

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 48x14b; D/A 2x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	56-UFQFN Exposed Pad
Supplier Device Package	56-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24794-24lqxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.4 Additional System Resources

System resources provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, low-voltage detection, and power-on reset (POR). Brief statements describing the merits of each resource follow.

- Full speed USB (12 Mbps) with five configurable endpoints and 256 bytes of RAM. No external components required except for two series resistors. Wider than commercial temperature USB operation (-10 °C to +85 °C).
- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks are generated using digital PSoC blocks as clock dividers.
- Two multiply accumulates (MACs) provide fast 8-bit multipliers with 32-bit accumulate, to assist in both general math and digital filters.

- Decimator provides a custom hardware filter for digital signal processing applications including creation of Delta Sigma ADCs.
- The I²C module provides 100- and 400-kHz communication over two wires. Slave, master, multi-master are supported.
- Low-voltage detection interrupts signal the application of falling voltage levels, while the advanced POR circuit eliminates the need for a system supervisor.
- An internal 1.3-V reference provides an absolute reference for the analog system, including ADCs and DACs.
- Versatile analog multiplexer system.

5.5 PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. The following table lists the resources available for specific PSoC device groups. The device covered by this datasheet is shown in the highlighted row of the table.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[1]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45	up to 38	2	8	up to 38	0	4	6 ^[1]	1 K	16 K
CY8C21x45	up to 24	1	4	up to 24	0	4	6 ^[1]	512	8 K
CY8C21x34	up to 28	1	4	up to 28	0	2	4 ^[1]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[1]	256	4 K
CY8C20x34	up to 28	0	0	up to 28	0	0	3 ^[1,2]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[1,2]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

Notes

1. Limited analog functionality.

2. Two analog blocks and one CapSense®.

read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows you to create a trace buffer of registers and memory locations of interest.

7.1.4 Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an online support forum to aid the designer.

8. Designing with PSoC Designer

The development process for the PSoC[®] device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is summarized in four steps:

- 1. Select User Modules
- 2. Configure User Modules
- 3. Organize and Connect
- 4. Generate, Verify, and Debug

8.1 Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

8.2 Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

7.1.5 In-Circuit Emulator

A low-cost, high-functionality In-Circuit Emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24-MHz) operation.

8.3 Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

8.4 Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in either C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events. These include monitoring address and data bus values, memory locations and external signals.

10. Register Reference

This section lists the registers of the CY8C24x94 PSoC device family. For detailed register information, see the *PSoC Technical Reference Manual*.

10.1 Register Conventions

The register conventions specific to this section are listed in the following table.

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

10.2 Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks, Bank 0 and Bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set to 1, the user is in Bank 1.

Note In the following register mapping tables, blank fields are Reserved and should not be accessed.

11.3.4 DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

The operational amplifier is a component of both the analog continuous time PSoC blocks and the analog switched capacitor PSoC blocks. The guaranteed specifications are measured in the analog continuous time PSoC block.

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -	1.6 1.3 1.2	10 8 7.5	mV mV mV	
TCV _{OSOA}	Average input offset voltage drift	-	7.0	35.0	µV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	-	20	-	pА	Gross tested to 1 µA.
C _{INOA}	Input capacitance (Port 0 analog pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common mode voltage range Common mode voltage range (high power or high Opamp bias)	0.0 0.5	_	V _{DD} V _{DD} – 0.5	> >	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open loop gain Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	60 60 80		_ _ _	dB dB dB	
V _{OHIGHOA}	High output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	V _{DD} - 0.2 V _{DD} - 0.2 V _{DD} - 0.5		_ _ _	V V V	
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -		0.2 0.2 0.5	V V V	
ISOA	Supply current (including associated AGND buffer) Power = low, Opamp bias = low Power = low, Opamp bias = high Power = medium, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = low Power = high, Opamp bias = high		400 500 800 1200 2400 4600	800 900 1000 1600 3200 6400	μΑ μΑ μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply voltage rejection ratio	65	80	-	dB	$ \begin{array}{l} V_{SS} \leq V_{IN} \leq (V_{DD}-2.25) \text{ or} \\ (V_{DD}-1.25 \text{ V}) \leq V_{IN} \leq V_{DD}. \end{array} $

 Table 14. 5-V DC Operational Amplifier Specifications

Table 20. 3.3-V DC Analog Reference Specifications (continue
--

Refer- ence ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit s
0b110	RefPower = high	V _{REFHI}	Ref High	2 × Bandgap	2.510	2.595	2.655	V
	Opamp bias = high	V _{AGND}	AGND	Bandgap	1.276	1.301	1.332	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.006	V _{SS} + 0.031	V
	RefPower = high	V _{REFHI}	Ref High	2 × Bandgap	2.513	2.594	2.656	V
	Opamp bias = low		AGND	Bandgap	1.275	1.301	1.331	V
		V _{AGND} V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.021	V
	RefPower =	V _{REFHI}	Ref High	2 × Bandgap	2.516	2.595	2.657	V
	medium Opamp bias = high	V _{AGND}	AGND	Bandgap	1.275	1.301	1.331	V
	Opamp bias – nigh	V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.017	V
	RefPower =	V _{REFHI}	Ref High	2 × Bandgap	2.520	2.595	2.658	V
	medium Opamp bias = low	V _{AGND}	AGND	Bandgap	1.275	1.300	1.331	V
	Opamp blas – low	V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.002	V _{SS} + 0.015	V
0b111	All power settings. Not allowed for 3.3 V.	-	-	-	-	-	_	-

11.3.8 DC Analog PSoC Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 21. DC Analog PSoC Block Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{CT}	Resistor unit value (continuous time)	-	12.2	-	kΩ	
C _{SC}	Capacitor unit value (switched capacitor)	-	80	-	fF	

11.3.9 DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V or 3.3 V at 25 °C and are for design guidance only.

11.4 AC Electrical Characteristics

11.4.1 AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 25. AC Chip Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO245V}	Internal main oscillator frequency for 24 MHz (5 V)	23.04	24	24.96 ^[29]	MHz	Trimmed for 5 V operation using factory trim values.
F _{IMO243V}	Internal main oscillator frequency for 24 MHz (3.3 V)	22.08	24	25.92 ^[30]	MHz	Trimmed for 3.3 V operation using factory trim values.
F _{IMOUSB5V}	Internal main oscillator frequency with USB (5 V) Frequency locking enabled and USB traffic present.	23.94	24	24.06	MHz	$-10 \text{ °C} \le T_A \le 85 \text{ °C}$ $4.35 \le V_{DD} \le 5.15$
F _{IMOUSB3V}	Internal main oscillator frequency with USB (3.3 V) Frequency locking enabled and USB traffic present.	23.94	24	24.06	MHz	$\begin{array}{l} -0 \ ^{\circ}C \leq T_{A} \leq 70 \ ^{\circ}C \\ 3.15 \leq V_{DD} \leq 3.45 \end{array}$
F _{CPU1}	CPU frequency (5 V nominal)	0.093	24	24.96 ^[29]	MHz	SLIMO Mode = 0.
F _{CPU2}	CPU frequency (3.3 V nominal)	0.086	12	12.96 ^[30]	MHz	SLIMO Mode = 0.
F _{BLK5}	Digital PSoC block frequency (5 V nominal)	0	48	49.92 ^[29,31]	MHz	Refer to the AC digital block Specifications.
F _{BLK3}	Digital PSoC block frequency (3.3 V nominal)	0	24	25.92 ^[31]	MHz	
F _{32K1}	Internal low speed oscillator frequency	15	32	64	kHz	
F _{32K_U}	Internal low speed oscillator untrimmed frequency	5	-	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference Manual for details on this timing
t _{XRST}	External reset pulse width	10	—	-	μs	
DC24M	24 MHz duty cycle	40	50	60	%	
DC _{ILO}	Internal low speed oscillator duty cycle	20	50	80	%	
Step24M	24 MHz trim step size	-	50	-	kHz	
Fout48M	48 MHz output frequency	46.08	48.0	49.92 ^[29,30]	MHz	Trimmed. Utilizing factory trim values.
F _{MAX}	Maximum frequency of signal on row input or row output.	-	_	12.96	MHz	
SR _{POW-} ER_UP	Power supply slew rate	-	-	250	V/ms	V _{DD} slew rate during power-up.

Notes

For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. See the Flash APIs application note Design Aids – Reading and Writing PSoC[®] Flash – AN2015 for more information.
 All GPIOs meet the DC GPIO V_{IL} and V_{IH} specifications found in the DC GPIO Specifications sections. The I²C GPIO pins also meet the mentioned specifications.

^{26.} The 50,000 cycle flash endurance per block is only guaranteed if the flash is operating within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V.
27. A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36 × 1 blocks of 50,000 maximum cycles each, 36 × 2 blocks of 25,000 maximum cycles each, or 36 × 4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36 × 50,000 and ensure that no single block ever sees more than 50,000 cycles).

11.4.4 AC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Settling times, slew rates, and gain bandwidth are based on the analog continuous time PSoC block.

Power = high and Opamp bias = high is not supported at 3.3 V.

Table 28.	5-V AC Operational Amplifier Specifications
-----------	---

Symbol	Description	Min	Тур	Max	Units
t _{ROA}	Rising settling time from 80% of ΔV to 0.1% of ΔV (10 pF load, unity gain)				
	Power = low, Opamp bias = low	-	-	3.9	μs
	Power = medium, Opamp bias = high	-	-	0.72	μs
	Power = high, Opamp bias = high	-	—	0.62	μs
t _{SOA}	Falling settling time from 20% of ΔV to 0.1% of ΔV (10 pF load, unity gain)				
	Power = low, Opamp bias = low	-	_	5.9	μs
	Power = medium, Opamp bias = high	-	-	0.92	μs
	Power = high, Opamp bias = high	-	-	0.72	μs
SR _{ROA}	Rising slew rate (20% to 80%)(10 pF load, unity gain)				
	Power = low, Opamp bias = low	0.15	-	-	V/µs
	Power = medium, Opamp bias = high	1.7	_	-	V/µs
	Power = high, Opamp bias = high	6.5	-	-	V/µs
SR _{FOA}	Falling slew rate (20% to 80%)(10 pF load, unity gain)				
	Power = low, Opamp bias = low	0.01	_	-	V/µs
	Power = medium, Opamp bias = high	0.5	-	_	V/µs
	Power = high, Opamp bias = high	4.0	_	-	V/µs
BW _{OA}	Gain bandwidth product				
	Power = low, Opamp bias = low	0.75	-	-	MHz
	Power = medium, Opamp bias = high	3.1	-	—	MHz
	Power = high, Opamp bias = high	5.4	-	_	MHz
E _{NOA}	Noise at 1 kHz (Power = medium, Opamp bias = high)	-	100	_	nV/rt-Hz

Table 29. 3.3-V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units
t _{ROA}	Rising settling time from 80% of ΔV to 0.1% of ΔV				
	(10 pF load, unity gain)			0.00	
	Power = low, Opamp bias = low	-	-	3.92	μs
	Power = medium, Opamp bias = high	-	_	0.72	μs
t _{SOA}	Falling settling time from 20% of ΔV to 0.1% of ΔV (10 pF load, unity gain)				
	Power = low, Opamp bias = low	-	_	5.41	μs
	Power = medium, Opamp bias = high	-	-	0.72	μs
SR _{ROA}	Rising slew rate (20% to 80%)(10 pF load, unity gain)				
_	Power = low, Opamp bias = low	0.31	-	-	V/µs
	Power = medium, Opamp bias = high	2.7	-	-	V/µs
SR _{FOA}	Falling slew rate (20% to 80%)(10 pF load, Unity Gain)				
1 671	Power = low, Opamp bias = low	0.24	-	_	V/µs
	Power = medium, Opamp bias = high	1.8	-	-	V/µs
BW _{OA}	Gain bandwidth product				
	Power = low, Opamp bias = low	0.67	-	-	MHz
	Power = medium, Opamp bias = high	2.8	-	—	MHz
E _{NOA}	Noise at 1 kHz (Power = medium, Opamp bias = high)	-	100	-	nV/rt-Hz

11.4.5 AC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V at 25 °C and are for design guidance only.

Table 30. AC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RLPC}	LPC response time	_	1	50	μs	\geq 50 mV overdrive comparator reference set within V_{REFLPC}.

11.4.6 AC Digital Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, or 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 31. AC Digital Block Specifications

Function	Description	Min	Тур	Max	Unit	Notes
All	Block input clock frequency					
functions	$V_{DD} \ge 4.75 \text{ V}$	-	-	49.9 2	MHz	
	V _{DD} < 4.75 V	_	-	25.9 2	MHz	
Timer	Input clock frequency					
	No capture, $V_{DD} \ge 4.75 V$	_	-	49.9 2	MHz	
	No capture, V _{DD} < 4.75 V	-	-	25.9 2	MHz	
	With capture	-	-	25.9 2	MHz	
	Capture pulse width	50 ^[33]	_	-	ns	
Counter	Input clock frequency	•			•	
	No enable input, $V_{DD} \ge 4.75$ V	-	-	49.9 2	MHz	
	No enable input, V _{DD} < 4.75 V	_	-	25.9 2	MHz	
	With enable input	-	-	25.9 2	MHz	
	Enable input pulse width	50 ^[33]	-	-	ns	
	Kill pulse width					
	Asynchronous restart mode	20	_	-	ns	
	Synchronous restart mode	50 ^[33]	-	-	ns	
	Disable mode	50 ^[33]	Ι	-	ns	
	Input clock frequency	•		-		
	$V_{DD} \ge 4.75 \text{ V}$	-	-	49.9 2	MHz	
	V _{DD} < 4.75 V	_	I	25.9 2	MHz	

11.4.8 AC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 33. 5-V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{ROB}	Rising settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high			2.5 2.5	μs μs	
t _{SOB}	Falling settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high	-		2.2 2.2	μs μs	
SR _{ROB}	Rising slew rate (20% to 80%), 1 V Step, 100 pF load Power = low Power = high	0.65 0.65		_ _	V/µs V/µs	
SR _{FOB}	Falling slew rate (80% to 20%), 1 V Step, 100 pF load Power = low Power = high	0.65 0.65	_ _	_ _	V/µs V/µs	
BW _{OBSS}	Small signal bandwidth, 20 mV _{pp} , 3 dB BW, 100 pF load Power = low Power = high	0.8 0.8	_ _	_ _	MHz MHz	
BW _{OBLS}	Large signal bandwidth, 1 V _{pp} , 3 dB BW, 100 pF load Power = low Power = high	300 300	_ _	_ _	kHz kHz	

Table 34. 3.3-V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{ROB}	Rising settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high	-	_ _	3.8 3.8	μs μs	
t _{SOB}	Falling settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high		-	2.6 2.6	μs μs	
SR _{ROB}	Rising slew rate (20% to 80%), 1 V Step, 100 pF load Power = low Power = high	0.5 0.5	_ _	_ _	V/µs V/µs	
SR _{FOB}	Falling slew rate (80% to 20%), 1 V Step, 100 pF load Power = low Power = high	0.5 0.5	_ _	_ _	V/µs V/µs	
BW _{OBSS}	Small signal bandwidth, 20 mV _{pp} , 3dB BW, 100 pF load Power = low Power = high	0.7 0.7		_ _	MHz MHz	
BW _{OBLS}	Large signal bandwidth, 1 V _{pp} , 3dB BW, 100 pF load Power = low Power = high	200 200	_ _	_ _	kHz kHz	

11.4.9 AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at to 5 V and 3.3 V at 25 °C and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RSCLK}	Rise time of SCLK	1	-	20	ns	
t _{FSCLK}	Fall time of SCLK	1	-	20	ns	
t _{SSCLK}	Data setup time to falling edge of SCLK	40	-	-	ns	
t _{HSCLK}	Data hold time from falling edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
t _{ERASEB}	Flash erase time (block)	-	10	-	ms	
t _{WRITE}	Flash block write time	-	40	-	ms	
t _{DSCLK}	Data out delay from falling edge of SCLK	-	-	45	ns	V _{DD} > 3.6
t _{DSCLK3}	Data out delay from falling edge of SCLK	-	-	50	ns	$3.0 \leq V_{DD} \leq 3.6$
t _{ERASEALL}	Flash erase time (bulk)	-	40	-	ms	Erase all blocks and protection fields at once
t _{PROGRAM_HOT}	Flash block erase + flash block write time	-	-	100 ^[34]	ms	$0~^\circ C \leq Tj \leq 100~^\circ C$
^t program_cold	Flash block erase + flash block write time	-	-	200 ^[34]	ms	$-40 \ ^{\circ}C \le Tj \le 0 \ ^{\circ}C$

Table 35. AC Programming Specifications

Note

34. For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. See the Flash APIs application note Design Aids – Reading and Writing PSoC[®] Flash – AN2015 for more information.

12. Development Tool Selection

12.1 Software

12.1.1 PSoC Designer

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at http://www.cypress.com and includes a free C compiler.

12.1.2 PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube in-circuit emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com.

12.2 Development Kits

All development kits can be purchased from the Cypress Online Store.

12.2.1 CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation, and the software interface enables you to run, halt, and single step the processor, and view the content of specific memory locations. Advance emulation features are also supported through PSoC Designer. The kit includes:

- PSoC Designer software CD
- ICE-Cube in-circuit Emulator
- ICE Flex-Pod for CY8C29x66 family
- Cat-5 adapter
- MiniEval programming board
- 110 ~ 240 V power supply, Euro-Plug adapter
- iMAGEcraft C compiler (registration required)
- ISSP cable
- USB 2.0 cable and Blue Cat-5 cable
- Two CY8C29466-24PXI 28-PDIP chip samples

12.3 Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store.

12.3.1 CY3210-MiniProg1

The CY3210-MiniProg1 kit enables you to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval socket programming and evaluation board
- 28-Pin CY8C29466-24PXI PDIP PSoC device sample

- 28-Pin CY8C27443-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

12.3.2 CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

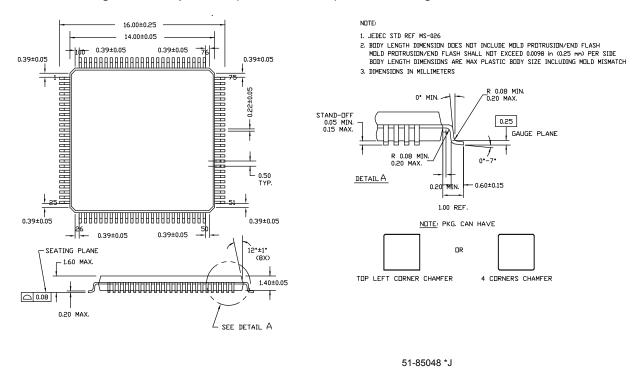
- Evaluation board with LCD module
- MiniProg programming unit
- 28-Pin CY8C29466-24PXI PDIP PSoC device sample (2)
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

12.3.3 CY3214-PSoCEvalUSB

The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LTXI PSoC device. The board supports both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- PSoCEvalUSB board
- LCD module
- MIniProg programming unit
- Mini USB cable
- PSoC Designer and Example Projects CD
- Getting Started guide
- Wire pack

12.4 Device Programmers


All device programmers can be purchased from the Cypress Online Store.

12.4.1 CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular programmer base
- Three programming module cards
- MiniProg programming unit
- PSoC Designer software CD

Figure 21. 100-pin TQFP (14 × 14 × 1.4 mm) A100SA Package Outline, 51-85048

Important Note

- For information on the preferred dimensions for mounting QFN packages, see the Application Note, Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com.
- Pinned vias for thermal conduction are not required for the low power PSoC device.

16. Document Conventions

16.1 Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	mV	millivolt
dB	decibels	nA	nanoampere
fF	femtofarad	ns	nanosecond
kHz	kilohertz	nV	nanovolt
kΩ	kilohms	Ω	ohms
MHz	megahertz	рА	picoampere
μΑ	microampere	pF	picofarad
μs	microsecond	ps	picosecond
μV	microvolt	%	percent
mA	milliampere	rt-Hz	root hertz
mm	millimeter	V	volt
ms	millisecond	W	watt

16.2 Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, '01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimal.

17. Glossary

active high	6. A logic signal having its asserted state as the logic 1 state.7. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
API (Application Programming Interface)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
Bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.
bias	1. A systematic deviation of a value from a reference value.
	2. The amount by which the average of a set of values departs from a reference value.
	3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.

17. Glossary (continued)

external reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.
flash	An electrically programmable and erasable, non-volatile technology that provides users with the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is off.
Flash block	The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash space that may be protected. A Flash block holds 64 bytes.
frequency	The number of cycles or events per unit of time, for a periodic function.
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.
ICE	The in-circuit emulator that allows users to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).
input/output (I/O)	A device that introduces data into or extracts data from a system.
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.
low-voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls lower than a selected threshold.
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the Flash, SRAM, and register space.
master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .
microcontroller	An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for general-purpose computation as is a microprocessor.
mixed-signal	The reference to a circuit containing both analog and digital techniques and components.

17. Glossary (continued)

modulator	A device that imposes a signal on a carrier.
noise	 A disturbance that affects a signal and that may distort the information carried by the signal. The random variations of one or more characteristics of any entity such as voltage, current, or data.
oscillator	A circuit that may be crystal controlled and is used to generate a clock frequency.
parity	A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).
phase-locked loop (PLL)	An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference signal.
pinouts	The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names.
port	A group of pins, usually eight.
power on reset (POR)	A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is one type of hardware reset.
PSoC [®]	Cypress Semiconductor's PSoC [®] is a registered trademark and Programmable System-on-Chip™ is a trademark of Cypress.
PSoC Designer™	The software for Cypress' Programmable System-on-Chip technology.
pulse width modulator (PWM)	An output in the form of duty cycle which varies as a function of the applied measurand)
RAM	An acronym for random access memory. A data-storage device from which data can be read out and new data can be written in.
register	A storage device with a specific capacity, such as a bit or byte.
reset	A means of bringing a system back to a know state. See hardware reset and software reset.
ROM	An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot be written in.
serial	 Pertaining to a process in which all events occur one after the other. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.
shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.

18. Errata

This section describes the errata for the CY8C24x94 device. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	
CY8C24x94	

CY8C24x94 Errata Summary

The following table defines the errata applicability to available devices.

Items	Part Number
 The DP line of the USB interface may pulse low when the PSoC device wakes from sleep causing an unexpected wake-up of the host computer. 	CY8C24x94
2. Invalid Flash reads may occur if Vdd is pulled to -0.5 V just before power on.	CY8C24x94
3. PMA Index Register fails to auto-increment with CPU_Clock set to SysClk/1 (24 MHz).	CY8C24x94
4. The Internal Main Oscillator (IMO) frequency parameter (FIMO245V) may increase over a period of time during usage in the field and exceed the maximum spec limit of 24.96 MHz.	CY8C24x94

1. The DP line of the USB interface may pulse low when the PSoC device wakes from sleep causing an unexpected wake-up of the host computer.

PROBLEM DEFINITION

When the device is operating at 4.75 V to 5.25 V and the 3.3 V regulator is enabled, a short low pulse may be created on the DP signal line during device wake-up. The 15-20 μ s low pulse of the DP line may be interpreted by the host computer as a deattach or the beginning of a wake-up.

■ TRIGGER CONDITION(S)

The bandgap reference voltage used by the 3.3 V regulator decreases during sleep due to leakage. Upon device wake up, the bandgap is reenabled and after a delay for settling, the 3.3 V regulator is enabled. On some devices the 3.3 V regulator that is used to generate the USB DP signal may be enabled before the bandgap is fully stabilized. This can cause a low pulse on the regulator output and DP signal line until the bandgap stabilizes. In applications where Vdd is 3.3 V, the regulator is not used and therefore the DP low pulse is not generated.

WORKAROUND

To prevent the DP signal from pulsing low, keep the bandgap enabled during sleep. The most efficient method is to set the No Buzz bit in the OSC_CR0 register. The No Buzz bit keeps the bandgap powered and output stable during sleep. Setting the No Buzz bit results in nominal 100 μ A increase to sleep current. Leaving the analog reference block enabled during sleep also resolves this issue because it forces the bandgap to remain enabled. An example for disabling the No Buzz bit is listed below.

Assembly

С

```
M8C_SetBank1
or reg[OSC_CR0], 0x20
M8C_SetBank0
```

OSC CR0 |= 0x20;

2. Invalid Flash reads may occur if Vdd is pulled to -0.5 V just before power on.

■ PROBLEM DEFINITION

When Vdd of the device is pulled below ground just before power on, the first read from each 8K Flash page may be corrupted. This issue does not affect Flash page 0 because it is the selected page upon reset.

TRIGGER CONDITION(S)

When Vdd is pulled below ground before power on, an internal Flash reference may deviate from its nominal voltage. The reference deviation tends to result in the first Flash read from that page returning 0xFF. During the first read from each page, the reference is reset resulting in all future reads returning the correct value. A short delay of 5 µs before the first real read provides time for the reference voltage to stabilize.

WORKAROUND

To prevent an invalid Flash read, a dummy read from each Flash page must occur before use of the pages. A delay of 5 µs must occur after the dummy read and before a real read. The dummy reads occurs as soon as possible and must be located in Flash page 0 before a read from any other Flash page. An example for reading a byte of memory from each Flash page is listed below. Placed it in boot.tpl and boot.asm immediately after the 'start:' label.

// dummy read from each 8K Flash page // page 1 mov A, 0x20 // MSB mov X, 0x00 // LSB romx // wait at least 5 µs mov X, 14 loop1: dec X jnz loop1

3. PMA Index Register fails to auto-increment with CPU_Clock set to SysClk/1 (24 MHz).

■ PROBLEM DEFINITION

When the device is operating at 4.75 to 5.25 V and the CPU_Clock is set to SysClk/1 (24 MHz), the USB PMA Index Register may fail to increment automatically when used in an OUT endpoint configuration at Full-Speed. When the application program attempts to use the bReadOutEP() function the first byte in the PMA buffer is always returned.

TRIGGER CONDITION(S)

An internal flip-flop hold problem associated with Index Register increment function. All reads of the associated RAM originate from the first byte. The hold problem has no impact on other circuits or functions within the device.

WORKAROUND

To make certain that the index register properly increments, set the CPU_Clock to SysClk/2 (12 MHz) during the read of the PMA buffer. An example for the clock adjustment method is listed below.

PSoC Designer[™] 4.3 User Module workaround: PSoC Designer Release 4.3 and subsequent releases includes a revised full-speed USB User Module with the revised firmware work-around included (see example below).

```
;;
;; 24 MHz read PMA workaround
;;
M8C SetBank1
mov A, reg[OSC CR0]
push A
and A, 0xf8 ;clear the clock bits (briefly chg the cpu clk to 3 MHz)
or A, 0x02 ;will set clk to 12Mhz
mov reg[OSC CR0], A ; clk is now set at 12 MHz
M8C SetBank0
.loop:
   mov A, reg[PMA0_DR] ; Get the data from the PMA space
   mov [X], A ; save it in data array
   inc X ; increment the pointer
   dec [USB APITemp+1] ; decrement the counter
   jnz .loop ; wait for count to zero out
;;
;; 24MHz read PMA workaround (back to previous clock speed)
;;
pop A ; recover previous reg[OSC CR0] value
M8C SetBank1
mov reg[OSC CR0], A ; clk is now set at previous value
M8C SetBank0
;;
     end 24Mhz read PMA workaround
;;
```


4. The Internal Main Oscillator (IMO) frequency parameter (FIMO245V) may increase over a period of time during usage in the field and exceed the maximum spec limit of 24.96 MHz.

■ PROBLEM DEFINITION

When the device has been operating at 4.75 V to 5.25 V for a cumulatively long duration in the field, the IMO Frequency may slowly increase over the duration of usage in the field and eventually exceed the maximum spec limit of 24.96 MHz. This may affect applications that are sensitive to the max value of IMO frequency, such as those using UART communication and result in a functional failure.

TRIGGER CONDITION(S)

Very long (cumulative) usage of the device in the operating voltage range of 4.75V to 5.25V, with the IMO clock running continuously, could lead to the degradation. Higher power supply voltage and lower ambient temperature are worst-case conditions for the degradation.

WORKAROUND

Operating the device with the power supply voltage range of 3.0 V to 3.6 V, would avoid the degradation of IMO Frequency beyond the max spec limit of 24.96 MHz.

FIX STATUS

A new revision of the silicon, with a fix for this issue, is expected to be available from August 1st 2015.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP| PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2004-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or of affect its safety or effectiveness. Cypress products. You shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.