

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Ubsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	POR, PWM, WDT
Number of I/O	56
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 48x14b; D/A 2x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24094-24ltxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Programmers			46
Accessories (Emulation and Programr	ning)		47
ORDERING INFORMATION			48
Ordering Code Definitions			48
PACKAGING DIMENSIONS			49
ACRONYMS			54
Acronyms Used			54
DOCUMENT CONVENTIONS			55
Units of Measure			55
Numeric Conventions			55
GLOSSARY			55
ERRATA			60
Part Numbers Affected	60	CY8C24x94 Errata Summary	60
DOCUMENT HISTORY PAGE			64
SALES, SOLUTIONS, AND LEGAL INFO	ORMATION		67
Worldwide Sales and Design Support	67	Cypress Developer Community	
Products	67	Technical Support	67
PSoC® Solutions	67		

6. Getting Started

For in-depth information, along with detailed programming information, see the Technical Reference Manual for this PSoC device.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web at http://www.cypress.com.

6.1 Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

6.2 Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

6.3 Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com,

7. Development Tools

PSoC Designer[™] is the revolutionary Integrated Design Environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
 - □ Hardware and software I²C slaves and masters
 - □ Full speed USB 2.0
 - Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

7.1 PSoC Designer Software Subsystems

7.1.1 Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use

covers a wide variety of topics and skill levels to assist you in your designs.

6.4 CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

6.5 Solutions Library

Visit our growing library of solution-focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

6.6 Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this allows you to use more than 100 percent of PSoC's resources for an application.

7.1.2 Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and are linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

7.1.3 Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and

9.3 68-Pin Part Pinout

The following 68-pin QFN part table and drawing is for the CY8C24994 PSoC device.

Table 4. 68-Pin Part Pinout (QFN^[9])

Pin	Ту	pe	Namo	Description			Figur	re 6. C	Y8C24994 68-Pin PSoC Device
No.	Digital	Analog	Name	Description					. 0
1	I/O	М	P4[7]		1				GNE
2	I/O	М	P4[5]						> × 5 ÷ ÷
3	I/O	М	P4[3]		1			Υ Υ	
4	I/O	М	P4[1]					1, N N	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲
5			NC	No connection. Pin must be left floating				P2[
6			NC	No connection. Pin must be left floating			6		
7	Power		V _{SS}	Ground connection ^[10]		1	M, P4[7] 🖬 🕯	ම ලි ලි ලි 1	ა ლა
8	I/O	М	P3[7]			I	M, P4[5] 🔳	2	50 P P4[6], M
9	I/O	Μ	P3[5]			I	M, P4[3] 🗖	3	49 P P4[4], M
10	I/O	М	P3[3]				M, P4[1]	4	48 P4[2], M
11	I/O	М	P3[1]					6	46 🗖 XRES
12	I/O	М	P5[7]				Vss 🖛	7	45 🗖 NC
13	I/O	М	P5[5]				M, P3[7]	8	
14	I/O	М	P5[3]				M, P3[5]	9 10	(Top View) 43 P3[6], M
15	I/O	М	P5[1]				M, P3[1]	11	41 P 3[2], M
16	I/O	М	P1[7]	I ² C SCL		I	M, P5[7] 🗖	12	40 🗖 P3[0], M
17	I/O	М	P1[5]	I ² C SDA		I	M, P5[5] =	13	39 – P5[6], M
18	I/O	Μ	P1[3]				M, P5[3]	14 15	38 P5[4], M
19	I/O	М	P1[1]	I2C SCL ISSP SCLK ^[11]	1	I2C SCL,	M, P1[7]	16	37 □ P5[2], M 36 □ P5[0], M
20	Power		V _{SS}	Ground connection ^[10]		I2C SDA,	M, P1[5] 🗖	17 ₀₀ 00 0	ο - Ν σ τ ω ω Ν ω ο ο - Ν σ τ 35 = P1[6], M
21	USB		D+				Ĺ	~ ~	
22	USB		D–		1			13	
23	Power		V _{DD}	Supply voltage				14 14	
24	I/O		P7[7]		1			ΣŚ	ž Ž Ž
25	I/O		P7[6]		1			scL	SDA
26	I/O		P7[5]		1			2C	EXT 22C \$
27	I/O		P7[4]		1			_	
28	I/O		P7[3]		1				
29	I/O		P7[2]		Pin	Ту	/pe	Namo	Description
30	I/O		P7[1]		No.	Digital	Analog	Name	Description
31	I/O		P7[0]		50	I/O	М	P4[6]	
32	I/O	М	P1[0]	I ² C SDA, ISSP SDATA ^[11]	51	I/O	I, M	P2[0]	Direct switched capacitor block input
33	I/O	М	P1[2]		52	I/O	I, M	P2[2]	Direct switched capacitor block input
34	I/O	М	P1[4]	Optional EXTCLK	53	I/O	М	P2[4]	External AGND input
35	I/O	М	P1[6]		54	I/O	М	P2[6]	External VREF input
36	I/O	М	P5[0]		55	I/O	I, M	P0[0]	Analog column mux input
37	I/O	М	P5[2]		56	I/O	I, M	P0[2]	Analog column mux input and column output
38	I/O	М	P5[4]		57	I/O	I, M	P0[4]	Analog column mux input and column output
39	I/O	М	P5[6]		58	I/O	I, M	P0[6]	Analog column mux input
40	I/O	М	P3[0]		59	Power		V _{DD}	Supply voltage
41	I/O	М	P3[2]		60	Power		V _{SS}	Ground connection ^[10]
42	I/O	М	P3[4]		61	I/O	I, M	P0[7]	Analog column mux input, integration input #1
43	I/O	М	P3[6]		62	I/O	I/O, M	P0[5]	Analog column mux input and column output, integration
									input #2
44			NC	No connection. Pin must be left floating.	63	I/O	I/O, M	P0[3]	Analog column mux input and column output
45			NC	No connection. Pin must be left floating.	64	I/O	I, M	P0[1]	Analog column mux input
46	Input		XRES	Active high pin reset with internal	65	I/O	М	P2[7]	
				pull-down.	I				
47	I/O	М	P4[0]		66	I/O	М	P2[5]	
48	I/O	М	P4[2]		67	I/O	I, M	P2[3]	Direct switched capacitor block input
10	1/0	М	P4[4]		68	I/O	I. M	P2[1]	Direct switched capacitor block input

LEGEND A = Analog, I = Input, O = Output, NC = No connection. Pin must be left floating, M = Analog Mux Input.

Notes

 ^{9.} The center pad on the QFN package should be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal.
 10. All V_{SS} pins should be brought out to one common GND plane.
 11. These are the ISSP pins, which are not High Z at POR. See the PSoC Technical Reference Manual for details.

9.4 68-Pin Part Pinout (On-Chip Debug)

The following 68-pin QFN part table and drawing is for the CY8C24094 OCD PSoC device.

Note This part is only used for in-circuit debugging. It is NOT available for production.

Table 5.	68-Pin	Part	Pinout	(QFN ^[12])
----------	--------	------	--------	------------------------

Pin	Ту	/pe	Namo	Description		F	Figure 7. CY8C		C24094 68-Pin OCD PSoC Device
No.	Digital	Analog	Name	Description					щЯ
1	I/O	М	P4[7]						AG
2	I/O	М	P4[5]					ਵ ਵ	айски Абщарара ароо
3	I/O	M	P4[3]					ΣŚ	$\Sigma \Sigma $
4	I/O	М	P4[1]					2[1], 2[3],	
5			OCDE	OCD even data I/O				6.6	
6			OCDO	OCD odd data output				68 67	M M M M M M M M M M M M M M M M M M M
1	Power		V _{SS}	Ground connection [13]		N N	1, P4[7]	1 2	51 P2[0], M, AI 50 P4[6], M
8	1/0	M	P3[7]			Ν	1, P4[3] 🗖	3	49 E P4[4], M
9	1/0	M	P3[5]			N	1, P4[1] 🗖	4	48 🗖 P4[2], M
10	1/0	M	P3[3]				OCDE	5	47 P4[0], M
11	1/0	M	P3[1]				Vss	7	
12	1/0	M	P5[7]			N	1, P3[7] 🔳	8	AL HCLK
13	1/0	M	P5[5]			N	1, P3[5]	9	
14	1/0	M	P5[3]		-	N N	4, P3[3] – 4, P3[1] –	10	42 = P3[4], M 41 = P3[2]. M
15	1/0	IVI N4	P5[1]	1/20 001		N	1, P5[7] 🔳	12	40 🖬 P3[0], M
10	1/0	IVI N4	P1[7]			N	1, P5[5] 🔳	13	39 🗖 P5[6], M
17	1/0	IVI NA	P1[5]	I-C SDA	-	N N	1, P5[3]	14 15	38 P5[4], M
18	1/0	IVI N4	P1[3]		1	2C SCL, N	I, P1[7]	16	36 – P5[2], M 36 – P5[0], M
19	I/U Deuver	IVI	Pi[i]	Cround connection [13]	L:	2C SDA, N	1, P1[5] 🔳	17	
20	Power		V _{SS}				l	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
21	USB		D+					[]]	4
22	Dowor		D–	Supply voltage				55	
23	Power	1						ΣΞ	Ŭ Ž Ž
24	1/0							scl	, , , , , , , , , , , , , , , , , , , ,
20	1/0		P7[0]					2C	E S
20	1/0		P7[J]		-			_	_
21	1/0		F7[4]						
20	1/0		F7[3]		Din	т	(20		
29	1/0		F7[2]		PIII No	Digital	Analog	Name	Description
31	1/0		P7[1]		NO.		M	D4[6]	
32	1/0	M	P1[0]	1 ² C SDA 1888 SDATA ^[14]	50	1/0		P2[0]	Direct switched capacitor block input
32	1/0	M	P 1[0]	TO SDA, ISSE SDATA	52	1/0	I, IVI	P2[0]	Direct switched capacitor block input
34	1/0	M	D1[4]		52	1/0	N/	D2[4]	External AGND input
35	1/0	M	F 1[4]		55	1/0	M	F 2[4]	
36	1/0	M	P5[0]		55	1/O	I M	P0[0]	Analog column mux input
37	1/0	M	P5[2]		56	1/0	I, M	P0[2]	Analog column mux input and column output
38	1/O	M	P5[4]		57	1/O	I, M	P0[4]	Analog column mux input and column output
39	1/0	M	P5[6]		58	1/0	I, M	P0[6]	Analog column mux input
40	1/O	M	P3[0]		59	Power	1, 101	Vee	Supply voltage
41	1/O	M	P3[2]		60	Power		Voo	Ground connection ^[13]
42	1/O	M	P3[4]		60 61	1/0	I M	*55 P0[7]	Analog column mux input integration input #1
43	1/0	M	P3[6]		62	1/0	I/O M	P0[5]	Analog column mux input, integration input integration
								[0]	input #2
44			HCLK	OCD high speed clock output	63	I/O	I/O, M	P0[3]	Analog column mux input and column output
45			CCLK	OCD CPU clock output	64	I/O	I, M	P0[1]	Analog column mux input
46	Input		XRES	Active high pin reset with internal pull-down	65	I/O	М	P2[7]	
47	I/O	М	P4[0]		66	I/O	М	P2[5]	
48	I/O	М	P4[2]		67	I/O	I, M	P2[3]	Direct switched capacitor block input
49	I/O	М	P4[4]		68	I/O	I. M	P2[1]	Direct switched capacitor block input

LEGEND A = Analog, I = Input, O = Output, M = Analog Mux Input, OCD = On-Chip Debugger.

Notes

12. The center pad on the QFN package should be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal.

All V_{SS} pins should be brought out to one common GND plane.
 These are the ISSP pins, which are not High Z at POR. See the PSoC Technical Reference Manual for details.

10. Register Reference

This section lists the registers of the CY8C24x94 PSoC device family. For detailed register information, see the *PSoC Technical Reference Manual*.

10.1 Register Conventions

The register conventions specific to this section are listed in the following table.

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

10.2 Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks, Bank 0 and Bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set to 1, the user is in Bank 1.

Note In the following register mapping tables, blank fields are Reserved and should not be accessed.

10.3 Register Map Bank 0 Table: User Space

Name	Addr (0, Hex)	Access	Name	Addr (0, Hex)	Access	Name	Addr (0, Hex)	Access	Name	Addr (0, Hex)	Access
PRT0DR	00	RW	PMA0_DR	40	RW	ASC10CR0	80	RW		C0	
PRT0IE	01	RW	PMA1_DR	41	RW	ASC10CR1	81	RW		C1	
PRT0GS	02	RW	PMA2_DR	42	RW	ASC10CR2	82	RW		C2	
PRT0DM2	03	RW	PMA3_DR	43	RW	ASC10CR3	83	RW		C3	
PRT1DR	04	RW	PMA4_DR	44	RW	ASD11CR0	84	RW		C4	
PRT1IE	05	RW	PMA5_DR	45	RW	ASD11CR1	85	RW		C5	
PRT1GS	06	RW	PMA6_DR	46	RW	ASD11CR2	86	RW		C6	
PRT1DM2	07	RW	PMA7_DR	47	RW	ASD11CR3	87	RW		C7	
PRT2DR	08	RW	USB_SOF0	48	R		88			C8	
PRT2IE	09	RW	USB_SOF1	49	R		89			C9	
PRT2GS	0A	RW	USB_CR0	4A	RW		8A			CA	
PRT2DM2	0B	RW	USBI/O_CR0	4B	#		8B			СВ	
PRT3DR	0C	RW	USBI/O_CR1	4C	RW		8C			CC	
PRT3IE	0D	RW		4D			8D			CD	
PRT3GS	0E	RW	EP1_CNT1	4E	#		8E			CE	
PRT3DM2	0F	RW	EP1_CNT	4F	RW		8F			CF	
PRT4DR	10	RW	EP2_CNT1	50	#	ASD20CR0	90	RW	CUR_PP	D0	RW
PRT4IE	11	RW	EP2 CNT	51	RW	ASD20CR1	91	RW	STK PP	D1	RW
PRT4GS	12	RW	EP3_CNT1	52	#	ASD20CR2	92	RW		D2	
PRT4DM2	13	RW	EP3_CNT	53	RW	ASD20CR3	93	RW	IDX_PP	D3	RW
PRT5DR	14	RW	EP4_CNT1	54	#	ASC21CR0	94	RW	MVR_PP	D4	RW
PRT5IE	15	RW	EP4 CNT	55	RW	ASC21CR1	95	RW	MVW PP	D5	RW
PRT5GS	16	RW	EP0 CR	56	#	ASC21CR2	96	RW	I2C CFG	D6	RW
PRT5DM2	17	RW	EP0 CNT	57	#	ASC21CR3	97	RW	I2C SCR	D7	#
	18		EP0 DR0	58	RW		98		I2C DR	D8	RW
	19		EP0 DR1	59	RW		99		I2C MSCR	D9	#
	1A		EP0 DR2	5A	RW		9A		INT CLR0	DA	RW
	1B		EP0 DR3	5B	RW		9B		INT CLR1	DB	RW
PRT7DR	10	RW	EP0 DR4	5C	RW		90		INT CLR2	DC	RW
PRT7IE	1D	RW	EP0_DR5	5D	RW		9D		INT CLR3	DD	RW
PRT7GS	1E	RW	EP0_DR6	5E	RW		9E		INT_MSK3	DE	RW
PRT7DM2	1E 1F	RW	EP0_DR7	5E	RW		9E		INT_MSK2	DE	RW
DBB00DR0	20	#	AMX IN	60	RW		AO		INT_MSK0	F0	RW
DBB00DR1	21	W		61	RW		A1		INT_MSK1	E0	RW
DBB00DR2	22	RW		62			A2		INT VC	E1	RC
DBB00CR0	23	#	ARE CR	63	RW		A3		RES WDT	E3	W
DBB01DB0	24	#		64	#		Δ4		DEC DH	E0 E4	RC
DBB01DR1	25	W W	ASY CR	65	#		A5			E5	RC
DBB01DR2	26	RW/	CMP_CR1	66	# RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67	1.000	-	A7		DEC_CR1	E7	DW/
	28	#		68		MULL 1 Y	A7 A8	\M/		E8	
	20	# \\\/		69			A0	VV \\/		EQ	W
	29			64			A3 AA	P		E3	P
DCB02DR2	2R	#		6B				P		ER	P
	20	#		60	RW/		AC	RW/		EC	RW/
	20	W		60	RW/			RW/		ED	RW/
DCB03DP2	25 2E	RW/		6E	RW		ΔE	RW		FF	RW/
DCB03CR0	2E	#	TMP DR3	6E	RW	ACC1 DR2	AF	RW	ACC0 DR2	FF	RW
2020000	30	π		70	RW/		BO	RW	,.000_DIV2	E0	
	31		ACBOOCRO	71	RW	RDIOSYN	B1	RW		F1	<u> </u>
	32			72	RW/	RDIOIS	B2	RW/		F2	<u> </u>
	33		ACBOOCR2	72	DW/		B2	DW/		F3	ł
	34			74	RW		B4	RW		F4	<u> </u>
	35			75	RW/		B5	RW/		F5	<u> </u>
<u> </u>	36			76	DW/		B6	DW/		F6	<u> </u>
	37		ACBOICKI	77	DW/	NUINNUT	87	17.00		F7	DI
	38		ACOULCRZ	78	17.00		B8			F8	
<u> </u>	20			70			D0 P0			F0	
	38			70			D9			F9 EA	
	3A 2D			70			DA				
	30			10							<u> </u>
	30			70							DW/
	3D 2E						BU				KVV #
	SE SE		8						CPU_SCR1		#
	зF			/F			RF		CPU_SCR0	FF	#

Blank fields are reserved and should not be accessed.

Access is bit specific.

Table 20. 3.3-V DC Analog Reference Specifications

Refer- ence ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit s
0b000	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.200	V _{DD} /2 + 1.290	V _{DD} /2 + 1.365	V
		V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.030	V _{DD} /2	V _{DD} /2 + 0.034	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.346	V _{DD} /2 – 1.292	V _{DD} /2 – 1.208	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.196	V _{DD} /2 + 1.292	V _{DD} /2 + 1.374	V
		V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.029	V _{DD} /2	V _{DD} /2 + 0.031	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.349	V _{DD} /2 – 1.295	V _{DD} /2 – 1.227	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.204	V _{DD} /2 + 1.293	V _{DD} /2 + 1.369	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.030	V _{DD} /2	V _{DD} /2 + 0.030	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.351 V _{DD} /2 – 1.297		V _{DD} /2 – 1.229	V
	RefPower = medium Opamp bias = low	r = V _{REFHI}		V _{DD} /2 + Bandgap	V _{DD} /2 + 1.189	V _{DD} /2 + 1.294	V _{DD} /2 + 1.384	V
		V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.032	V _{DD} /2	V _{DD} /2 + 0.029	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.353	V _{DD} /2 – 1.297	V _{DD} /2 – 1.230	V
0b001	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.105	P2[4] + P2[6] - 0.008	P2[4] + P2[6] + 0.095	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.035	P2[4] – P2[6] + 0.006	P2[4] – P2[6] + 0.053	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.094	P2[4] + P2[6] - 0.005	P2[4] + P2[6] + 0.073	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO} Ref Low P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 \		P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.033	P2[4] – P2[6] + 0.002	P2[4] – P2[6] + 0.042	V
	RefPower = medium	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.094	P2[4] + P2[6] - 0.003	P2[4] + P2[6] + 0.075	V
	Opamp bias = high	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.035	P2[4] – P2[6]	P2[4] – P2[6] + 0.038	V
	RefPower = medium	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.095	P2[4] + P2[6] - 0.003	P2[4] + P2[6] + 0.080	V
	Opamp bias = low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.038	P2[4] – P2[6]	P2[4] – P2[6] + 0.038	V

Note The bits PORLEV and VM in the following table refer to bits in the VLT_CR register. See the PSoC Technical Reference Manual for more information on the VLT_CR register.

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0R} V _{PPOR1R} V _{PPOR2R}	V _{DD} value for PPOR trip (positive ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_	2.91 4.39 4.55	_	V V V	
V _{PPOR0} ^[23] V _{PPOR1} ^[23] V _{PPOR2} ^[23]	V _{DD} value for PPOR trip (negative ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_	2.82 4.39 4.55	-	V V V	
V _{PH0} V _{PH1} V _{PH2}	PPOR hysteresis PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_ _ _	92 0 0	_ _ _	mV mV mV	
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	$V_{DD} \text{ value for LVD trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ VM[2:0] = 111b \\ VM[2:0] = 110b \\ VM[2:0] = 100 \\ VM[2:0] =$	2.86 2.96 3.07 3.92 4.39 4.55 4.63 4.72	2.92 3.02 3.13 4.00 4.48 4.64 4.73 4.81	2.98 ^[24] 3.08 3.20 4.08 4.57 4.74 ^[25] 4.82 4.91	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	

Notes

23. Errata: When V_{DD} of the device is pulled below ground just before power on, the first read from each 8K Flash page may be corrupted. This issue does not affect Flash page 0 because it is the selected page upon reset. More details in "Errata" on page 66.
24. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.
25. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.

11.3.10 DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 23.	DC PI	rogramming	Specifications
-----------	-------	------------	----------------

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional require- ments of external programmer tools
V _{DDLV}	Low V _{DD} for verify	3	3.1	3.2	V	This specification applies to the functional require- ments of external programmer tools
V _{DDHV}	High V_{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional require- ments of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation	3		5.25	V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply current during programming or verify	-	15	30	mA	
V _{ILP}	Input low voltage during programming or verify	Ι	1	0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.1	-	-	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	-	_	0.2	mA	Driving internal pull-down resistor.
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	_	-	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output low voltage during programming or verify	_	-	V _{SS} + 0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	_	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block) ^[26]	50,000	-	-	-	Erase/write cycles per block.
Flash _{ENT}	Flash endurance (total) ^[27]	1,800,000	-	-	-	Erase/write cycles.
Flash _{DR}	Flash data retention	10	-	_	Years	

11.3.11 DC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 24. DC I²C Specifications^[28]

Symbol	Description	Min	Тур	Max	Units	Notes
V _{ILI2C}	Input low level	-	-	$0.3 \times V_{DD}$	V	$3.0~V \leq V_{DD} \leq 3.6~V$
		-	-	$0.25 \times V_{DD}$	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C}	Input high level	0.7 × V _{DD}	-	-	V	$3.0~V \leq V_{DD} \leq 5.25~V$

Table 25. AC Chip Level Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
t _{POWERUP}	Time from end of POR to CPU executing code	-	16	100	ms	Power-up from 0 V. See the System Resets section of the PSoC Technical Reference Manual.
t _{jit_IMO} ^[32]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	200	1200	ps	
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	900	6000	ps	N=32
	24 MHz IMO period jitter (RMS)	-	200	900	ps	

11.4.2 AC GPIO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 26. AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12	MHz	Normal strong mode
t _{RiseF}	Rise time, normal strong mode, Cload = 50 pF	3	-	18	ns	V _{DD} = 4.5 to 5.25 V, 10% to 90%
t _{FallF}	Fall time, normal strong mode, Cload = 50 pF	2	-	18	ns	V _{DD} = 4.5 to 5.25 V, 10% to 90%
t _{RiseS}	Rise time, slow strong mode, Cload = 50 pF	10	27	-	ns	V _{DD} = 3 to 5.25 V, 10% to 90%
t _{FallS}	Fall time, slow strong mode, Cload = 50 pF	10	22	-	ns	V _{DD} = 3 to 5.25 V, 10% to 90%

Figure 12. GPIO Timing Diagram

Notes

- 29. 4.75 V < V_{DD} < 5.25 V. 30. 3.0 V < V_{DD} < 3.6 V. See application note Adjusting PSoC[®] Trims for 3.3 V and 2.7 V Operation AN2012 for information on trimming for operation at 3.3 V. 31. See the individual user module datasheets for information on maximum frequencies for user modules.

32. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.

11.5 Thermal Impedance

Table 37. Thermal Impedances per Package

Package	Typical θ _{JA} ^[36]
56-Pin QFN ^[37]	12.93 °C/W
68-Pin QFN ^[37]	13.05 °C/W
100-Ball VFBGA	65 °C/W
100-Pin TQFP	51 °C/W

11.6 Solder Reflow Peak Specifications

Table 38 shows the solder reflow temperature limits that must not be exceeded.

Table 38. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C)	Maximum Time above T _C – 5 °C
56-Pin QFN	260 °C	30 seconds
68-Pin QFN	260 °C	30 seconds
100-Ball VFBGA	260 °C	30 seconds
100-Pin TQFP	260 °C	30 seconds

Notes

36. T_J = T_A + POWER × θ_{JA}.
 37. To achieve the thermal impedance specified for the QFN package, see the Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com.

12. Development Tool Selection

12.1 Software

12.1.1 PSoC Designer

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at http://www.cypress.com and includes a free C compiler.

12.1.2 PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube in-circuit emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com.

12.2 Development Kits

All development kits can be purchased from the Cypress Online Store.

12.2.1 CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation, and the software interface enables you to run, halt, and single step the processor, and view the content of specific memory locations. Advance emulation features are also supported through PSoC Designer. The kit includes:

- PSoC Designer software CD
- ICE-Cube in-circuit Emulator
- ICE Flex-Pod for CY8C29x66 family
- Cat-5 adapter
- MiniEval programming board
- 110 ~ 240 V power supply, Euro-Plug adapter
- iMAGEcraft C compiler (registration required)
- ISSP cable
- USB 2.0 cable and Blue Cat-5 cable
- Two CY8C29466-24PXI 28-PDIP chip samples

12.3 Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store.

12.3.1 CY3210-MiniProg1

The CY3210-MiniProg1 kit enables you to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval socket programming and evaluation board
- 28-Pin CY8C29466-24PXI PDIP PSoC device sample

- 28-Pin CY8C27443-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

12.3.2 CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation board with LCD module
- MiniProg programming unit
- 28-Pin CY8C29466-24PXI PDIP PSoC device sample (2)
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

12.3.3 CY3214-PSoCEvalUSB

The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LTXI PSoC device. The board supports both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- PSoCEvalUSB board
- LCD module
- MIniProg programming unit
- Mini USB cable
- PSoC Designer and Example Projects CD
- Getting Started guide
- Wire pack

12.4 Device Programmers

All device programmers can be purchased from the Cypress Online Store.

12.4.1 CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular programmer base
- Three programming module cards
- MiniProg programming unit
- PSoC Designer software CD

14. Packaging Dimensions

This section illustrates the package specification for the CY8C24x94 PSoC devices, along with the thermal impedance for the package and solder reflow peak temperatures.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the emulator pod dimension drawings at http://www.cypress.com/design/MR10161.

Figure 16. 56-pin QFN (7 × 7 × 0.6 mm) LR56A/LQ56A 5.6 × 5.6 E-Pad (Sawn) Package Outline, 001-58740

NOTES:

1. 🕅 HATCH AREA IS SOLDERABLE EXPOSED PAD

2. BASED ON REF JEDEC # MO-248

3. ALL DIMENSIONS ARE IN MILLIMETERS

001-58740 *C

REFERENCE JEDEC MO-195C PKG. WEIGHT: TBD (NEW PKG.)

51-85209 *F

15. Acronyms

15.1 Acronyms Used

The following table lists the acronyms that are used in this document.

Acronym	Description	Acronym	Description
AC	alternating current	MIPS	million instructions per second
ADC	analog-to-digital converter	OCD	on-chip debug
API	application programming interface	PCB	printed circuit board
CMOS	complementary metal oxide semiconductor	PDIP	plastic dual-in-line package
CPU	central processing unit	PGA	programmable gain amplifier
CRC	cyclic redundancy check	POR	power-on reset
CT	continuous time	PPOR	precision power-on reset
DAC	digital-to-analog converter	PRS	pseudo-random sequence
DC	direct current	PSoC [®]	Programmable System-on-Chip™
DTMF	dual-tone multi-frequency	PWM	pulse-width modulator
EEPROM	electrically erasable programmable read-only memory	QFN	quad flat no leads
GPIO	general purpose I/O	SAR	successive approximation register
ICE	in-circuit emulator	SC	switched capacitor
IDE	integrated development environment	SLIMO	slow IMO
ILO	internal low-speed oscillator	SOIC	small-outline integrated circuit
IMO	internal main oscillator	SPI™	serial peripheral interface
I/O	input/output	SRAM	static random-access memory
IrDA	infrared data association	SROM	supervisory read-only memory
ISSP	In-System Serial Programming	TQFP	thin quad flat pack
LCD	liquid crystal display	UART	universal asynchronous receiver / transmitter
LED	light-emitting diode	USB	universal serial bus
LPC	low power comparator	VFBGA	very fine-pitch ball grid array
LVD	low-voltage detect	WDT	watchdog timer
MAC	multiply-accumulate	XRES	external reset
MCU	microcontroller unit		•

16. Document Conventions

16.1 Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	mV	millivolt
dB	decibels	nA	nanoampere
fF	femtofarad	ns	nanosecond
kHz	kilohertz	nV	nanovolt
kΩ	kilohms	Ω	ohms
MHz	megahertz	pА	picoampere
μΑ	microampere	pF	picofarad
μs	microsecond	ps	picosecond
μV	microvolt	%	percent
mA	milliampere	rt-Hz	root hertz
mm	millimeter	V	volt
ms	millisecond	W	watt

16.2 Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, '01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimal.

17. Glossary

active high	6. A logic signal having its asserted state as the logic 1 state.7. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
API (Application Programming Interface)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
Bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.
bias	1. A systematic deviation of a value from a reference value.
	2. The amount by which the average of a set of values departs from a reference value.
	3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.

17. Glossary (continued)

SRAM	An acronym for static random access memory. A memory device allowing users to store and retrieve data at a high rate of speed. The term static is used because, after a value has been loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code, operating from Flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.
tristate	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.

When Vdd is pulled below ground before power on, an internal Flash reference may deviate from its nominal voltage. The reference deviation tends to result in the first Flash read from that page returning 0xFF. During the first read from each page, the reference is reset resulting in all future reads returning the correct value. A short delay of 5 µs before the first real read provides time for the reference voltage to stabilize.

WORKAROUND

To prevent an invalid Flash read, a dummy read from each Flash page must occur before use of the pages. A delay of 5 µs must occur after the dummy read and before a real read. The dummy reads occurs as soon as possible and must be located in Flash page 0 before a read from any other Flash page. An example for reading a byte of memory from each Flash page is listed below. Placed it in boot.tpl and boot.asm immediately after the 'start:' label.

// dummy read from each 8K Flash page // page 1 mov A, 0x20 // MSB mov X, 0x00 // LSB romx // wait at least 5 µs mov X, 14 loop1: dec X jnz loop1

19. Document History Page

Document Document	Document Title: CY8C24094/CY8C24794/CY8C24894/CY8C24994, PSoC [®] Programmable System-on-Chip™ Document Number: 38-12018					
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
**	133189	NWJ	01/27/2004	New silicon and new document – Advance datasheet.		
*A	251672	SFV	See ECN	First Preliminary datasheet. Changed title to encompass only the CY8C24794 because the CY8C24494 and CY8C24694 are not being offered by Cypress.		
*B	289742	HMT	See ECN	Add standard DS items from SFV memo. Add Analog Input Mux on pinouts. 2 MACs. Change 512 bytes of SRAM to 1 K. Add dimension key to package. Remove HAPI. Update diagrams, registers and specs.		
*C	335236	НМТ	See ECN	Add CY logo. Update CY copyright. Update new CY.com URLs. Re-add ISSP programming pinout notation. Add Reflow Temp. table. Update features (MAC, Oscillator, and voltage range), registers (INT_CLR2/MSK2, second MAC), and specs. (Rext, IMO, analog output buffer).		
*D	344318	HMT	See ECN	Add new color and logo. Expand analog arch. diagram. Fix I/O #. Update Electrical Specifications.		
*E	346774	HMT	See ECN	Add USB temperature specifications. Make datasheet Final.		
*F	349566	HMT	See ECN	Remove USB logo. Add URL to preferred dimensions for mounting MLF packages.		
*G	393164	HMT	See ECN	Add new device, CY8C24894 56-pin MLF with XRES pin. Add Fimousb3v char. to specs. Upgrade to CY Perform logo and update corporate address and copyright.		
*H	469243	HMT	See ECN	Add ISSP note to pinout tables. Update typical and recommended Storage Temperature per industrial specs. Update Low Output Level maximum I/OL budget. Add FLS_PR1 to Register Map Bank 1 for users to specify which Flash bank should be used for SROM operations. Add two new devices for a 68-pin QFN and 100-ball VFBGA under RPNs: CY8C24094 and CY8C24994. Add two packages for 68-pin QFN. Add OCD non-production pinouts and package diagrams. Update CY branding and QFN convention. Add new Dev. Tool section. Update copyright and trademarks.		
*	561158	HMT	See ECN	Add Low Power Comparator (LPC) AC/DC electrical spec. tables. Add CY8C20x34 to PSoC Device Characteristics table. Add detailed dimensions to 56-pin QFN package diagram and update revision. Secure one package diagram/manufacturing per QFN. Update emulation pod/feet kit part numbers. Fix pinout type-o per TestTrack.		
*J	728238	НМТ	See ECN	Add CapSense SNR requirement reference. Update figure standards. Update Technical Training paragraphs. Add QFN package clarifications and dimensions. Update ECN-ed Amkor dimensioned QFN package diagram revisions. Reword SNR reference. Add new 56-pin QFN spec.		
*K	2552459	AZIE / PYRS	08/14/08	Add footnote on AGND descriptions to avoid using P2[4] for digital signaling as it may add noise to AGND. Remove reference to CMP_GO_EN1 in Map Bank 1 Table on Address 65; this register has no functionality on 24xxx. Add footnote on die sales. Add description 'Optional External Clock Input' on P1[4] to match description of P1[4].		
*L	2616550	OGNE / PYRS	12/05/08	Updated Programmable Pin Configuration detail. Changed title from PSoC® Mixed-Signal Array to PSoC® Programmable System-on-Chip™		
*M	2657956	DPT / PYRS	02/11/09	Added package diagram 001-09618 and updated Ordering Information table		

19. Document History Page (continued)

Document Document	Title: CY8C Number: 38	24094/CY8C 3-12018	24794/CY8C2	4894/CY8C24994, PSoC [®] Programmable System-on-Chip™
AD	3503402	PMAD	01/20/2012	Updated V _{OH} and V _{OL} section in Table 12.
AE	3545509	PSAI	03/08/2012	Updated link to 'Technical reference Manual'.
AF	3862667	CSAI	01/09/2013	Updated Ordering Information (Updated part numbers). Updated Packaging Dimensions: spec 001-53450 – Changed revision from *B to *C. spec 001-09618 – Changed revision from *D to *E. spec 51-85048 – Changed revision from *E to *G.
AG	3979302	CSAI	04/23/2013	Updated Packaging Dimensions: spec 001-58740 – Changed revision from ** to *A. Added Errata.
AH	4074544	CSAI	07/23/2013	Added Errata Footnotes (Note 21, 23) Updated Electrical Specifications: Updated DC Electrical Characteristics: Updated DC Chip-Level Specifications: Added Note 21 and referred the same note in "Sleep Mode" in description of I _{SB} parameter in Table 11. Updated DC POR and LVD Specifications: Added Note 23 and referred the same note in V _{PPOR0} , V _{PPOR1} , V _{PPOR2} parameters in Table 22. Updated to new template.
Al	4596835	DIMA	12/15/2014	Updated Pin Information: Updated 56-Pin Part Pinout: Updated Table 2: Added Note 5 and referred the same note in description of pin 19 and pin 50. Updated Table 3: Added Note 8 and referred the same note in description of pin 19 and pin 50. Updated Table 3: Added Note 8 and referred the same note in description of pin 7, pin 20 and pin 60. Updated Table 4: Added Note 10 and referred the same note in description of pin 7, pin 20 and pin 60. Updated Table 5: Added Note 13 and referred the same note in description of pin 7, pin 20 and pin 60. Updated Table 5: Added Note 13 and referred the same note in description of pin 7, pin 20 and pin 60. Updated Table 6: Added Note 15 and referred the same note in caption of Table 6. Updated Table 6: Added Note 15 and referred the same note in caption of Table 6. Updated Table 7: Added Note 17 and referred the same note in caption of Table 7. Updated Table 7: Added Note 19 and referred the same note in caption of Table 7. Updated Table 7: Added Note 19 and referred the same note in caption of Table 7. Updated Table 8: Added Note 19 and referred the same note in caption of Table 8. Updated Packaging Dimensions: spec 001-12921 – Changed revision from *B to *C. spec 001-53450 – Changed revision from *C to *D. spec 51-85048 – Changed revision from *G to *I. Completing Sunset Review.
AJ	4622083	SLAN	01/13/2015	Added More Information section.
AK	4684565	PSI	03/12/2015	Updated Packaging Dimensions: spec 001-58740 – Changed revision from *A to *B. Updated Errata.
AL	5699855	AESATP12	04/20/2017	Updated logo and copyright.