	All digital inputs	V _{DD} >4.5V	_	_	$0.30 \times V_{DD}$	V
	С	voltage		V _{DD} >2.7V	_	_	$0.35 \times V_{DD}$	1
V _{hys}	С	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$	_	_	mV
II _{In} I	Р	Input leakage current	All input only pins (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μA

Table continues on the next page...

MC9S08PA4 Data Sheet, Rev. 8, 08/2018 **NXP Semiconductors**

Table 2. DC characteristics (continued)

Symbol	С		Descriptions		Min	Typical ¹	Max	Unit
ll _{OZ} l	Р	Hi-Z (off- state) leakage current	All input/output (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μА
ll _{OZTOT} l	С	Total leakage combined for all inputs and Hi-Z pins	All input only and I/O	$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μА
R _{PU}	Р	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTB0)	_	30.0	_	50.0	kΩ
R _{PU} ³	Р	Pullup resistors	PTB0 pin	_	30.0	_	60.0	kΩ
I _{IC}	D	DC injection	Single pin limit	$V_{IN} < V_{SS}$	-0.2	_	2	mA
		current ^{4, 5, 6}	Total MCU limit, includes sum of all stressed pins	$V_{IN} > V_{DD}$	-5	_	25	
C _{In}	С	Input cap	acitance, all pins	_	_	_	7	pF
V_{RAM}	С	RAM re	etention voltage	_	2.0	_	_	V

- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. Only PTB4, PTB5 support ultra high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTB0, are internally clamped to V_{SS} and V_{DD} .
- 5. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 3. LVD and POR Specification

Symbol	С	Desc	Description		Тур	Max	Unit
V_{POR}	D	POR re-arm	POR re-arm voltage ^{1, 2}		1.75	2.0	V
V _{LVDH}	С	threshold - hig	Falling low-voltage detect threshold - high range (LVDV = 1) ³		4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold - high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	riigir rarige	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		High range low-voltage detect/warning hysteresis		100	_	mV

Table continues on the next page...

Nonswitching electrical specifications

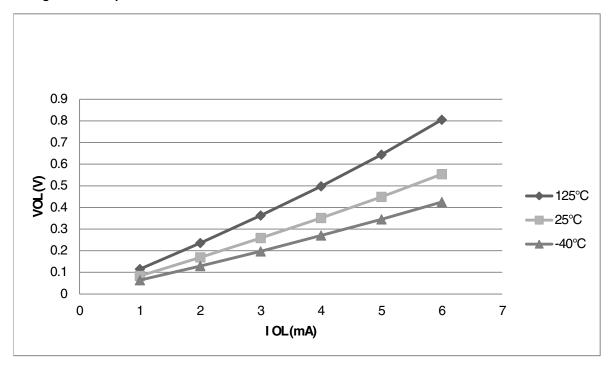


Figure 6. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 3 \text{ V}$)

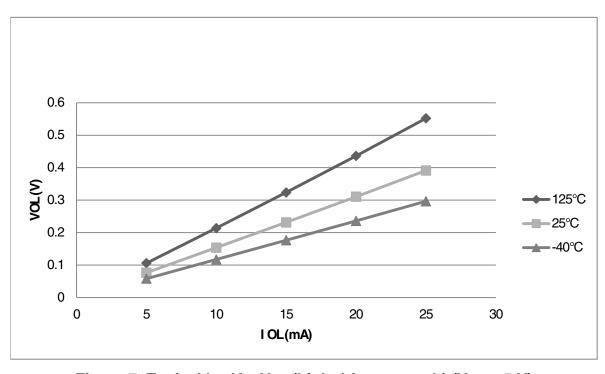


Figure 7. Typical I_{OL} Vs. V_{OL} (high drive strength) ($V_{DD} = 5$ V)

Nonswitching electrical specifications

Table 4. Supply current characteristics in operating temperature range (continued)

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit
	С			10 MHz		3.17	_	
				1 MHz		1.24	_	
4	Р	Run supply current FBE	RI _{DD}	20 MHz	5	4.39	6.59	mA
	С	mode, all modules off and gated; run from RAM		10 MHz		2.71	_	
				1 MHz		1.21	_	
	С			20 MHz	3	4.39	_	
	С			10 MHz		2.71	_	
				1 MHz		1.20	_	
5	С	Wait mode current FEI mode,	WI _{DD}	20 MHz	5	3.62	_	mA
	С	all modules on		10 MHz		2.27	_	
				1 MHz		1.11	_	
	С			20 MHz	3	3.61	_	
				10 MHz		2.31	_	
				1 MHz		1.10	_	
6	С	Stop3 mode supply current	S3I _{DD}	_	5	5.4	_	μA
	С	no clocks active (except 1 kHz LPO clock) ^{2, 3}		_	3	1.40	_	
7	С	ADC adder to stop3	_	_	5	96.0	_	μA
	С	ADLPC = 1	_	_	3	88.3	_	
		ADLSMP = 1						
		ADCO = 1						
		MODE = 10B						
		ADICLK = 11B						
8	С	LVD adder to stop3 ⁴	_	_	5	129	_	μA
	С	·			3	126	_	1

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. RTC adder cause <1 μ A I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.
- 3. ACMP adder cause <10 μ A I_{DD} increase typically.
- 4. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult NXP applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

15

5.1.3.1 EMC radiated emissions operating behaviors Table 5. EMC radiated emissions operating behaviors for 20-pin SOIC package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	7	dΒμV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	9	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	8	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	5	dΒμV	
V _{RE_IEC}	IEC level	0.15-1000	N	_	2, 3

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150
 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits Measurement of
 Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
 TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
 emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
 measured orientations in each frequency range.
- 2. $V_{DD} = 5.0 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$, $f_{OSC} = 10 \,^{\circ}\text{MHz}$ (crystal), $f_{SYS} = 20 \,^{\circ}\text{MHz}$, $f_{BUS} = 20 \,^{\circ}\text{MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

5.2 Switching specifications

5.2.1 Control timing

Table 6. Control timing

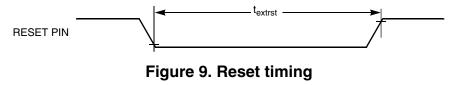

Num	С	Rating	J	Symbol	Min	Typical ¹	Max	Unit
1	Р	Bus frequency (t _{cyc} = 1/f _{Bus}))	f _{Bus}	DC	_	20	MHz
2	Р	Internal low power oscillato	r frequency	f _{LPO}	0.67	1.0	1.25	KHz
3	D	External reset pulse width ²		t _{extrst}	1.5 ×	_	_	ns
					t _{cyc}			
4	D	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes		t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after is debug force reset to enter to		t _{MSH}	100	_	_	ns
7	D	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path ⁴	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	D	Keyboard interrupt pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
9	С	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	С	standard drive strength (load = 50 pF) ⁵		t _{Fall}	_	9.5	_	ns

Table continues on the next page...

Table 6. Control timing (continued)

Num	C	Rating	Symbol	Min	Typical ¹	Max	Unit	
	С	Port rise and fall time -	_	t _{Rise}	_	5.4	_	ns
	С	high drive strength (load = 50 pF) ⁵		t _{Fall}	_	4.6	_	ns

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- 3. To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD} .
- 4. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 5. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels in operating temperature range.

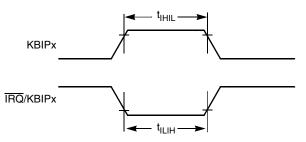


Figure 10. IRQ/KBIPx timing

5.2.2 Debug trace timing specifications

Table 7. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
t _{cyc}	Clock period	Frequency	MHz	
t _{wl}	Low pulse width	2	_	ns
t _{wh}	High pulse width	2	_	ns
t _r	Clock and data rise time	_	3	ns
t _f	Clock and data fall time	_	3	ns
t _s	Data setup	3	_	ns
t _h	Data hold	2	_	ns

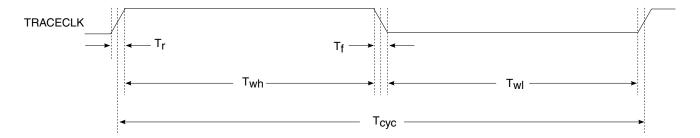


Figure 11. TRACE_CLKOUT specifications

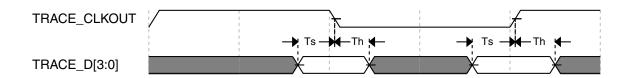


Figure 12. Trace data specifications

5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 8. FTM input timing

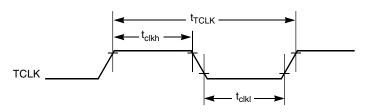


Figure 13. Timer external clock

MC9S08PA4 Data Sheet, Rev. 8, 08/2018

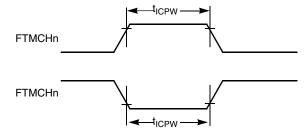


Figure 14. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Table 9. Thermal characteristics

Rating	Symbol	Value	Unit						
Operating temperature range (packaged)	T _A ¹	T _L to T _H • -40 to 125 for MC9S08PA4Mxx parts • -40 to 105 for MC9S08PA4Vxx parts	°C						
Junction temperature range	TJ	-40 to 150	°C						
	Thermal resistance single-layer board								
20-pin SOIC	$R_{\theta JA}$	82	°C/W						
20-pin TSSOP	$R_{\theta JA}$	115	°C/W						
16-pin TSSOP	$R_{\theta JA}$	130	°C/W						
8-pin DFN	$R_{\theta JA}$	170	°C/W						
8-pin SOIC	$R_{\theta JA}$	150	°C/W						
	Ther	mal resistance four-layer board	·						
20-pin SOIC	$R_{\theta JA}$	54	°C/W						
20-pin TSSOP	$R_{\theta JA}$	76	°C/W						
16-pin TSSOP	$R_{\theta JA}$	87	°C/W						
8-pin DFN	$R_{\theta JA}$	43	°C/W						
8-pin SOIC	$R_{\theta JA}$	87	°C/W						

1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta JA} x$ chip power dissipation.

Peripheral operating requirements and behaviors

External oscillator (XOSC) and ICS characteristics 6.1

Table 10. XOSC and ICS specifications in operating temperature range

Num	С	C	haracteristic	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	С	crystal or resonator	High range (RANGE = 1) FEE or FBE mode ²	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), high gain (HGO = 1), FBELP mode	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), low power (HGO = 0), FBELP mode	f _{hi}	4	_	20	MHz
2	D	Lo	pad capacitors	C1, C2		See Note ³		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ⁴	R _F	_	_	_	ΜΩ
		Low Frequency, High-Gain Mode		_	10	_	ΜΩ	
			High Frequency, Low- Power Mode		_	1	_	ΜΩ
			High Frequency, High-Gain Mode		_	1	_	ΜΩ
4	D	Series resistor -	Low-Power Mode ⁴	R _S	_	_	_	kΩ
		Low Frequency	High-Gain Mode		_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ⁴	R_S	_	_	_	kΩ
	D	Series resistor -	4 MHz		_	0	_	kΩ
	D	High Frequency,	8 MHz		_	0	_	kΩ
	D	High-Gain Mode	16 MHz		_	0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	С	time Low range = 32.768 kHz	Low range, high power		_	800	_	ms
	C	crystal; High	High range, low power	t _{CSTH}	_	3	_	ms
	С	range = 20 MHz crystal ⁵ , ⁶	High range, high power		_	1.5	_	ms
7	Т	Internal re	eference start-up time	t _{IRST}	_	20	50	μs
8	D	Square wave	FEE or FBE mode ²	f _{extal}	0.03125	_	5	MHz
	D	input clock frequency	FBELP mode		0	_	20	MHz

Table continues on the next page...

MC9S08PA4 Data Sheet, Rev. 8, 08/2018 **NXP Semiconductors** 19

Table 10. XOSC and ICS specifications in operating temperature range (continued)

Num	С	С	haracteristic	Symbol	Min	Typical ¹	Max	Unit
9	Р	Average internal reference frequency - trimmed		f _{int_t}	_	31.25	_	kHz
10	Р	DCO output fi	f _{dco_t}	16	_	20	MHz	
11	Р	Total deviation of DCO output	Over full voltage and temperature range	Δf_{dco_t}	_	_	±2.0	%f _{dco}
	С	from trimmed frequency ⁵	Over fixed voltage and temperature range of 0 to 70 °C				±1.0	
12	С	FLL acquisition time ⁵ , ⁷		t _{Acquire}	_	_	2	ms
13	С		tter of DCO output clock d over 2 ms interval) ⁸	C _{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 5. This parameter is characterized and not tested on each device.
- 6. Proper PC board layout procedures must be followed to achieve specifications.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

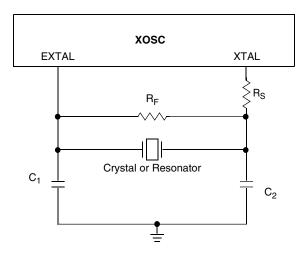


Figure 15. Typical crystal or resonator circuit

6.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

Table 11. Flash characteristics

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase in the operating temperature range	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V _{Read}	2.7	_	5.5	V
D	NVM Bus frequency	f _{NVMBUS}	1	_	25	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	_	_	17338	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	_	_	16913	t _{cyc}
D	Erase Verify EEPROM Block	t _{RD1BLK}	_	_	810	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	_	_	484	t _{cyc}
D	Erase Verify EEPROM Section	t _{DRD1SEC}	_	_	555	t _{cyc}
D	Read Once	t _{RDONCE}	_	_	450	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.12	0.29	ms
D	Program Flash (4 word)	t _{PGM4}	0.20	0.21	0.46	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Program EEPROM (1 Byte)	t _{DPGM1}	0.10	0.10	0.27	ms
D	Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.43	ms
D	Program EEPROM (3 Byte)	t _{DPGM3}	0.25	0.26	0.60	ms
D	Program EEPROM (4 Byte)	t _{DPGM4}	0.32	0.33	0.77	ms
D	Erase All Blocks	t _{ERSALL}	96.01	100.78	101.49	ms
D	Erase Flash Block	t _{ERSBLK}	95.98	100.75	101.44	ms
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.08	ms
D	Erase EEPROM Sector	t _{DERSPG}	4.81	5.05	20.57	ms
D	Unsecure Flash	t _{UNSECU}	96.01	100.78	101.48	ms
D	Verify Backdoor Access Key	t _{VFYKEY}	_	_	464	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_	_	407	t _{cyc}
С	$\begin{array}{c} \text{FLASH Program/erase endurance } T_L \text{ to} \\ T_H \text{ in the operating temperature range} \end{array}$	n _{FLPE}	10 k	100 k	_	Cycles
С	EEPROM Program/erase endurance TL to TH in the operating temperature range	N _{FLPE}	50 k	500 k	_	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

^{1.} Minimum times are based on maximum f_{NVMOP} and maximum f_{NVMBUS}

^{2.} Typical times are based on typical f_{NVMOP} and maximum f_{NVMBUS}

^{3.} Maximum times are based on typical $f_{\mbox{\scriptsize NVMOP}}$ and typical $f_{\mbox{\scriptsize NVMBUS}}$ plus aging

^{4.} $t_{cyc} = 1 / f_{NVMBUS}$

Peripheral operating requirements and behaviors

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

6.3 Analog

6.3.1 ADC characteristics

Table 12. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V_{DDA}	2.7	_	5.5	V	_
voltage	Delta to V _{DD} (V _{DD} -V _{DDAD})	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA}) ²	ΔV_{SSA}	-100	0	+100	mV	
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz		_	_	5		
	10-bit modef_{ADCK} > 4 MHz		_	_	5		
	• f _{ADCK} < 4 MHz		_	_	10		
	8-bit mode		_	_	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

^{1.} Typical values assume V_{DDA} = 5.0 V, Temp = 25°C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

22

^{2.} DC potential difference.

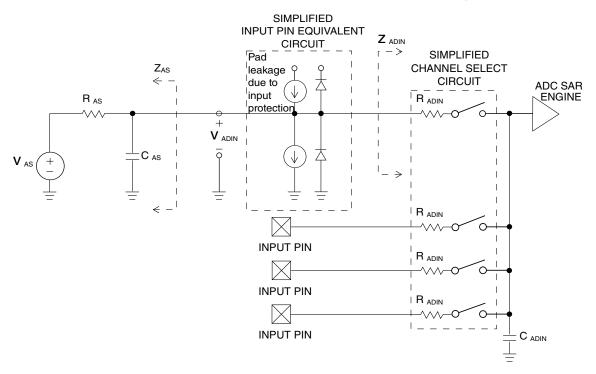


Figure 16. ADC input impedance equivalency diagram

Table 13. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		Т	I _{DDA}	_	133	_	μΑ
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	_	μΑ
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	_	μΑ
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDAD}	_	582	990	μΑ
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μΑ
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz

Table continues on the next page...

Peripheral operating requirements and behaviors

Table 13. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted Error ²	12-bit mode	Т	E _{TUE}	_	±5.0	_	LSB ³
	10-bit mode	Р		_	±1.5	±2.0	
	8-bit mode	Р		_	±0.7	±1.0	
Differential Non- Linearity	12-bit mode	Т	DNL	_	±1.0	_	LSB ³
	10-bit mode ⁴	Р		_	±0.25	±0.5	
	8-bit mode ⁴	Р		_	±0.15	±0.25	
Integral Non-Linearity	12-bit mode	Т	INL	_	±1.0	_	LSB ³
	10-bit mode	Т		_	±0.3	±0.5	
	8-bit mode	Т		_	±0.15	±0.25	
Zero-scale error ⁵	12-bit mode	С	E _{ZS}	_	±2.0	_	LSB ³
	10-bit mode	Р		_	±0.25	±1.0	
	8-bit mode	Р		_	±0.65	±1.0	
Full-scale error ⁶	12-bit mode	Т	E _{FS}	_	±2.5	_	LSB ³
	10-bit mode	Т		_	±0.5	±1.0	
	8-bit mode	Т		_	±0.5	±1.0	
Quantization error	≤12 bit modes	D	EQ	_	_	±0.5	LSB ³
Input leakage error ⁷	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40°C- 25°C	D	m	_	3.266	_	mV/°C
	25°C- 125°C			_	3.638	_	
Temp sensor voltage	25°C	D	V _{TEMP25}	_	1.396	_	V

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} Includes quantization.

^{3.} $1 LSB = (V_{REFH} - V_{REFL})/2^N$

^{4.} Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

^{5.} $V_{ADIN} = V_{SSA}$

^{6.} $V_{ADIN} = V_{DDA}$

^{7.} I_{In} = leakage current (refer to DC characteristics)

6.3.2 Analog comparator (ACMP) electricals

Table 14. Comparator electrical specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V_{DDA}	2.7	_	5.5	V
Т	Supply current (Operation mode)	I _{DDA}	_	10	20	μΑ
D	Analog input voltage	V _{AIN}	V _{SS} - 0.3	_	V_{DDA}	V
Р	Analog input offset voltage	V _{AIO}	_	_	40	mV
С	Analog comparator hysteresis (HYST=0)	V_{H}	_	15	20	mV
С	Analog comparator hysteresis (HYST=1)	V _H	_	20	30	mV
Т	Supply current (Off mode)	I _{DDAOFF}	_	60	_	nA
С	Propagation Delay	t _D	_	0.4	1	μs

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to nxp.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
8-pin DFN	98ASA00448D
8-pin SOIC	98ASB42564B
16-pin TSSOP	98ASH70247A
20-pin SOIC	98ASB42343B

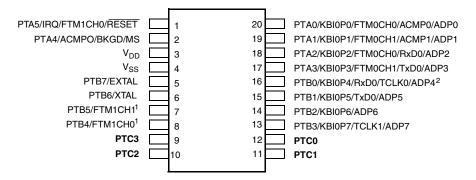
8 Pinout

8.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

Table 15. Pin availability by package pin-count

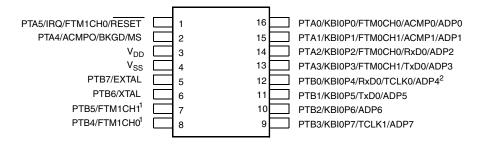
Pin Number			Lowest Priority <> Highest				
20-SOIC/ TSSOP	16-TSSOP	8-DFN/SOIC	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	1	PTA5	IRQ	FTM1CH0	_	RESET
2	2	2	PTA4	_	ACMPO	BKGD	MS
3	3	3	_	_	_	_	V_{DD}
4	4	4	_	_	_	_	V _{SS}
5	5	_	PTB7	_	_	_	EXTAL
6	6	_	PTB6	_	_	_	XTAL
7	7	_	PTB5 ¹	_	FTM1CH1	_	_
8	8	_	PTB4 ¹	_	FTM1CH0	_	_
9	_	_	PTC3	_	_	_	_
10	_	_	PTC2	_	_	_	_
11	_	_	PTC1	_	_	_	_
12	_	_	PTC0	_	_	_	_
13	9	_	PTB3	KBI0P7	_	TCLK1	ADP7
14	10	_	PTB2	KBI0P6	_	_	ADP6
15	11	_	PTB1	KBI0P5	TxD0	_	ADP5
16	12	_	PTB0 ²	KBI0P4	RxD0	TCLK0	ADP4
17	13	5	PTA3	KBI0P3	FTM0CH1	TxD0	ADP3
18	14	6	PTA2	KBI0P2	FTM0CH0	RxD0	ADP2
19	15	7	PTA1	KBI0P1	FTM0CH1	ACMP1	ADP1
20	16	8	PTA0	KBI0P0	FTM0CH0	ACMP0	ADP0


^{1.} This is a high current drive pin when operated as output.

Note

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.

8.2 Device pin assignment


^{2.} This is a true open-drain pin when operated as output.

Pins in **bold** are not available on less pin-count packages.

- 1. High source/sink current pins
- 2. True open drain pins

Figure 17. MC9S08PA4 20-pin SOIC/TSSOP packages

Pins in **bold** are not available on less pin-count packages.

- 1. High source/sink current pins
- 2. True open drain pins

Figure 18. 16-pin TSSOP package

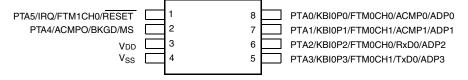


Figure 19. 8-pin DFN/SOIC packages

9 Revision history

The following table provides a revision history for this document.

Table 16. Revision history

Rev. No.	Date	Substantial Changes	
2	12/2012	Initial public release	
3	5/2014	 Renamed the low drive strength to standard drive strength. Updated V_{DIO}. Added footnote on the S3I_{DD} 	

Table continues on the next page...

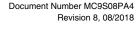
MC9S08PA4 Data Sheet, Rev. 8, 08/2018

How to Reach Us:

Home Page:

nxp.com

Web Support:


nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. All rights reserved.

© 2011-2017 NXP B.V.

