

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	POR, PWM, WDT
Number of I/O	56
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 48x14b; D/A 2x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24094-24ltxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. Contents

PSOC FUNCTIONAL OVERVIEW	4
The PSoC Core	4
The Digital System	4
The Analog System	5
Additional System Resources	6
PSoC Device Characteristics	6
GETTING STARTED	7
Application Notes	7
Development Kits	7
Training	7
CYPros Consultants	7
Solutions Library	7
Technical Support	7
DEVELOPMENT TOOLS	7
PSoC Designer Software Subsystems	
DESIGNING WITH PSOC DESIGNER	
Select User Modules	
Configure User Modules	
Organize and Connect	
Generate, Verify, and Debug	
PIN INFORMATION	
56-Pin Part Pinout	
68-Pin Part Pinout (with ARES)	
68-Pin Part Pinout (On-Chip Debug)	
100-Ball VFBGA Part Pinout	
100-Ball VFBGA Part Pinout (On-Chip Debug)	
100-Pin Part Pinout (On-Chip Debug)	
REGISTER REFERENCE	
Register Conventions	
Register Mapping Tables	
Register Map Bank 0 Table: User Space	
Register Map Bank 1 Table: Configuration Space	
ELECTRICAL SPECIFICATIONS	
Operating Temperature	
DC Electrical Characteristics	
AC Electrical Characteristics	
Thermal Impedance	
Solder Reflow Peak Specifications	
DEVELOPMENT TOOL SELECTION	-
Software	
Development Kits Evaluation Tools	

6. Getting Started

For in-depth information, along with detailed programming information, see the Technical Reference Manual for this PSoC device.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web at http://www.cypress.com.

6.1 Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

6.2 Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

6.3 Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com,

7. Development Tools

PSoC Designer[™] is the revolutionary Integrated Design Environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
 - □ Hardware and software I²C slaves and masters
 - □ Full speed USB 2.0
 - Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

7.1 PSoC Designer Software Subsystems

7.1.1 Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use covers a wide variety of topics and skill levels to assist you in your designs.

6.4 CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

6.5 Solutions Library

Visit our growing library of solution-focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

6.6 Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this allows you to use more than 100 percent of PSoC's resources for an application.

7.1.2 Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and are linked with other software modules to get absolute addressing.

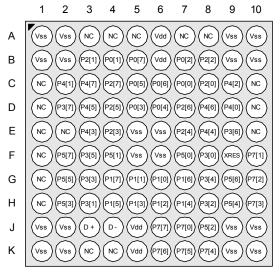
C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

7.1.3 Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and

9.5 100-Ball VFBGA Part Pinout

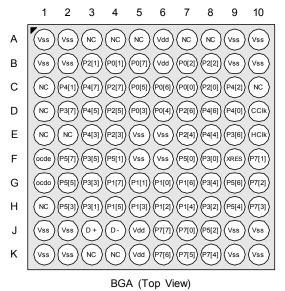
The 100-ball VFBGA part is for the CY8C24994 PSoC device.

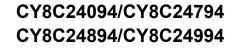

Table 6. 100-Ball Part Pinout (VFBGA^[15])

Pin No.	Digital	Analog	Name	Description	Pin No.	Digital	Analog	Name	Description
A1	Power	ſ	V _{SS}	Ground connection	F1			NC	No connection. Pin must be left floating
A2	Power	·	V _{SS}	Ground connection	F2	I/O	М	P5[7]	
A3			NC	No connection. Pin must be left floating	F3	I/O	М	P3[5]	
A4			NC	No connection. Pin must be left floating	F4	I/O	М	P5[1]	
A5			NC	No connection. Pin must be left floating	F5	Powe	r	V _{SS}	Ground connection
A6	Power	-	V _{DD}	Supply voltage	F6	Powe	r	V _{SS}	Ground connection
A7			NC	No connection. Pin must be left floating	F7	I/O	М	P5[0]	
A8			NC	No connection. Pin must be left floating	F8	I/O	М	P3[0]	
A9	Power	ſ	V _{SS}	Ground connection	F9			XRES	Active high pin reset with internal pull-down
A10	Power	ſ	V _{SS}	Ground connection	F10	I/O		P7[1]	
B1	Power	ſ	V _{SS}	Ground connection	G1			NC	No connection. Pin must be left floating
B2	Power	•	V _{SS}	Ground connection	G2	I/O	М	P5[5]	
B3	I/O	I, M	P2[1]	Direct switched capacitor block input	G3	I/O	М	P3[3]	
B4	I/O	I, M	P0[1]	Analog column mux input	G4	I/O	М	P1[7]	I ² C SCL
B5	I/O	I, M	P0[7]	Analog column mux input	G5	I/O	М	P1[1]	I ² C SCL, ISSP SCLK ^[16]
B6	Power	-	V _{DD}	Supply voltage	G6	I/O	М	P1[0]	I ² C SDA, ISSP SDATA ^[16]
B7	I/O	I, M	P0[2]	Analog column mux input	G7	I/O	М	P1[6]	
B8	I/O	I, M	P2[2]	Direct switched capacitor block input	G8	I/O	М	P3[4]	
B9	Power	1	V _{SS}	Ground connection	G9	I/O	М	P5[6]	
B10	Power		V _{SS}	Ground connection	G10	I/O		P7[2]	
C1			NC	No connection. Pin must be left floating	H1			NC	No connection. Pin must be left floating
C2	I/O	М	P4[1]		H2	I/O	М	P5[3]	
C3	1/O	M	P4[7]		H3	1/O	M	P3[1]	
C4	I/O	M	P2[7]		H4	1/O	M	P1[5]	I ² C SDA
C5	I/O	I/O, M	P0[5]	Analog column mux input and column output	H5	1/O	M	P1[3]	
C6	I/O	I, M	P0[6]	Analog column mux input and column output	H6	1/O	M	P1[2]	
C7	I/O	I, M	P0[0]	Analog column mux input	H7	1/O	M	P1[4]	Optional EXTCLK
C8	1/O	I, M	P2[0]	Direct switched capacitor block input	H8	1/O	M	P3[2]	
C9	I/O	M	P4[2]		H9	1/O	M	P5[4]	
C10	1/0	101	NC	No connection. Pin must be left floating	H10	1/O		P7[3]	
D1			NC	No connection. Pin must be left floating	J1	Powe	r	V _{SS}	Ground connection
D1 D2	I/O	М	P3[7]	No connection. I in must be left hoating	J2	Powe			Ground connection
D2 D3	1/O	M	P4[5]		J3	USB	1	V _{SS} D+	
D3 D4	1/O	M	P2[5]		J4	USB		D-	
D4 D5	1/O	I/O, M	P0[3]	Analog column mux input and column output	J5	Powe	r		Supply voltage
D5 D6	1/O	I,M	P0[3] P0[4]	Analog column mux input	J6	I/O	1	V _{DD}	
D0 D7	1/O	n,ivi M	P0[4] P2[6]	External VREF input	J0 J7	1/O		P7[7] P7[0]	
D7 D8	1/O	M	P4[6]		J8	1/O	М	P5[2]	
D8 D9	1/O	M			19 19				Cround connection
	1/0	IVI	P4[0]	No conception. Dis much he left floation		Powe		V _{SS}	Ground connection
D10			NC	No connection. Pin must be left floating	J10	Powe		V _{SS}	Ground connection
E1				No connection. Pin must be left floating	K1	Powe		V _{SS}	Ground connection
E2	1/0	N.4	NC	No connection. Pin must be left floating	K2	Powe	1	V _{SS}	Ground connection
E3		M	P4[3]	Direct outlabed consolter black insut	K3			NC	No connection. Pin must be left floating
E4		I, M	P2[3]	Direct switched capacitor block input	K4	D.		NC	No connection. Pin must be left floating
E5	Power		V _{SS}	Ground connection	K5	Powe	er -	V _{DD}	Supply voltage
E6	Power		V _{SS}	Ground connection	K6	I/O	L	P7[6]	
E7		М	P2[4]	External AGND input	K7	I/O		P7[5]	
E8		М	P4[4]		K8	I/O		P7[4]	
E9	I/O	М	P3[6]		K9	Powe		V _{SS}	Ground connection
E10			NC	No connection. Pin must be left floating	K10	Powe	r	V _{SS}	Ground connection

LEGEND A = Analog, I = Input, O = Output, M = Analog Mux Input, NC = No connection. Pin must be left floating.

Figure 8. CY8C24094 OCD (Not for Production)




BGA (Top View)

Notes 15. All V_{SS} pins should be brought out to one common GND plane. 16. These are the ISSP pins, which are not High Z at POR. See the PSoC Technical Reference Manual for details.

Figure 9. CY8C24094 OCD (Not for Production)

9.7 100-Pin Part Pinout (On-Chip Debug)

The 100-pin TQFP part is for the CY8C24094 OCD PSoC device.

Note This part is only used for in-circuit debugging. It is NOT available for production.

Table 8. 100-Pin Part Pinout (TQFP^[19])

Pin No.	Digital	Analog	Name	Description	Pin No.	Digital	Analog	Name	Description
1			NC	No connection. Pin must be left floating	51	I/O	М	P1[6]	
2		1	NC	No connection. Pin must be left floating	52	I/O	Μ	P5[0]	
3	I/O	I, M	P0[1]	Analog column mux input	53	I/O	М	P5[2]	
4	I/O	M	P2[7]		54	I/O	М	P5[4]	
5	I/O	Μ	P2[5]		55	I/O	Μ	P5[6]	
6	I/O	I, M	P2[3]	Direct switched capacitor block input	56	I/O	М	P3[0]	
7	I/O	I, M	P2[1]	Direct switched capacitor block input	57	I/O	М	P3[2]	
8	I/O	M	P4[7]		58	I/O	М	P3[4]	
9	I/O	M	P4[5]		59	I/O	М	P3[6]	
10	I/O	M	P4[3]		60			HCLK	OCD high speed clock output
11	I/O	Μ	P4[1]		61			CCLK	OCD CPU clock output
12			OCDE	OCD even data I/O	62	Input		XRES	Active high pin reset with internal pull-down
13			OCDO	OCD odd data output	63	I/O	М	P4[0]	
14	_		NC	No connection. Pin must be left floating	64	I/O	Μ	P4[2]	
15	Powe		V _{SS}	Ground connection	65	Powe		V _{SS}	Ground connection
16	I/O	М	P3[7]		66	I/O	М	P4[4]	
17	I/O	Μ	P3[5]		67	I/O	Μ	P4[6]	
18	I/O	Μ	P3[3]		68	I/O	I, M	P2[0]	Direct switched capacitor block input
19	I/O	Μ	P3[1]		69	I/O	I, M	P2[2]	Direct switched capacitor block input
20	I/O	М	P5[7]		70	I/O		P2[4]	External AGND input
21	I/O	М	P5[5]		71			NC	No connection. Pin must be left floating
22	I/O	М	P5[3]		72	I/O		P2[6]	External VREF input
23	I/O	Μ	P5[1]	0	73			NC	No connection. Pin must be left floating
24	I/O	М	P1[7]	I ² C SCL	74	I/O	I	P0[0]	Analog column mux input
25			NC	No connection. Pin must be left floating	75			NC	No connection. Pin must be left floating
26			NC	No connection. Pin must be left floating	76			NC	No connection. Pin must be left floating
27			NC	No connection. Pin must be left floating	77	I/O	I, M	P0[2]	Analog column mux input and column output
28	I/O		P1[5]	I ² C SDA	78			NC	No connection. Pin must be left floating
29	I/O		P1[3]		79	I/O	I, M	P0[4]	Analog column mux input and column output
30	I/O		P1[1]	Crystal (XTALin), I ² C SCL, ISSP SCLK ^[20]	80			NC	No connection. Pin must be left floating
31			NC	No connection. Pin must be left floating	81	I/O	I, M	P0[6]	Analog column mux input
32	Powe	er	V _{SS}	Ground connection	82	Powe	er	V _{DD}	Supply voltage
33	USB		D+		83			NC	No connection. Pin must be left floating
34	USB		D-		84	Powe	er	V _{SS}	Ground connection
35	Powe	er	V _{DD}	Supply voltage	85			NC	No connection. Pin must be left floating
36	I/O		P7[7]		86			NC	No connection. Pin must be left floating
37	I/O		P7[6]		87			NC	No connection. Pin must be left floating
38	I/O		P7[5]		88			NC	No connection. Pin must be left floating
39	I/O		P7[4]		89			NC	No connection. Pin must be left floating
40	I/O		P7[3]		90			NC	No connection. Pin must be left floating
41	I/O		P7[2]		91	NC		NC	No connection. Pin must be left floating
42	I/O		P7[1]		92			NC	No connection. Pin must be left floating
43	I/O		P7[0]		93			NC	No connection. Pin must be left floating
44			NC	No connection. Pin must be left floating	94			NC	No connection. Pin must be left floating
45			NC	No connection. Pin must be left floating	95	I/O	I, M	P0[7]	Analog column mux input
46			NC	No connection. Pin must be left floating	96			NC	No connection. Pin must be left floating
47			NC	No connection. Pin must be left floating	97	I/O	I/O, M	P0[5]	Analog column mux input and column output
48	I/O		P1[0]	Crystal (XTALout), I2C SDA, ISSP SDATA ^[20]	98			NC	No connection. Pin must be left floating
49	I/O	1	P1[2]		99	I/O	I/O, M	P0[3]	Analog column mux input and column output
50	I/O	1	P1[4]	Optional EXTCLK	100			NC	No connection. Pin must be left floating
		- 4 -		It. O = Output. NC = No connection. Pin must be left	flooting	N4 - 4	Analog M		DOD - On Ohin Dahuman

LEGEND A = Analog, I = Input, O = Output, NC = No connection. Pin must be left floating, M = Analog Mux Input, OCD = On-Chip Debugger.

Notes

19. All V_{SS} pins should be brought out to one common GND plane.

20. These are the ISSP pins, which are not High Z at POR. See the PSoC Technical Reference Manual for details.

10.3 Register Map Bank 0 Table: User Space

Name	Addr (0, Hex)	Access	Name	Addr (0, Hex)	Access	Name	Addr (0, Hex)	Access	Name	Addr (0, Hex)	Acces
PRTODR	00	RW	PMA0 DR	40	RW	ASC10CR0	80	RW	Hame	C0	Acces
PRTOIE	01	RW	PMA1_DR	41	RW	ASC10CR1	81	RW		C1	
PRT0GS	02	RW	PMA2 DR	42	RW	ASC10CR2	82	RW		C2	
PRT0DM2	03	RW	PMA3 DR	43	RW	ASC10CR3	83	RW		C3	
PRT1DR	04	RW	PMA4 DR	44	RW	ASD11CR0	84	RW		C4	
PRT1IE	05	RW	PMA5 DR	45	RW	ASD11CR1	85	RW		C5	
PRT1GS	06	RW	PMA6 DR	46	RW	ASD11CR2	86	RW		C6	
PRT1DM2	07	RW	PMA7 DR	47	RW	ASD11CR3	87	RW		C7	
PRT2DR	08	RW	USB SOF0	48	R	7 OD TTOTIO	88		-	C8	
PRT2IE	09	RW	USB SOF1	49	R		89			C9	-
PRT2GS	03 0A	RW	USB CR0	43 4A	RW		8A			CA	+
PRT2DM2	0A 0B	RW	USBI/O CR0	4B	#		8B	-		CB	
PRT3DR	00	RW	USBI/O CR1	4D 4C	# RW		8C			CC	
PRT3IE	0C	RW	03BI/0_CK1	40 4D	RW.		8D			CD	+
PRT3GS	0D 0E	RW	EP1 CNT1	4D 4E	#		8E			CE	
	0E 0F	RW	-	4E 4F			8E 8F			CE	
PRT3DM2	-		EP1_CNT		RW	4000000		DW		-	D)4/
PRT4DR	10	RW	EP2_CNT1	50	#	ASD20CR0	90	RW	CUR_PP	D0	RW
PRT4IE	11	RW	EP2_CNT	51	RW	ASD20CR1	91	RW	STK_PP	D1	RW
PRT4GS	12	RW	EP3_CNT1	52	#	ASD20CR2	92	RW		D2	D14/
PRT4DM2	13	RW	EP3_CNT	53	RW	ASD20CR3	93	RW	IDX_PP	D3	RW
PRT5DR	14	RW	EP4_CNT1	54	#	ASC21CR0	94	RW	MVR_PP	D4	RW
PRT5IE	15	RW	EP4_CNT	55	RW	ASC21CR1	95	RW	MVW_PP	D5	RW
PRT5GS	16	RW	EP0_CR	56	#	ASC21CR2	96	RW	I2C_CFG	D6	RW
PRT5DM2	17	RW	EP0_CNT	57	#	ASC21CR3	97	RW	I2C_SCR	D7	#
	18		EP0_DR0	58	RW		98		I2C_DR	D8	RW
	19		EP0_DR1	59	RW		99		I2C_MSCR	D9	#
	1A		EP0_DR2	5A	RW		9A		INT_CLR0	DA	RW
	1B		EP0_DR3	5B	RW		9B		INT_CLR1	DB	RW
PRT7DR	1C	RW	EP0_DR4	5C	RW		9C		INT_CLR2	DC	RW
PRT7IE	1D	RW	EP0_DR5	5D	RW		9D		INT_CLR3	DD	RW
PRT7GS	1E	RW	EP0_DR6	5E	RW		9E		INT_MSK3	DE	RW
PRT7DM2	1F	RW	EP0_DR7	5F	RW		9F		INT_MSK2	DF	RW
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	E0	RW
DBB00DR1	21	W	AMUXCFG	61	RW		A1		INT_MSK1	E1	RW
DBB00DR2	22	RW		62			A2		INT_VC	E2	RC
DBB00CR0	23	#	ARF_CR	63	RW		A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4		DEC_DH	E4	RC
DBB01DR1	25	W	ASY_CR	65	#		A5		DEC_DL	E5	RC
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#		68		MUL1_X	A8	W	MULO X	E8	W
DCB02DR1	29	W		69		MUL1_Y	A9	W	MUL0 Y	E9	W
DCB02DR2	2A	RW		6A		MUL1 DH	AA	R	MUL0 DH	EA	R
DCB02CR0	2B	#		6B		MUL1 DL	AB	R	MUL0 DL	EB	R
DCB03DR0	2C	#	TMP DR0	6C	RW	ACC1 DR1	AC	RW	ACC0 DR1	EC	RW
DCB03DR1	20 2D	W	TMP DR1	6D	RW	ACC1 DR0	AD	RW	ACC0 DR0	ED	RW
DCB03DR2	2E	RW	TMP_DR2	6E	RW	ACC1_DR3	AE	RW	ACC0_DR3	EE	RW
DCB03CR0	2E	#	TMP_DR3	6F	RW	ACC1 DR2	AF	RW	ACC0 DR2	EF	RW
	30	+	ACB00CR3	70	RW	RDIORI	B0	RW		F0	+
	31		ACB00CR0	71	RW	RDIOSYN	B1	RW		F1	
	32	1	ACB00CR0	72	RW	RDI0IS	B1 B2	RW		F2	+
	33	+	ACB00CR1	72	RW	RDI0LT0	B3	RW		F2 F3	───
	34	+	ACB00CR2 ACB01CR3	73	RW	RDI0LT0	B3 B4	RW		F3	───
	34		ACB01CR3 ACB01CR0	74 75	RW	RDI0LTT RDI0R00	B4 B5	RW		F4 F5	┨────
	36		ACB01CR0 ACB01CR1	75	RW	RDI0R00	B5 B6	RW		F5 F6	
	36 37	+	ACB01CR1 ACB01CR2			RUIURUT		LVA V	CPU F	F6 F7	DI
		+	ACDUICKZ	77	RW		B7		CPU_F		RL
	38			78			B8			F8	
	39	-	I	79			B9			F9	
	3A		Į	7A 7D		Į	BA			FA	<u> </u>
	3B		Į	7B			BB			FB	<u> </u>
	3C		l	7C			BC			FC	L
	3D		Į	7D			BD		DAC_D	FD	RW
	3E		I	7E			BE		CPU_SCR1	FE	#
	3F			7F	1		BF		CPU SCR0	FF	#

Access is bit specific.

11.2 Operating Temperature

Table 10. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature	-40	-	+85	°C	
T _{AUSB}	Ambient temperature using USB	-10	-	+85	°C	
Тј	Junction temperature	-40	-	+100	°C	The temperature rise from ambient to junction is package specific. See Thermal Impedance on page 51. The user must limit the power consumption to comply with this requirement.

11.3 DC Electrical Characteristics

11.3.1 DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 11. DC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DD}	Supply voltage	3.0	_	5.25	V	See DC POR and LVD specifications, Table 22 on page 39.
I _{DD5}	Supply current, IMO = 24 MHz (5 V)	_	14	27	mA	Conditions are V_{DD} = 5.0 V, T_A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz, analog power = off.
I _{DD3}	Supply current, IMO = 24 MHz (3.3 V)	_	8	14	mA	Conditions are V_{DD} = 3.3 V, T_A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.367 kHz, analog power = off.
I _{SB}	Sleep ^[21] (mode) current with POR, LVD, sleep timer, and WDT. ^[22]	_	3	6.5	μA	Conditions are with internal slow speed oscillator, V _{DD} = 3.3 V, -40 °C \leq T _A \leq 55 °C, analog power = off.
I _{SBH}	Sleep (mode) current with POR, LVD, Sleep Timer, and WDT at high temperature. ^[22]	-	4	25	μA	Conditions are with internal slow speed oscillator, V_{DD} = 3.3 V, 55 °C < T _A \leq 85 °C, analog power = off.

Notes

21. Errata: When the device is operating at 4.75 V to 5.25 V and the 3.3 V regulator is enabled, a short low pulse may be created on the DP signal line during device wake-up. The 15-20 µs low pulse of the DP line may be interpreted by the host computer as a deattach or the beginning of a wake-up. More details in "Errata" on page 66.
 22. Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This should be compared with devices that have similar functions enabled.

Table 19. 5-V DC Analog Reference Specifications (continued)

Refer- ence ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit s
0b101	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.218	P2[4] + 1.291	P2[4] + 1.354	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.335	P2[4] – 1.294	P2[4] – 1.237	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.221	P2[4] + 1.293	P2[4] + 1.358	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.337	P2[4] – 1.297	P2[4] – 1.243	V
	RefPower = medium	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.222	P2[4] + 1.294	P2[4] + 1.360	V
	Opamp bias = high	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.338	P2[4] – 1.298	P2[4] – 1.245	V
	RefPower = medium	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.221	P2[4] + 1.294	P2[4] + 1.362	V
	Opamp bias = low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.340	P2[4] – 1.298	P2[4] – 1.245	V
0b110	RefPower = high	V _{REFHI}	Ref High	2 × Bandgap	2.513	2.593	2.672	V
	Opamp bias = high	V _{AGND}	AGND	Bandgap	1.264	1.302	1.340	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.008	V _{SS} + 0.038	V
	RefPower = high	V _{REFHI}	Ref High	2 × Bandgap	2.514	2.593	2.674	V
	Opamp bias = low	V _{AGND}	AGND	Bandgap	1.264	1.301	1.340	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.005	V _{SS} + 0.028	V
	RefPower =	V _{REFHI}	Ref High	2 × Bandgap	2.514	2.593	2.676	V
	medium Opamp bias = high	V _{AGND}	AGND	Bandgap	1.264	1.301	1.340	V
	- party and a right	V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.024	V
	RefPower =	V _{REFHI}	Ref High	2 × Bandgap	2.514	2.593	2.677	V
	medium Opamp bias = low	V _{AGND}	AGND	Bandgap	1.264	1.300	1.340	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.021	V

Table 19. 5-V DC Analog Reference Specifications (continued)

Refer- ence ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit s
0b111	RefPower = high	V _{REFHI}	Ref High	3.2 × Bandgap	4.028	4.144	4.242	V
	Opamp bias = high	V _{AGND}	AGND	1.6 × Bandgap	2.028	2.076	2.125	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.008	V _{SS} + 0.034	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	3.2 × Bandgap	4.032	4.142	4.245	V
		V _{AGND}	AGND	1.6 × Bandgap	2.029	2.076	2.126	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.005	V _{SS} + 0.025	V
	RefPower =	V _{REFHI}	Ref High	3.2 × Bandgap	4.034	4.143	4.247	V
	medium Opamp bias = high	V _{AGND}	AGND	1.6 × Bandgap	2.029	2.076	2.126	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.021	V
	RefPower =	V _{REFHI}	Ref High	3.2 × Bandgap	4.036	4.144	4.249	V
	medium Opamp bias = low	V _{AGND}	AGND	1.6 × Bandgap	2.029	2.076	2.126	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.019	V

11.4.3 AC Full Speed USB Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-10 \degree C \le T_A \le 85 \degree C$, or 3.0 V to 3.6 V and $-10 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 27. AC Full Speed (12 Mbps) USB Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RFS}	Transition rise time	4	-	20	ns	For 50 pF load
t _{FSS}	Transition fall time	4	-	20	ns	For 50 pF load
t _{RFMFS}	Rise/fall time matching: (t _{R/} t _F)	90	-	111	%	For 50 pF load
t _{DRATEFS}	Full speed data rate	12-0.25%	12	12 + 0.25%	Mbps	

11.4.4 AC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Settling times, slew rates, and gain bandwidth are based on the analog continuous time PSoC block.

Power = high and Opamp bias = high is not supported at 3.3 V.

Table 28.	5-V AC Operational Amplifier Specifications
-----------	---

Symbol	Description	Min	Тур	Max	Units
t _{ROA}	Rising settling time from 80% of ΔV to 0.1% of ΔV (10 pF load, unity gain)				
	Power = low, Opamp bias = low	-	-	3.9	μs
	Power = medium, Opamp bias = high	-	-	0.72	μs
	Power = high, Opamp bias = high	-	—	0.62	μs
t _{SOA}	Falling settling time from 20% of ΔV to 0.1% of ΔV (10 pF load, unity gain)				
	Power = low, Opamp bias = low	-	_	5.9	μs
	Power = medium, Opamp bias = high	-	-	0.92	μs
	Power = high, Opamp bias = high	-	-	0.72	μs
SR _{ROA}	Rising slew rate (20% to 80%)(10 pF load, unity gain)				
	Power = low, Opamp bias = low	0.15	-	-	V/µs
	Power = medium, Opamp bias = high	1.7	_	-	V/µs
	Power = high, Opamp bias = high	6.5	-	-	V/µs
SR _{FOA}	Falling slew rate (20% to 80%)(10 pF load, unity gain)				
	Power = low, Opamp bias = low	0.01	_	-	V/µs
	Power = medium, Opamp bias = high	0.5	-	-	V/µs
	Power = high, Opamp bias = high	4.0	_	-	V/µs
BW _{OA}	Gain bandwidth product				
	Power = low, Opamp bias = low	0.75	-	-	MHz
	Power = medium, Opamp bias = high	3.1	-	—	MHz
	Power = high, Opamp bias = high	5.4	-	_	MHz
E _{NOA}	Noise at 1 kHz (Power = medium, Opamp bias = high)	-	100	_	nV/rt-Hz

Table 29. 3.3-V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units
t _{ROA}	Rising settling time from 80% of ΔV to 0.1% of ΔV				
	(10 pF load, unity gain)			0.00	
	Power = low, Opamp bias = low	-	-	3.92	μs
	Power = medium, Opamp bias = high	-	_	0.72	μs
t _{SOA}	Falling settling time from 20% of ΔV to 0.1% of ΔV (10 pF load, unity gain)				
	Power = low, Opamp bias = low	-	_	5.41	μs
	Power = medium, Opamp bias = high	-	-	0.72	μs
SR _{ROA}	Rising slew rate (20% to 80%)(10 pF load, unity gain)				
_	Power = low, Opamp bias = low	0.31	-	-	V/µs
	Power = medium, Opamp bias = high	2.7	-	-	V/µs
SR _{FOA}	Falling slew rate (20% to 80%)(10 pF load, Unity Gain)				
1 671	Power = low, Opamp bias = low	0.24	-	_	V/µs
	Power = medium, Opamp bias = high	1.8	-	-	V/µs
BW _{OA}	Gain bandwidth product				
<u>e</u> rt	Power = low, Opamp bias = low	0.67	-	_	MHz
	Power = medium, Opamp bias = high	2.8	-	—	MHz
E _{NOA}	Noise at 1 kHz (Power = medium, Opamp bias = high)	-	100	-	nV/rt-Hz

Table 31. AC Digital Block Specifications (continued)

Function	Description	Min	Тур	Max	Unit	Notes		
CRCPRS	Input clock frequency							
(PRS Mode)	$V_{DD} \ge 4.75 \text{ V}$	-	-	49.9 2	MHz			
	V _{DD} < 4.75 V	-	Ι	25.9 2	MHz			
CRCPRS (CRC Mode)	Input clock frequency	-	-	24.6	MHz			
SPIM	Input clock frequency	-	-	8.2	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.		
SPIS	Input clock (SCLK) frequency	-	-	4.1	MHz	The input clock is the SPI SCLK in SPIS mode.		
	Width of SS_negated between transmissions	50 ^[33]	-	-	ns			
Transmitter	Input clock frequency					The baud rate is equal to the input clock		
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	-	49.9 2	MHz	frequency divided by 8.		
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	-	24.6	MHz			
	V _{DD} < 4.75 V	-	-	24.6	MHz			
Receiver	Input clock frequency					The baud rate is equal to the input clock		
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	-	49.9 2	MHz	frequency divided by 8.		
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	-	24.6	MHz			
	V _{DD} < 4.75 V	-	_	24.6	MHz			

11.4.7 AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 32. AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
FOSCEXT	Frequency for USB applications	23.94	24	24.06	MHz	
-	Duty cycle	47	50	53	%	
-	Power-up to IMO switch	150	-	-	μs	

12. Development Tool Selection

12.1 Software

12.1.1 PSoC Designer

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at http://www.cypress.com and includes a free C compiler.

12.1.2 PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube in-circuit emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com.

12.2 Development Kits

All development kits can be purchased from the Cypress Online Store.

12.2.1 CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation, and the software interface enables you to run, halt, and single step the processor, and view the content of specific memory locations. Advance emulation features are also supported through PSoC Designer. The kit includes:

- PSoC Designer software CD
- ICE-Cube in-circuit Emulator
- ICE Flex-Pod for CY8C29x66 family
- Cat-5 adapter
- MiniEval programming board
- 110 ~ 240 V power supply, Euro-Plug adapter
- iMAGEcraft C compiler (registration required)
- ISSP cable
- USB 2.0 cable and Blue Cat-5 cable
- Two CY8C29466-24PXI 28-PDIP chip samples

12.3 Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store.

12.3.1 CY3210-MiniProg1

The CY3210-MiniProg1 kit enables you to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval socket programming and evaluation board
- 28-Pin CY8C29466-24PXI PDIP PSoC device sample

- 28-Pin CY8C27443-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

12.3.2 CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

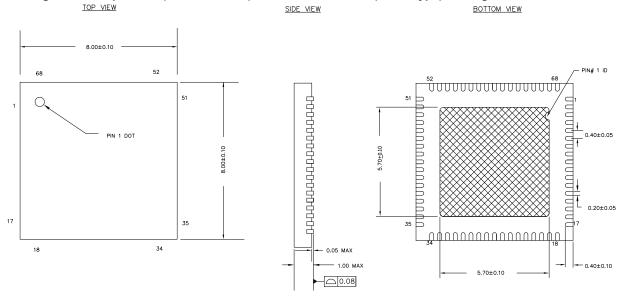
- Evaluation board with LCD module
- MiniProg programming unit
- 28-Pin CY8C29466-24PXI PDIP PSoC device sample (2)
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

12.3.3 CY3214-PSoCEvalUSB

The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LTXI PSoC device. The board supports both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- PSoCEvalUSB board
- LCD module
- MIniProg programming unit
- Mini USB cable
- PSoC Designer and Example Projects CD
- Getting Started guide
- Wire pack

12.4 Device Programmers


All device programmers can be purchased from the Cypress Online Store.

12.4.1 CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular programmer base
- Three programming module cards
- MiniProg programming unit
- PSoC Designer software CD

Figure 19. 68-pin QFN (8 × 8 × 1.0 mm) LT68 5.7 × 5.7 E-Pad (Sawn Type) Package Outline, 001-09618

NOTES:

1. 🗱 HATCH AREA IS SOLDERABLE EXPOSED METAL.

2. REFERENCE JEDEC#: MO-220

- 3. PACKAGE WEIGHT: $17 \pm 2mg$
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

001-09618 *E

15. Acronyms

15.1 Acronyms Used

The following table lists the acronyms that are used in this document.

Acronym	Description	Acronym	Description
AC	alternating current	MIPS	million instructions per second
ADC	analog-to-digital converter	OCD	on-chip debug
API	application programming interface	PCB	printed circuit board
CMOS	complementary metal oxide semiconductor	PDIP	plastic dual-in-line package
CPU	central processing unit	PGA	programmable gain amplifier
CRC	cyclic redundancy check	POR	power-on reset
СТ	continuous time	PPOR	precision power-on reset
DAC	digital-to-analog converter	PRS	pseudo-random sequence
DC	direct current	PSoC®	Programmable System-on-Chip™
DTMF	dual-tone multi-frequency	PWM	pulse-width modulator
EEPROM	electrically erasable programmable read-only memory	QFN	quad flat no leads
GPIO	general purpose I/O	SAR	successive approximation register
ICE	in-circuit emulator	SC	switched capacitor
IDE	integrated development environment	SLIMO	slow IMO
ILO	internal low-speed oscillator	SOIC	small-outline integrated circuit
IMO	internal main oscillator	SPI™	serial peripheral interface
I/O	input/output	SRAM	static random-access memory
IrDA	infrared data association	SROM	supervisory read-only memory
ISSP	In-System Serial Programming	TQFP	thin quad flat pack
LCD	liquid crystal display	UART	universal asynchronous receiver / transmitter
LED	light-emitting diode	USB	universal serial bus
LPC	low power comparator	VFBGA	very fine-pitch ball grid array
LVD	low-voltage detect	WDT	watchdog timer
MAC	multiply-accumulate	XRES	external reset
MCU	microcontroller unit		

17. Glossary (continued)

external reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.
flash	An electrically programmable and erasable, non-volatile technology that provides users with the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is off.
Flash block	The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash space that may be protected. A Flash block holds 64 bytes.
frequency	The number of cycles or events per unit of time, for a periodic function.
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.
ICE	The in-circuit emulator that allows users to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).
input/output (I/O)	A device that introduces data into or extracts data from a system.
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.
low-voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls lower than a selected threshold.
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the Flash, SRAM, and register space.
master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .
microcontroller	An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for general-purpose computation as is a microprocessor.
mixed-signal	The reference to a circuit containing both analog and digital techniques and components.

17. Glossary (continued)

modulator	A device that imposes a signal on a carrier.
noise	 A disturbance that affects a signal and that may distort the information carried by the signal. The random variations of one or more characteristics of any entity such as voltage, current, or data.
oscillator	A circuit that may be crystal controlled and is used to generate a clock frequency.
parity	A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).
phase-locked loop (PLL)	An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference signal.
pinouts	The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names.
port	A group of pins, usually eight.
power on reset (POR)	A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is one type of hardware reset.
PSoC [®]	Cypress Semiconductor's PSoC [®] is a registered trademark and Programmable System-on-Chip™ is a trademark of Cypress.
PSoC Designer™	The software for Cypress' Programmable System-on-Chip technology.
pulse width modulator (PWM)	An output in the form of duty cycle which varies as a function of the applied measurand)
RAM	An acronym for random access memory. A data-storage device from which data can be read out and new data can be written in.
register	A storage device with a specific capacity, such as a bit or byte.
reset	A means of bringing a system back to a know state. See hardware reset and software reset.
ROM	An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot be written in.
serial	 Pertaining to a process in which all events occur one after the other. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.
shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.

4. The Internal Main Oscillator (IMO) frequency parameter (FIMO245V) may increase over a period of time during usage in the field and exceed the maximum spec limit of 24.96 MHz.

■ PROBLEM DEFINITION

When the device has been operating at 4.75 V to 5.25 V for a cumulatively long duration in the field, the IMO Frequency may slowly increase over the duration of usage in the field and eventually exceed the maximum spec limit of 24.96 MHz. This may affect applications that are sensitive to the max value of IMO frequency, such as those using UART communication and result in a functional failure.

TRIGGER CONDITION(S)

Very long (cumulative) usage of the device in the operating voltage range of 4.75V to 5.25V, with the IMO clock running continuously, could lead to the degradation. Higher power supply voltage and lower ambient temperature are worst-case conditions for the degradation.

WORKAROUND

Operating the device with the power supply voltage range of 3.0 V to 3.6 V, would avoid the degradation of IMO Frequency beyond the max spec limit of 24.96 MHz.

FIX STATUS

A new revision of the silicon, with a fix for this issue, is expected to be available from August 1st 2015.

19. Document History Page (continued)

Document Document	t Title: CY80 t Number: 3	C24094/CY8C 8-12018	24794/CY8C2	4894/CY8C24994, PSoC [®] Programmable System-on-Chip™
*N	2708135	BRW	05/18/2009	Added Note in the Pin Information section on page 8. Removed reference to Hi-Tech Lite Compiler in the section Development Tools Selection on page 42.
*0	2718162	DPT	06/11/2009	Added 56-Pin QFN (Sawn) package diagram and updated ordering information
*P	2762161	RLRM	09/10/2009	Updated the following parameters: DC _{ILO,} F32K_U, F _{IMO6} , T _{POWERUP} , T _{ERASE_ALL} , T _{PROGRAM_HOT} , and T _{PROGRAM_COLD} , Added SR _{POWER_UP} parameter in AC specs table
*Q	2768530	RLRM	09/24/09	Ordering Information table: Changed XRES Pin value for CY8C24894-24LTXI and CY8C24894-24LTXIT to 'Yes'.
*R	2817938	KRIS	11/30/09	Ordering Information: Updated CY8C24894-24LTXI and CY8C24894-24LTXIT parts as Sawn and updated the Digital I/O and Analog Pin values Added Contents page. Updated 68 QFN package diagram (51-85124)
*S	2846641	RLRM	1/12/10	Added package diagram 001-58740 and updated Development Tools section.
*T	2867363	ANUP	01/27/10	Modified Note 9 to remove voltage range 2.4 V to 3.0 V
*U	2901653	NJF	03/30/2010	Updated Cypress website links Added T _{XRST} , DC24M, T _{BAKETEMP} and T _{BAKETIME} parameters Removed reference to 2.4 V Removed sections 'Third Party Tools' 'Build a PSoC Emulator into your Board' Updated package diagrams Removed inactive parts from ordering information table.
*V	2938528	VMAD	05/28/2010	Updated content to match current style guide and datasheet template. No technical updates
*W	3028596	NJF	09/20/10	Added PSoC Device Characteristics table. Added DC I ² C Specifications table. Added T _{32K U} max limit. Added Tjit_IMO specification, removed existing jitter specifications. Updated Analog reference tables. Updated Units of Measure, Acronyms, Glossary, and References sections. Updated solder reflow specifications. No specific changes were made to AC Digital Block Specifications table and I ² C Timing Diagram. They were updated for clearer understanding. Updated Figure 12 since the labelling for y-axis was incorrect. Template and styles update.
*Х	3082244	NXZ	11/09/2010	Sunset review; no updates.
*Ү	3111357	BTK/NJF/ ARVM	12/15/10	Updated solder reflow specifications. Removed F _{IMQ6} spec from AC chip-level specifications table. Removed the following pruned parts from the ordering information table and their references in the datasheet. 1) CY8C24794-24LFXI 2) CY8C24794-24LFXIT 3) CY8C24894-24LFXI 4) CY8C24894-24LFXIT
*Z	3126167	BTK / ANBA / PKS	01/03/11	Updated ordering information. Removed the package diagram spec 51-85214 since there are no MPNs in the ordering information table that corresponds with this package. Updated ordering code definitions for clearer understanding.
AA	3367463	BTK / GIR	09/22/11	Updated V _{REFHI} values for parameter '0b100' under Table 19 on page 31. Updated text under Table 19 on page 31. The text "Pin must be left floating" is included under Description of NC pin in Table 4 on page 12, Table 6 on page 14, Table 7 on page 16, and Table 8 on page 18. Updated Table 38 on page 51 to give more clarity.
AB	3404970	MATT	10/13/11	Removed prune device CY8C24994-24BVXI from Ordering Information.
AC	3461872	CSAI	12/13/2011	Sunset review; no content update
	1			