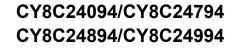


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

ĿХF

Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	POR, PWM, WDT
Number of I/O	56
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 48x14b; D/A 2x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-VFBGA
Supplier Device Package	100-VFBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24094-24bvxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

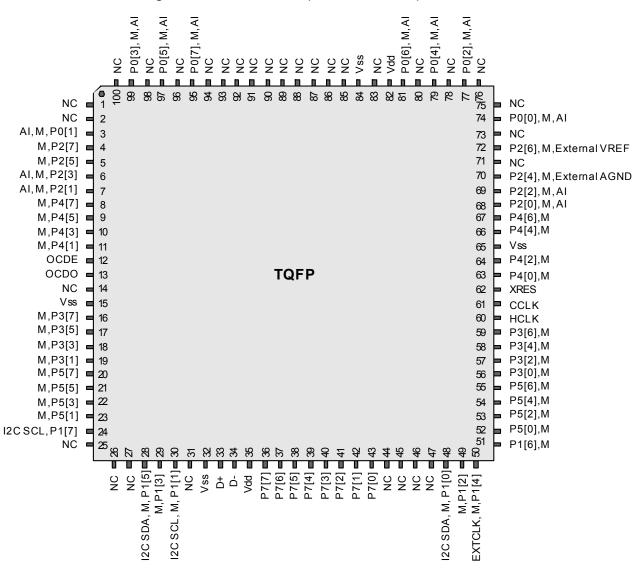
9.7 100-Pin Part Pinout (On-Chip Debug)

The 100-pin TQFP part is for the CY8C24094 OCD PSoC device.

Note This part is only used for in-circuit debugging. It is NOT available for production.

Table 8. 100-Pin Part Pinout (TQFP^[19])

Pin No.	Digital	Analog	Name	Description	Pin No.	Digital	Analog	Name	Description
1			NC	No connection. Pin must be left floating	51	I/O	М	P1[6]	
2		1	NC	No connection. Pin must be left floating	52	I/O	Μ	P5[0]	
3	I/O	I, M	P0[1]	Analog column mux input	53	I/O	М	P5[2]	
4	I/O	M	P2[7]		54	I/O	М	P5[4]	
5	I/O	Μ	P2[5]		55	I/O	Μ	P5[6]	
6	I/O	I, M	P2[3]	Direct switched capacitor block input	56	I/O	М	P3[0]	
7	I/O	I, M	P2[1]	Direct switched capacitor block input	57	I/O	М	P3[2]	
8	I/O	M	P4[7]		58	I/O	М	P3[4]	
9	I/O	M	P4[5]		59	I/O	М	P3[6]	
10	I/O	M	P4[3]		60			HCLK	OCD high speed clock output
11	I/O	Μ	P4[1]		61			CCLK	OCD CPU clock output
12			OCDE	OCD even data I/O	62	Input		XRES	Active high pin reset with internal pull-down
13			OCDO	OCD odd data output	63	I/O	М	P4[0]	
14	_		NC	No connection. Pin must be left floating	64	I/O	Μ	P4[2]	
15	Powe		V _{SS}	Ground connection	65	Powe		V _{SS}	Ground connection
16	I/O	М	P3[7]		66	I/O	М	P4[4]	
17	I/O	Μ	P3[5]		67	I/O	Μ	P4[6]	
18	I/O	Μ	P3[3]		68	I/O	I, M	P2[0]	Direct switched capacitor block input
19	I/O	Μ	P3[1]		69	I/O	I, M	P2[2]	Direct switched capacitor block input
20	I/O	М	P5[7]		70	I/O		P2[4]	External AGND input
21	I/O	М	P5[5]		71			NC	No connection. Pin must be left floating
22	I/O	Μ	P5[3]		72	I/O		P2[6]	External VREF input
23	I/O	Μ	P5[1]	0	73			NC	No connection. Pin must be left floating
24	I/O	М	P1[7]	I ² C SCL	74	I/O	I	P0[0]	Analog column mux input
25			NC	No connection. Pin must be left floating	75			NC	No connection. Pin must be left floating
26			NC	No connection. Pin must be left floating	76			NC	No connection. Pin must be left floating
27			NC	No connection. Pin must be left floating	77	I/O	I, M	P0[2]	Analog column mux input and column output
28	I/O		P1[5]	I ² C SDA	78			NC	No connection. Pin must be left floating
29	I/O		P1[3]		79	I/O	I, M	P0[4]	Analog column mux input and column output
30	I/O		P1[1]	Crystal (XTALin), I ² C SCL, ISSP SCLK ^[20]	80			NC	No connection. Pin must be left floating
31			NC	No connection. Pin must be left floating	81	I/O	I, M	P0[6]	Analog column mux input
32	Powe	er	V _{SS}	Ground connection	82	Powe	er	V _{DD}	Supply voltage
33	USB		D+		83			NC	No connection. Pin must be left floating
34	USB		D-		84	Powe	er	V _{SS}	Ground connection
35	Powe	er	V _{DD}	Supply voltage	85			NC	No connection. Pin must be left floating
36	I/O		P7[7]		86			NC	No connection. Pin must be left floating
37	I/O		P7[6]		87			NC	No connection. Pin must be left floating
38	I/O		P7[5]		88			NC	No connection. Pin must be left floating
39	I/O		P7[4]		89			NC	No connection. Pin must be left floating
40	I/O		P7[3]		90			NC	No connection. Pin must be left floating
41	I/O		P7[2]		91			NC	No connection. Pin must be left floating
42	I/O		P7[1]		92			NC	No connection. Pin must be left floating
43	I/O		P7[0]		93			NC	No connection. Pin must be left floating
44			NC	No connection. Pin must be left floating	94			NC	No connection. Pin must be left floating
45			NC	No connection. Pin must be left floating	95	I/O	I, M	P0[7]	Analog column mux input
46			NC	No connection. Pin must be left floating	96			NC	No connection. Pin must be left floating
47			NC	No connection. Pin must be left floating	97	I/O	I/O, M	P0[5]	Analog column mux input and column output
48	I/O		P1[0]	Crystal (XTALout), I2C SDA, ISSP SDATA ^[20]	98			NC	No connection. Pin must be left floating
49	I/O	1	P1[2]		99	I/O	I/O, M	P0[3]	Analog column mux input and column output
50	I/O	1	P1[4]	Optional EXTCLK	100			NC	No connection. Pin must be left floating
		- 4 -		It. O = Output. NC = No connection. Pin must be left	flooting	N4 - 4	Analog M		DOD - On Ohin Dahuman


LEGEND A = Analog, I = Input, O = Output, NC = No connection. Pin must be left floating, M = Analog Mux Input, OCD = On-Chip Debugger.

Notes

19. All V_{SS} pins should be brought out to one common GND plane.

20. These are the ISSP pins, which are not High Z at POR. See the PSoC Technical Reference Manual for details.

Figure 10. CY8C24094 OCD (Not for Production)

10.4 Register Map Bank 1 Table: Configuration Space

Name	Addr (1, Hex)	Access	Name	Addr (1, Hex)	Access	Name	Addr (1, Hex)	Access	Name	Addr (1, Hex)	Acces
PRT0DM0	00	RW	PMA0_WA	40	RW	ASC10CR0	80	RW	USBI/O_CR2	C0	RW
PRT0DM1	01	RW	PMA1 WA	41	RW	ASC10CR1	81	RW	USB_CR1	C1	#
PRT0IC0	02	RW	PMA2 WA	42	RW	ASC10CR2	82	RW		-	
PRT0IC1	03	RW	PMA3 WA	43	RW	ASC10CR3	83	RW			
PRT1DM0	04	RW	PMA4 WA	44	RW	ASD11CR0	84	RW	EP1 CR0	C4	#
PRT1DM0	04	RW	-				85	RW	-	C4 C5	#
			PMA5_WA	45	RW	ASD11CR1			EP2_CR0		
PRT1IC0	06	RW	PMA6_WA	46	RW	ASD11CR2	86	RW	EP3_CR0	C6	#
PRT1IC1	07	RW	PMA7_WA	47	RW	ASD11CR3	87	RW	EP4_CR0	C7	#
PRT2DM0	08	RW		48			88			C8	
PRT2DM1	09	RW		49			89			C9	
PRT2IC0	0A	RW		4A			8A			CA	
PRT2IC1	0B	RW		4B			8B			СВ	
PRT3DM0	0C	RW		4C			8C			CC	
PRT3DM1	0D	RW		4D			8D			CD	
PRT3IC0	0E	RW		4E			8E			CE	
PRT3IC1	0E 0F	RW		4F	-		8F			CF	-
							-				
PRT4DM0	10	RW	PMA0_RA	50	RW		90		GDI_O_IN	D0	RW
PRT4DM1	11	RW	PMA1_RA	51	RW	ASD20CR1	91	RW	GDI_E_IN	D1	RW
PRT4IC0	12	RW	PMA2_RA	52	RW	ASD20CR2	92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW	PMA3_RA	53	RW	ASD20CR3	93	RW	GDI_E_OU	D3	RW
PRT5DM0	14	RW	PMA4_RA	54	RW	ASC21CR0	94	RW		D4	
PRT5DM1	15	RW	PMA5_RA	55	RW	ASC21CR1	95	RW		D5	
PRT5IC0	16	RW	PMA6_RA	56	RW	ASC21CR2	96	RW		D6	
PRT5IC1	17	RW	PMA7_RA	57	RW	ASC21CR3	97	RW		D7	
	18			58			98		MUX CR0	D8	RW
	19			59			99		MUX CR1	D9	RW
	10 1A			5A	-		9A		MUX_CR2	DA	RW
00730140	1B	DIA		5B			9B		MUX_CR3	DB	RW
PRT7DM0	1C	RW		5C			9C			DC	
PRT7DM1	1D	RW		5D			9D		OSC_GO_EN	DD	RW
PRT7IC0	1E	RW		5E			9E		OSC_CR4	DE	RW
PRT7IC1	1F	RW		5F			9F		OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC CR2	E2	RW
	23		AMD CR0	63	RW		A3		VLT CR	E3	RW
DBB01FN	24	RW	CMP GO EN	64	RW		A4		VLT_OR	E4	R
		RW	CIMF_GO_EN	65	r.w		A4 A5			E5	ĸ
DBB01IN	25				DIA						
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B			6B			AB		ECO TR	EB	W
DCB03FN	2C	RW	TMP DR0	6C	RW		AC		MUX CR4	EC	RW
DCB03IN	2D	RW	TMP DR1	6D	RW	1	AD		MUX CR5	ED	RW
DCB03OU	2E	RW			RW	1					
	2E 2F	1.44	TMP_DR2	6E 6F	RW		AE			EE	-
		ļ	TMP_DR3			DDIADI		DW			
	30		ACB00CR3	70	RW	RDIORI	B0	RW		F0	+
	31	ļ	ACB00CR0	71	RW	RDIOSYN	B1	RW		F1	-
	32		ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34		ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
	36		ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37	t	ACB01CR2	77	RW	1	B7		CPU F	F7	RL
	38			78		1	B8			F8	+ •••
	39			79		ł	B9		ł	F9	
		ļ				ł					
	3A	ļ		7A	ļ	I	BA			FA	-
	3B			7B		1	BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD		DAC_CR	FD	RW
					1	1	1	1		1	
	3E			7E			BE		CPU_SCR1	FE	#

11.3.4 DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

The operational amplifier is a component of both the analog continuous time PSoC blocks and the analog switched capacitor PSoC blocks. The guaranteed specifications are measured in the analog continuous time PSoC block.

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -	1.6 1.3 1.2	10 8 7.5	mV mV mV	
TCV _{OSOA}	Average input offset voltage drift	-	7.0	35.0	µV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	-	20	-	pА	Gross tested to 1 µA.
C _{INOA}	Input capacitance (Port 0 analog pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common mode voltage range Common mode voltage range (high power or high Opamp bias)	0.0 0.5	_	V _{DD} V _{DD} – 0.5	> >	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open loop gain Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	60 60 80		_ _ _	dB dB dB	
V _{OHIGHOA}	High output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	V _{DD} - 0.2 V _{DD} - 0.2 V _{DD} - 0.5		_ _ _	V V V	
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -		0.2 0.2 0.5	V V V	
ISOA	Supply current (including associated AGND buffer) Power = low, Opamp bias = low Power = low, Opamp bias = high Power = medium, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = low Power = high, Opamp bias = high		400 500 800 1200 2400 4600	800 900 1000 1600 3200 6400	μΑ μΑ μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply voltage rejection ratio	65	80	-	dB	

 Table 14. 5-V DC Operational Amplifier Specifications

Table 15. 3.3-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -	1.65 1.32 -	10 8 -	mV mV mV	Power = high, Opamp bias = high setting is not allowed for 3.3 V V _{DD} operation
TCV _{OSOA}	Average input offset voltage drift	-	7.0	35.0	μV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	20	-	pА	Gross tested to 1 µA.
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common mode voltage range	0.2	_	V _{DD} – 0.2	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open loop gain Power = low, Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low	60 60 80		- - -	dB dB dB	Specification is applicable at Low opamp bias. For high opamp bias mode (except high power, High opamp bias), minimum is 60 dB.
V _{OHIGHO} A	High output voltage swing (internal signals) Power = low, Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low	$V_{DD} - 0.2$ $V_{DD} - 0.2$ $V_{DD} - 0.2$		- - -	V V V	Power = high, Opamp bias = high setting is not allowed for 3.3 V V _{DD} operation
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low	- - -		0.2 0.2 0.2	V V V	Power = high, Opamp bias = high setting is not allowed for 3.3 V V _{DD} operation
I _{SOA}	Supply current (including associated AGND buffer) Power = low, Opamp bias = low Power = low, Opamp bias = high Power = medium, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = low Power = high, Opamp bias = high	- - - - -	400 500 800 1200 2400 -	800 900 1000 1600 3200 -	μΑ μΑ μΑ μΑ μΑ	Power = high, Opamp bias = high setting is not allowed for 3.3 V V _{DD} operation
PSRR _{OA}	Supply voltage rejection ratio	65	80	-	dB	$V_{SS} \leq V_{IN} \leq (V_{DD}-2.25) \text{ or } \\ (V_{DD}-1.25 \text{ V}) \leq V_{IN} \leq V_{DD}$

11.3.5 DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V at 25 °C and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
	Low power comparator (LPC) reference voltage range	0.2	-	V _{DD} – 1	V	
I _{SLPC}	LPC supply current	-	10	40	μA	
V _{OSLPC}	LPC voltage offset	-	2.5	30	mV	

11.3.7 DC Analog Reference Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

The guaranteed specifications for RefHI and RefLo are measured through the Analog Continuous Time PSoC blocks. The power levels for RefHi and RefLo refer to the Analog Reference Control register. AGND is measured at P2[4] in AGND bypass mode. Each Analog Continuous Time PSoC block adds a maximum of 10mV additional offset error to guaranteed AGND specifications from the local AGND buffer. Reference control power can be set to medium or high unless otherwise noted.

Note Avoid using P2[4] for digital signaling when using an analog resource that depends on the Analog Reference. Some coupling of the digital signal may appear on the AGND.

Refer- ence ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit s
0b000	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.229	V _{DD} /2 + 1.290	V _{DD} /2 + 1.346	V
		V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.038	V _{DD} /2	V _{DD} /2 + 0.040	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.356	V _{DD} /2 – 1.295	V _{DD} /2 – 1.218	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.220	V _{DD} /2 + 1.292	V _{DD} /2 + 1.348	V
		V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.036	V _{DD} /2	V _{DD} /2 + 0.036	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.357	V _{DD} /2 – 1.297	V _{DD} /2 – 1.225	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.221	V _{DD} /2 + 1.293	V _{DD} /2 + 1.351	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.036	V _{DD} /2	V _{DD} /2 + 0.036	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.357	V _{DD} /2 – 1.298	V _{DD} /2 – 1.228	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.219	V _{DD} /2 + 1.293	V _{DD} /2 + 1.353	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.037	V _{DD} /2 – 0.001	V _{DD} /2 + 0.036	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.359	V _{DD} /2 – 1.299	V _{DD} /2 – 1.229	V

Table 19. 5-V DC Analog Reference Specifications

Table 19. 5-V DC Analog Reference Specifications (continued)

Refer- ence ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit s
0b011	RefPower = high	V _{REFHI}	Ref High	3 × Bandgap	3.760	3.884	4.006	V
	Opamp bias = high	V _{AGND}	AGND	2 × Bandgap	2.522	2.593	2.669	V
		V _{REFLO}	Ref Low	Bandgap	1.252	1.299	1.342	V
	RefPower = high	V _{REFHI}	Ref High	3 × Bandgap	3.766	3.887	4.010	V
	Opamp bias = low	V _{AGND}	AGND	2 × Bandgap	2.523	2.594	2.670	V
		V _{REFLO}	Ref Low	Bandgap	1.252	1.297	1.342	V
	RefPower =	V _{REFHI}	Ref High	3 × Bandgap	3.769	3.888	4.013	V
	medium Opamp bias = high	V _{AGND}	AGND	2 × Bandgap	2.523	2.594	2.671	V
	opump blas – nigh	V _{REFLO}	Ref Low	Bandgap	1.251	1.296	1.343	V
	RefPower =	V _{REFHI}	Ref High	3 × Bandgap	3.769	3.889	4.015	V
	medium Opamp bias = low	V _{AGND}	AGND	2 × Bandgap	2.523	2.595	2.671	V
		V _{REFLO}	Ref Low	Bandgap	1.251	1.296	1.344	V
0b100	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.483 + P2[6]	2.582 + P2[6]	2.674 + P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.522	2.593	2.669	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.524 – P2[6]	2.600 – P2[6]	2.676 – P2[6]	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.490 + P2[6]	2.586 + P2[6]	2.679 + P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.523	2.594	2.669	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.523 – P2[6]	2.598 – P2[6]	2.675 – P2[6]	V
	RefPower = medium	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.493 + P2[6]	2.588 + P2[6]	2.682 +P2[6]	V
	Opamp bias = high	V _{AGND}	AGND	2 × Bandgap	2.523	2.594	2.670	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.523 – P2[6]	2.597 – P2[6]	2.675 – P2[6]	V
	RefPower = medium	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.494 + P2[6]	2.589 + P2[6]	2.685 + P2[6]	V
	Opamp bias = low	V _{AGND}	AGND	2 × Bandgap	2.523	2.595	2.671	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.522 – P2[6]	2.596 – P2[6]	2.676 – P2[6]	V

Table 20. 3.3-V DC Analog Reference Specifications (continue
--

Refer- ence ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit s
0b110	RefPower = high	V _{REFHI}	Ref High	2 × Bandgap	2.510	2.595	2.655	V
	Opamp bias = high	V _{AGND}	AGND	Bandgap	1.276	1.301	1.332	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.006	V _{SS} + 0.031	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap	2.513	2.594	2.656	V
		V _{AGND}	AGND	Bandgap	1.275	1.301	1.331	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.021	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	2 × Bandgap	2.516	2.595	2.657	V
		V _{AGND}	AGND	Bandgap	1.275	1.301	1.331	V
	Opamp bias – nigh	V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.017	V
	RefPower =	V _{REFHI}	Ref High	2 × Bandgap	2.520	2.595	2.658	V
	medium Opamp bias = low	V _{AGND}	AGND	Bandgap	1.275	1.300	1.331	V
	Opamp blas – low	V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.002	V _{SS} + 0.015	V
0b111	All power settings. Not allowed for 3.3 V.	-	-	-	-	-	_	-

11.3.8 DC Analog PSoC Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 21. DC Analog PSoC Block Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{CT}	Resistor unit value (continuous time)	-	12.2	-	kΩ	
C _{SC}	Capacitor unit value (switched capacitor)	-	80	-	fF	

11.3.9 DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V or 3.3 V at 25 °C and are for design guidance only.

11.4.8 AC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 33. 5-V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{ROB}	Rising settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high			2.5 2.5	μs μs	
t _{SOB}	Falling settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high	-		2.2 2.2	μs μs	
SR _{ROB}	Rising slew rate (20% to 80%), 1 V Step, 100 pF load Power = low Power = high	0.65 0.65		_ _	V/µs V/µs	
SR _{FOB}	Falling slew rate (80% to 20%), 1 V Step, 100 pF load Power = low Power = high	0.65 0.65	_ _	_ _	V/µs V/µs	
BW _{OBSS}	Small signal bandwidth, 20 mV _{pp} , 3 dB BW, 100 pF load Power = low Power = high	0.8 0.8	_ _	_ _	MHz MHz	
BW _{OBLS}	Large signal bandwidth, 1 V _{pp} , 3 dB BW, 100 pF load Power = low Power = high	300 300	_ _	_ _	kHz kHz	

Table 34. 3.3-V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{ROB}	Rising settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high	-	_ _	3.8 3.8	μs μs	
t _{SOB}	Falling settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high		-	2.6 2.6	μs μs	
SR _{ROB}	Rising slew rate (20% to 80%), 1 V Step, 100 pF load Power = low Power = high	0.5 0.5	_ _	_ _	V/µs V/µs	
SR _{FOB}	Falling slew rate (80% to 20%), 1 V Step, 100 pF load Power = low Power = high	0.5 0.5	_ _	_ _	V/µs V/µs	
BW _{OBSS}	Small signal bandwidth, 20 mV _{pp} , 3dB BW, 100 pF load Power = low Power = high	0.7 0.7		_ _	MHz MHz	
BW _{OBLS}	Large signal bandwidth, 1 V _{pp} , 3dB BW, 100 pF load Power = low Power = high	200 200	_ _	_ _	kHz kHz	

11.4.10 AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Symbol	Description		rd Mode	Fast Mode		Units	Notes
Symbol	Description	Min	Max	Min Max		Units	NOLES
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz	
t _{HDSTAI2C}	Hold time (repeated) start condition. After this period, the first clock pulse is generated	4.0	-	0.6	_	μs	
t _{LOWI2C}	Low period of the SCL clock	4.7	-	1.3	-	μs	
t _{HIGHI2C}	High period of the SCL clock	4.0	-	0.6	-	μs	
t _{SUSTAI2C}	Setup time for a repeated start condition		-	0.6	-	μs	
t _{HDDATI2C}	Data hold time		-	0	-	μs	
t _{SUDATI2C}	Data setup time		-	100 ^[35]	-	ns	
t _{SUSTOI2C}	Setup time for stop condition		_	0.6	-	μs	
t _{BUFI2C}	Bus free time between a stop and start condition		-	1.3	_	μs	
t _{SPI2C}	Pulse width of spikes suppressed by the input filter		-	0	50	ns	

Table 36. AC Characteristics of the I^2C SDA and SCL Pins for V_{DD}

Note

^{35.} A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement $t_{SU;DAT} \ge 250$ ns it must meet. This automatically is the case if the device does not stretch the LOW period of the SCL signal. If the device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{rmax} + t_{SU;DAT} = 1000 + 250 = 1250$ ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

11.5 Thermal Impedance

Table 37. Thermal Impedances per Package

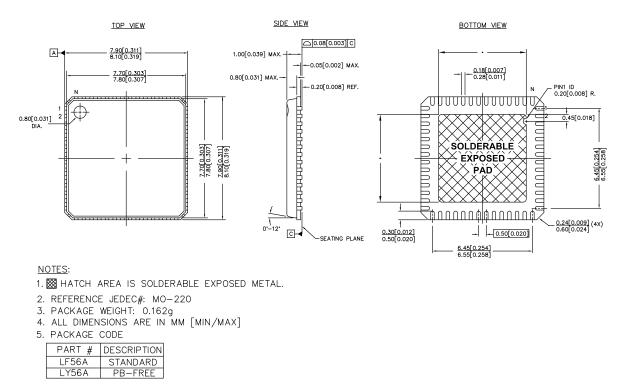
Package	Typical θ _{JA} ^[36]
56-Pin QFN ^[37]	12.93 °C/W
68-Pin QFN ^[37]	13.05 °C/W
100-Ball VFBGA	65 °C/W
100-Pin TQFP	51 °C/W

11.6 Solder Reflow Peak Specifications

Table 38 shows the solder reflow temperature limits that must not be exceeded.

Table 38. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C)	Maximum Time above T _C – 5 °C
56-Pin QFN	260 °C	30 seconds
68-Pin QFN	260 °C	30 seconds
100-Ball VFBGA	260 °C	30 seconds
100-Pin TQFP	260 °C	30 seconds


Notes

36. T_J = T_A + POWER × θ_{JA}.
 37. To achieve the thermal impedance specified for the QFN package, see the Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com.

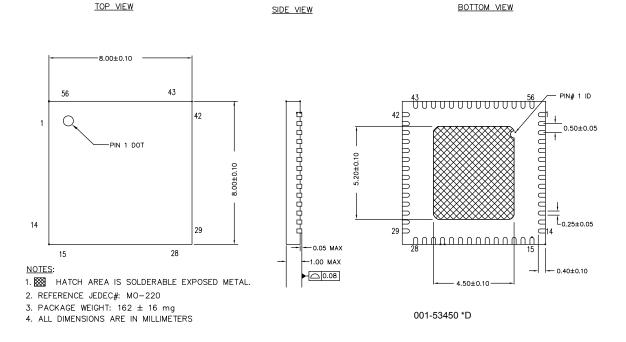
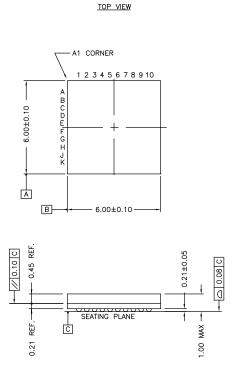
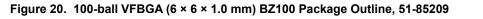
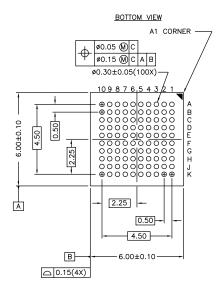
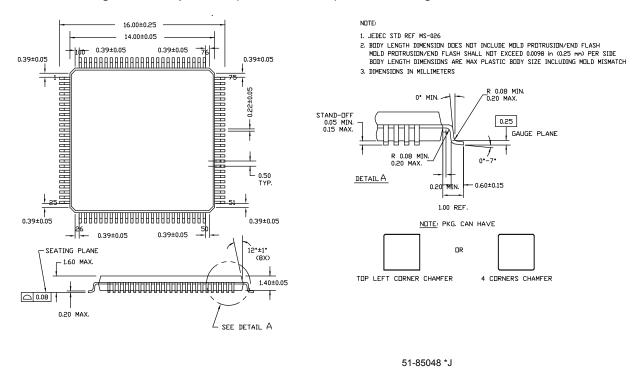


Figure 17. 56-pin QFN (8 × 8 × 1.0 mm) LF56A/LY56A 4.5 × 5.21 E-Pad (Subcon Punch Type Pkg.) Package Outline, 001-12921


001-12921 *C


Figure 18. 56-pin QFN (8 × 8 × 1.0 mm) LT56B 4.5 × 5.2 E-Pad (Sawn) Package Outline, 001-53450





REFERENCE JEDEC MO-195C PKG. WEIGHT: TBD (NEW PKG.)

51-85209 *F

Figure 21. 100-pin TQFP (14 × 14 × 1.4 mm) A100SA Package Outline, 51-85048

Important Note

- For information on the preferred dimensions for mounting QFN packages, see the Application Note, Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com.
- Pinned vias for thermal conduction are not required for the low power PSoC device.

17. Glossary (continued)

modulator	A device that imposes a signal on a carrier.
noise	 A disturbance that affects a signal and that may distort the information carried by the signal. The random variations of one or more characteristics of any entity such as voltage, current, or data.
oscillator	A circuit that may be crystal controlled and is used to generate a clock frequency.
parity	A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).
phase-locked loop (PLL)	An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference signal.
pinouts	The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names.
port	A group of pins, usually eight.
power on reset (POR)	A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is one type of hardware reset.
PSoC [®]	Cypress Semiconductor's PSoC [®] is a registered trademark and Programmable System-on-Chip™ is a trademark of Cypress.
PSoC Designer™	The software for Cypress' Programmable System-on-Chip technology.
pulse width modulator (PWM)	An output in the form of duty cycle which varies as a function of the applied measurand)
RAM	An acronym for random access memory. A data-storage device from which data can be read out and new data can be written in.
register	A storage device with a specific capacity, such as a bit or byte.
reset	A means of bringing a system back to a know state. See hardware reset and software reset.
ROM	An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot be written in.
serial	 Pertaining to a process in which all events occur one after the other. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.
shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.

17. Glossary (continued)

SRAM	An acronym for static random access memory. A memory device allowing users to store and retrieve data at a high rate of speed. The term static is used because, after a value has been loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code, operating from Flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.
tristate	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.

3. PMA Index Register fails to auto-increment with CPU_Clock set to SysClk/1 (24 MHz).

■ PROBLEM DEFINITION

When the device is operating at 4.75 to 5.25 V and the CPU_Clock is set to SysClk/1 (24 MHz), the USB PMA Index Register may fail to increment automatically when used in an OUT endpoint configuration at Full-Speed. When the application program attempts to use the bReadOutEP() function the first byte in the PMA buffer is always returned.

TRIGGER CONDITION(S)

An internal flip-flop hold problem associated with Index Register increment function. All reads of the associated RAM originate from the first byte. The hold problem has no impact on other circuits or functions within the device.

WORKAROUND

To make certain that the index register properly increments, set the CPU_Clock to SysClk/2 (12 MHz) during the read of the PMA buffer. An example for the clock adjustment method is listed below.

PSoC Designer[™] 4.3 User Module workaround: PSoC Designer Release 4.3 and subsequent releases includes a revised full-speed USB User Module with the revised firmware work-around included (see example below).

```
;;
;; 24 MHz read PMA workaround
;;
M8C SetBank1
mov A, reg[OSC CR0]
push A
and A, 0xf8 ;clear the clock bits (briefly chg the cpu clk to 3 MHz)
or A, 0x02 ;will set clk to 12Mhz
mov reg[OSC CR0], A ; clk is now set at 12 MHz
M8C SetBank0
.loop:
   mov A, reg[PMA0_DR] ; Get the data from the PMA space
   mov [X], A ; save it in data array
   inc X ; increment the pointer
   dec [USB APITemp+1] ; decrement the counter
   jnz .loop ; wait for count to zero out
;;
;; 24MHz read PMA workaround (back to previous clock speed)
;;
pop A ; recover previous reg[OSC CR0] value
M8C SetBank1
mov reg[OSC CR0], A ; clk is now set at previous value
M8C SetBank0
;;
     end 24Mhz read PMA workaround
;;
```


19. Document History Page

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	133189	NWJ	01/27/2004	New silicon and new document – Advance datasheet.
*A	251672	SFV	See ECN	First Preliminary datasheet. Changed title to encompass only the CY8C24794 because the CY8C24494 and CY8C24694 are not being offered by Cypress.
*В	289742	HMT	See ECN	Add standard DS items from SFV memo. Add Analog Input Mux on pinouts. 2 MACs. Change 512 bytes of SRAM to 1 K. Add dimension key to package. Remove HAPI. Update diagrams, registers and specs.
*C	335236	НМТ	See ECN	Add CY logo. Update CY copyright. Update new CY.com URLs. Re-add ISSP programming pinout notation. Add Reflow Temp. table. Update features (MAC, Oscillator, and voltage range), registers (INT_CLR2/MSK2, second MAC), and specs. (Rext, IMO, analog output buffer).
*D	344318	HMT	See ECN	Add new color and logo. Expand analog arch. diagram. Fix I/O #. Update Electrical Specifications.
*E	346774	HMT	See ECN	Add USB temperature specifications. Make datasheet Final.
*F	349566	HMT	See ECN	Remove USB logo. Add URL to preferred dimensions for mounting MLF packages.
*G	393164	HMT	See ECN	Add new device, CY8C24894 56-pin MLF with XRES pin. Add Fimousb3v char. to specs. Upgrade to CY Perform logo and update corporate address and copyright.
*H	469243	НМТ	See ECN	Add ISSP note to pinout tables. Update typical and recommended Storage Temperature per industrial specs. Update Low Output Level maximum I/OL budget. Add FLS_PR1 to Register Map Bank 1 for users to specify which Flash bank should be used for SROM operations. Add two new devices for a 68-pin QFN and 100-ball VFBGA under RPNs: CY8C24094 and CY8C24994. Add two packages for 68-pin QFN. Add OCD non-production pinouts and package diagrams. Update CY branding and QFN convention. Add new Dev. Tool section. Update copyright and trademarks.
*	561158	HMT	See ECN	Add Low Power Comparator (LPC) AC/DC electrical spec. tables. Add CY8C20x34 to PSoC Device Characteristics table. Add detailed dimensions to 56-pin QFN package diagram and update revision. Secure one package diagram/manufacturing per QFN. Update emulation pod/feet kit part numbers. Fix pinout type-o per TestTrack.
*J	728238	НМТ	See ECN	Add CapSense SNR requirement reference. Update figure standards. Update Technical Training paragraphs. Add QFN package clarifications and dimensions. Update ECN-ed Amkor dimensioned QFN package diagram revisions. Reword SNR reference. Add new 56-pin QFN spec.
*K	2552459	AZIE / PYRS	08/14/08	Add footnote on AGND descriptions to avoid using P2[4] for digital signaling as it may add noise to AGND. Remove reference to CMP_GO_EN1 in Map Bank 1 Table on Address 65; this register has no functionality on 24xxx. Add footnote on die sales. Add description 'Optional External Clock Input' on P1[4] to match description of P1[4].
*L	2616550	OGNE / PYRS	12/05/08	Updated Programmable Pin Configuration detail. Changed title from PSoC® Mixed-Signal Array to PSoC® Programmable System-on-Chip™
*M	2657956	DPT / PYRS	02/11/09	Added package diagram 001-09618 and updated Ordering Information table

19. Document History Page (continued)

	t Title: CY8C t Number: 3		24794/CY8C2	4894/CY8C24994, PSoC [®] Programmable System-on-Chip™
AD	3503402	PMAD	01/20/2012	Updated V _{OH} and V _{OL} section in Table 12.
AE	3545509	PSAI	03/08/2012	Updated link to 'Technical reference Manual'.
AF	3862667	CSAI	01/09/2013	Updated Ordering Information (Updated part numbers).
				Updated Packaging Dimensions: spec 001-53450 – Changed revision from *B to *C. spec 001-09618 – Changed revision from *D to *E. spec 51-85048 – Changed revision from *E to *G.
AG	3979302	CSAI	04/23/2013	Updated Packaging Dimensions: spec 001-58740 – Changed revision from ** to *A. Added Errata.
AH	4074544	CSAI	07/23/2013	Added Errata Footnotes (Note 21, 23)
				Updated Electrical Specifications: Updated DC Electrical Characteristics: Updated DC Chip-Level Specifications: Added Note 21 and referred the same note in "Sleep Mode" in description of I _{SB} parameter in Table 11. Updated DC POR and LVD Specifications: Added Note 23 and referred the same note in V _{PPOR0} , V _{PPOR1} , V _{PPOR2} parameters in Table 22. Updated to new template.
AI	4596835	DIMA	12/15/2014	Updated Pin Information: Updated 56-Pin Part Pinout: Updated Table 2: Added Note 5 and referred the same note in description of pin 19 and pin 50. Updated 56-Pin Part Pinout (with XRES): Updated Table 3: Added Note 8 and referred the same note in description of pin 19 and pin 50. Updated 68-Pin Part Pinout: Updated Table 4: Added Note 10 and referred the same note in description of pin 7, pin 20 and pin 60. Updated 68-Pin Part Pinout (On-Chip Debug): Updated Table 5: Added Note 13 and referred the same note in description of pin 7, pin 20 and pin 60. Updated 100-Ball VFBGA Part Pinout: Updated 100-Ball VFBGA Part Pinout: Updated Table 6: Added Note 15 and referred the same note in caption of Table 6. Updated Table 7: Added Note 17 and referred the same note in caption of Table 7. Updated 100-Pin Part Pinout (On-Chip Debug): Updated 100-Pin Part Pinout (On-Chip Debug): Updated Table 7: Added Note 19 and referred the same note in caption of Table 7. Updated 100-Pin Part Pinout (On-Chip Debug): Updated Table 8: Added Note 19 and referred the same note in caption of Table 7. Updated Table 8: Added Note 19 and referred the same note in caption of Table 8. Updated Packaging Dimensions: spec 001-12921 – Changed revision from *B to *C. spec 001-53450 – Changed revision from *D to *E. spec 51-85048 – Changed revision from *G to *I. Completing Sunset Review.
AJ	4622083	SLAN	01/13/2015	Added More Information section.
AK	4684565	PSI	03/12/2015	Updated Packaging Dimensions: spec 001-58740 – Changed revision from *A to *B. Updated Errata.
AL	5699855	AESATP12	04/20/2017	Updated logo and copyright.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP| PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2004-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or of affect its safety or effectiveness. Cypress products. You shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.