

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	<u>.</u>
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 48x14b; D/A 2x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	56-UFQFN Exposed Pad
Supplier Device Package	56-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24794-24lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Programmers			46
Accessories (Emulation and Programr	ning)		47
ORDERING INFORMATION			48
PACKAGING DIMENSIONS			49
ACRONYMS			54
Acronyms Used			54
DOCUMENT CONVENTIONS			55
GLOSSARY			55
ERRATA			60
Part Numbers Affected	60	CY8C24x94 Errata Summary	60
DOCUMENT HISTORY PAGE			64
SALES, SOLUTIONS, AND LEGAL INFO	ORMATION		67
Worldwide Sales and Design Support		Cypress Developer Community	
Products		Technical Support	67
PSoC® Solutions	67		

read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows you to create a trace buffer of registers and memory locations of interest.

7.1.4 Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an online support forum to aid the designer.

8. Designing with PSoC Designer

The development process for the PSoC[®] device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is summarized in four steps:

- 1. Select User Modules
- 2. Configure User Modules
- 3. Organize and Connect
- 4. Generate, Verify, and Debug

8.1 Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

8.2 Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

7.1.5 In-Circuit Emulator

A low-cost, high-functionality In-Circuit Emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24-MHz) operation.

8.3 Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

8.4 Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in either C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events. These include monitoring address and data bus values, memory locations and external signals.

Pin Type

Figure 5 CY8C24894 56-Pin PSoC Device

9.2 56-Pin Part Pinout (with XRES)

Table 3. 56-Pin Part Pinout (QFN^[6])

Pin	ly	ре	Name	Description			Fig	ure 5.	CY8C24894 56-Pin PSoC Device
No.	Digital	Analog	Name	Description					
1	I/O	I, M	P2[3]	Direct switched capacitor block input				5	<u>2 2</u> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2	I/O	I, M	P2[1]	Direct switched capacitor block input				∠ 	22
3	I/O	М	P4[7]					ΣΣζ	
4	I/O	М	P4[5]					~2[5 ~2[7 ~0[1	P 0 [3] P 0 [5] V C d d P 0 [6] P 2 [6] P 2 [6] P 2 [6]
5	I/O	М	P4[3]						5 5 2 3 3 5 5 2 3 4 4 4 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9
6	I/O	М	P4[1]			A.I.M.	P2[3] = 1	55 54	ି ଜି ଜି ଜି ଜି ଦି ବି ବି ବି ବି ବି କି କି କ 42 ⊑ P2[2], A, I, M
7	I/O	М	P3[7]				P2[1] = 2		41 e P2[0], A, I, M
8	I/O	М	P3[5]				P4[7] = 3		40 = P4[6], M
9	I/O	М	P3[3]				P4[5] = 4 P4[3] = 5		39 ■ P4[4], M 38 ■ P4[2], M
10	I/O	M	P3[1]		-		P4[1] 6		38 – [4[2], M 37 – P4[0], M
11	I/O	M	P5[7]		-		P3[7] - 7		QFN 36 KRES
12	I/O	M	P5[5]				P3[5] = 8 P3[3] = 9		(Top View) 35 P3[4], M
13	I/O	M	P5[3]		-		P3[1] = 10	1	34 ➡ P3[2], M 33 ➡ P3[0], M
14	I/O	M	P5[1]	I ² C SCL	-	M, I	P5[7] 🗖 11		32 P 5[6], M
15 16	I/O I/O	M		I ² C SDA			P5[5] = 12		31 P 5[4], M
10	1/O	M	P1[5]	I-C SDA			P5[3] = 13 P5[1] = 14		30 ➡ P5[2], M 29 ➡ P5[0], M
17	1/O	M	P1[3] P1[1]	I ² C SCL, ISSP SCLK ^[7]	-			15 16 17	「 ほ び み お み な る な る な み ま
19		wer	V _{SS}	Ground connection ^[8]					
20		SB	VSS D+					P1[5 P1[5 P1[3	E12 SSV CDV C17 C17 C17 C17 C17 C17 C17 C17
20		SB	D+					SCL, SDA, M,	M. I2C SCL. M. I2C SDA, I EXTCLK, M, M,
22		wer	V _{DD}	Supply voltage	-			N N N N	
23	1/0		P7[7]						M, I2C EXTCL
24	I/O		P7[0]		-			2 2	2 2 1
25	1/O	М		I ² C SDA, ISSP SDATA ^[7]					
26	I/O	М	P1[2]						
27	I/O	М	P1[4]	Optional EXTCLK					
28	I/O	М	P1[6]						
29	I/O	М	P5[0]		Pin	Tv	pe		
30	I/O	М	P5[2]		No.		Analog	Name	Description
31	I/O	М	P5[4]		44	I/O	M	P2[6]	External VREF input
32	I/O	М	P5[6]		45	I/O	I, M	P0[0]	Analog column mux input
33	I/O	М	P3[0]		46	I/O	I, M	P0[2]	Analog column mux input
34	I/O	М	P3[2]		47	I/O	I, M	P0[4]	Analog column mux input VREF
35	I/O	М	P3[4]		48	I/O	I, M	P0[6]	Analog column mux input
36	Inj	put	XRES	Active high external reset with internal pull-down	49	Po	wer	V _{DD}	Supply voltage
37	I/O	М	P4[0]		50	Po	wer	V _{SS}	Ground connection ^[8]
38	I/O	М	P4[2]		51	I/O	I, M	P0[7]	Analog column mux input
39	I/O	М	P4[4]		52	I/O	I/O, M	P0[5]	Analog column mux input and column output
40	I/O	М	P4[6]		53	I/O	I/O, M	P0[3]	Analog column mux input and column output
41	I/O	I, M	P2[0]	Direct switched capacitor block input	54	I/O	I, M	P0[1]	Analog column mux input
42	I/O	I, M	P2[2]	Direct switched capacitor block input	55	I/O	М	P2[7]	
43	I/O	М	P2[4]	External AGND input	56	I/O	М	P2[5]	
		A I I	L I	$\Omega = \Omega$ utput, and $M = Analog Mux Input$		I	I	I	1

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Notes

The center pad on the QFN package should be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not High Z at POR. See the PSoC Technical Reference Manual for details.
 All V_{SS} pins should be brought out to one common GND plane.

9.6 100-Ball VFBGA Part Pinout (On-Chip Debug)

The following 100-pin VFBGA part table and drawing is for the CY8C24094 OCD PSoC device.

Note This part is only used for in-circuit debugging. It is NOT available for production.

Table 7. 100-Ball Part Pinout (VFBGA^[17])

A10Power V_{SS} Ground connectionF10I/OP7[1]B1Power V_{SS} Ground connectionG1OCDOOCD odd datB2Power V_{SS} Ground connectionG2I/OMP5[5]B3I/OI, MP2[1]Direct switched capacitor block inputG3I/OMP3[3]B4I/OI, MP0[1]Analog column mux inputG4I/OMP1[7]I²C SCLB5I/OI, MP0[7]Analog column mux inputG5I/OMP1[1]I²C SCL, ISSB6PowerV_DDSupply voltageG6I/OMP1[6]I²C SDA, ISSB7I/OI, MP0[2]Analog column mux inputG7I/OMP1[6]B8I/OI, MP2[2]Direct switched capacitor block inputG8I/OMP3[4]B9Power V_{SS} Ground connectionG9I/OMP5[6]B10Power V_{SS} Ground connectionG10I/OP7[2]	ection ection n reset with internal pull-down a output P SCLK ^[18]
A3NCNo connection. Pin must be left floatingF3I/OMP3[5]A4NCNo connection. Pin must be left floatingF4I/OMP5[1]A5NCNo connection. Pin must be left floating.F5Power V_{SS} Ground connectionA6PowerV_DDSupply voltage.F6Power V_{SS} Ground connectionA7NCNo connection. Pin must be left floating.F7I/OMP5[0]A8NCNo connection. Pin must be left floating.F8I/OMP3[6]A9Power V_{SS} Ground connectionF10I/OP7[1]A10Power V_{SS} Ground connectionF10I/OP7[1]B1Power V_{SS} Ground connectionG2I/OMP5[5]B3I/OI, MP2[1]Direct switched capacitor block inputG3I/OMP3[3]B4I/OI, MP0[1]Analog column mux inputG4I/OMP1[1]I²C SCLB5I/OI, MP0[2]Analog column mux inputG7I/OMP1[6]B8I/OI, MP2[2]Direct switched capacitor block inputG8I/OMP3[4]B9PowerV _{SS} Ground connectionG10I/OMP3[6]B10PowerV _{SS} Ground connectionG10I/OMP3[6]B10PowerV _{SS} <td>n reset with internal pull-down a output P SCLK^[18]</td>	n reset with internal pull-down a output P SCLK ^[18]
A4NCNo connection. Pin must be left floatingF4I/OMP5[1]A5NCNo connection. Pin must be left floating.F5Power V_{SS} Ground connectionA6Power V_{DD} Supply voltage.F6Power V_{SS} Ground connectionA7NCNo connection. Pin must be left floating.F7I/OMP5[0]A8NCNo connection. Pin must be left floating.F8I/OMP3[0]A9Power V_{SS} Ground connectionF9XRESActive high piA10Power V_{SS} Ground connectionF10I/OP7[1]B1Power V_{SS} Ground connectionG1OCDOOCD odd datB2Power V_{SS} Ground connectionG2I/OMP5[5]B3I/OI, MP2[1]Direct switched capacitor block inputG3I/OMP1[1]I²C SCLB5I/OI, MP0[7]Analog column mux inputG4I/OMP1[0]I²C SCL, ISSB6Power V_{DD} Supply voltageG6I/OMP1[0]I²C SCL, ISSB7I/OI, MP0[2]Direct switched capacitor block inputG7I/OMP1[6]B8I/OI, MP2[2]Direct switched capacitor block inputG8I/OMP3[4]B9Power V_{SS} Ground connectionG10I/OM <td>n reset with internal pull-down a output P SCLK^[18]</td>	n reset with internal pull-down a output P SCLK ^[18]
A5NCNo connection. Pin must be left floating.F5Power V_{SS} Ground connectionA6Power V_{DD} Supply voltage.F6Power V_{SS} Ground connectionA7NCNo connection. Pin must be left floating.F7I/OMP5[0]A8NCNo connection. Pin must be left floating.F8I/OMP3[0]A9Power V_{SS} Ground connectionF9XRESActive high piA10Power V_{SS} Ground connectionF10I/OP7[1]F11B1Power V_{SS} Ground connectionG1OCDOOCD odd datB2Power V_{SS} Ground connectionG2I/OMP5[5]B3I/OI, MP2[1]Direct switched capacitor block inputG3I/OMP3[3]B4I/OI, MP0[1]Analog column mux inputG4I/OMP1[1]I²C SCLB5I/OI, MP0[2]Analog column mux inputG7I/OMP1[6]B8I/OI, MP0[2]Direct switched capacitor block inputG8I/OMP3[4]B9PowerV _{SS} Ground connectionG9I/OMP3[4]B9PowerV _{SS} Ground connectionG9I/OMP5[6]B10PowerV _{SS} Ground connectionG10I/OP7[2]C1NCNo connecti	ection n reset with internal pull-down a output P SCLK ^[18]
A6Power V_{DD} Supply voltage.F6Power V_{SS} Ground connectionA7NCNo connection. Pin must be left floating.F7I/OMP5[0]A8NCNo connection. Pin must be left floating.F8I/OMP3[0]A9Power V_{SS} Ground connectionF9XRESActive high piA10Power V_{SS} Ground connectionF10I/OP7[1]B1Power V_{SS} Ground connectionG1OCDOOCD odd datB2Power V_{SS} Ground connectionG2I/OMP5[5]B3I/OI, MP2[1]Direct switched capacitor block inputG3I/OMP3[3]B4I/OI, MP0[1]Analog column mux inputG4I/OMP1[1]I²C SCLB5I/OI, MP0[7]Analog column mux inputG5I/OMP1[0]I²C SCL, ISSB6Power V_{DD} Supply voltageG6I/OMP1[0]I²C SDA, ISSB7I/OI, MP0[2]Direct switched capacitor block inputG8I/OMP3[4]B8I/OI, MP2[2]Direct switched capacitor block inputG8I/OMP3[4]B9Power V_{SS} Ground connectionG10I/OP7[2]C1C1NCNo connection. Pin must be left floatingH1NCNo connection </td <td>ection n reset with internal pull-down a output P SCLK^[18]</td>	ection n reset with internal pull-down a output P SCLK ^[18]
A7NCNo connection. Pin must be left floating.F7I/OMP5[0]A8NCNo connection. Pin must be left floating.F8I/OMP3[0]A9Power V_{SS} Ground connectionF9XRESActive high piA10Power V_{SS} Ground connectionF10I/OP7[1]B1Power V_{SS} Ground connectionG1OCDOOCD odd datB2Power V_{SS} Ground connectionG2I/OMP5[5]B3I/OI, MP2[1]Direct switched capacitor block inputG3I/OMP3[3]B4I/OI, MP0[1]Analog column mux inputG4I/OMP1[7]I²C SCLB5I/OI, MP0[7]Analog column mux inputG5I/OMP1[0]I²C SCL, ISSB6PowerV_DDSupply voltageG6I/OMP1[0]I²C SDA, ISSB7I/OI, MP0[2]Analog column mux inputG7I/OMP3[4]B8I/OI, MP2[2]Direct switched capacitor block inputG8I/OMP3[4]B9PowerV _{SS} Ground connectionG10I/OP7[2]C1C1NCNo connection. Pin must be left floatingH1NCNo connectionC2I/OMP4[1]H2I/OMP5[3]C3I/OMP4[1] <t< td=""><td>n reset with internal pull-down a output P SCLK^[18]</td></t<>	n reset with internal pull-down a output P SCLK ^[18]
A8NCNo connection. Pin must be left floating.F8I/OMP3(0)A9Power V_{SS} Ground connectionF9XRESActive high piA10Power V_{SS} Ground connectionF10I/OP7[1]B1Power V_{SS} Ground connectionG1OCDOOCD odd datB2Power V_{SS} Ground connectionG2I/OMP5[5]B3I/OI, MP2[1]Direct switched capacitor block inputG3I/OMP3[3]B4I/OI, MP0[1]Analog column mux inputG4I/OMP1[7]I²C SCLB5I/OI, MP0[7]Analog column mux inputG5I/OMP1[1]I²C SCL, ISSB6Power V_{DD} Supply voltageG6I/OMP1[0]I²C SDA, ISSB7I/OI, MP0[2]Analog column mux inputG7I/OMP1[6]B8I/OI, MP2[2]Direct switched capacitor block inputG8I/OMP3[4]B9Power V_{SS} Ground connectionG10I/OP7[2]C1C1NCNo connection. Pin must be left floatingH1NCNo connectionC2I/OMP4[1]H2I/OMP5[3]C3I/OMP4[7]H3I/OMP3[1]	a output
A9Power V_{SS} Ground connectionF9XRESActive high piA10Power V_{SS} Ground connectionF10I/OP7[1]P7[1]B1Power V_{SS} Ground connectionG1OCDOOCD odd datB2Power V_{SS} Ground connectionG2I/OMP5[5]B3I/OI, MP2[1]Direct switched capacitor block inputG3I/OMP3[3]B4I/OI, MP0[1]Analog column mux inputG4I/OMP1[7]I²C SCLB5I/OI, MP0[7]Analog column mux inputG5I/OMP1[1]I²C SCL, ISSB6Power V_{DD} Supply voltageG6I/OMP1[0]I²C SDA, ISSB7I/OI, MP0[2]Analog column mux inputG7I/OMP1[6]B8I/OI, MP2[2]Direct switched capacitor block inputG8I/OMP3[4]B9Power V_{SS} Ground connectionG10I/OMP5[6]B10Power V_{SS} Ground connectionG10I/OP7[2]C1NCNo connection. Pin must be left floatingH1NCNo connectionC2I/OMP4[1]H2I/OMP5[3]C3I/OMP4[7]H3I/OMP3[1]	a output
A10PowerVSSGround connectionF10I/OP7[1]B1PowerVSSGround connectionG1OCDOOCD odd datB2PowerVSSGround connectionG2I/OMP5[5]B3I/OI, MP2[1]Direct switched capacitor block inputG3I/OMP3[3]B4I/OI, MP0[1]Analog column mux inputG4I/OMP1[7]I²C SCLB5I/OI, MP0[7]Analog column mux inputG5I/OMP1[1]I²C SCL, ISSB6PowerVDDSupply voltageG6I/OMP1[0]I²C SDA, ISSB7I/OI, MP0[2]Analog column mux inputG7I/OMP1[6]B8I/OI, MP2[2]Direct switched capacitor block inputG8I/OMP3[4]B9PowerVSSGround connectionG10I/OP7[2]C1NCNo connection. Pin must be left floatingH1NCNo connectionC2I/OMP4[1]H2I/OMP5[3]C3I/OMP4[7]H3I/OMP3[1]	a output
B1Power V_{SS} Ground connectionG1OCDOOCDOOCD odd datB2Power V_{SS} Ground connectionG2I/OMP5[5]B3B3I/OI, MP2[1]Direct switched capacitor block inputG3I/OMP3[3]B4I/OI, MP0[1]Analog column mux inputG4I/OMP1[7]I²C SCLB5I/OI, MP0[7]Analog column mux inputG5I/OMP1[1]I²C SCL, ISSB6Power V_{DD} Supply voltageG6I/OMP1[0]I²C SDA, ISSB7I/OI, MP0[2]Analog column mux inputG7I/OMP1[6]B8I/OI, MP2[2]Direct switched capacitor block inputG8I/OMP3[4]B9Power V_{SS} Ground connectionG9I/OMP5[6]B10Power V_{SS} Ground connectionG10I/OP7[2]C1NCNo connection. Pin must be left floatingH1NCNo connectionC2I/OMP4[1]H2I/OMP5[3]	P SCLK ^[18]
B2Power V_{SS} Ground connectionG2I/OMP5[5]B3I/OI, MP2[1]Direct switched capacitor block inputG3I/OMP3[3]B4I/OI, MP0[1]Analog column mux inputG4I/OMP1[7]I ² C SCLB5I/OI, MP0[7]Analog column mux inputG5I/OMP1[1]I ² C SCL, ISSB6Power V_{DD} Supply voltageG6I/OMP1[0]I ² C SDA, ISSB7I/OI, MP0[2]Analog column mux inputG7I/OMP1[6]B8I/OI, MP2[2]Direct switched capacitor block inputG8I/OMP3[4]B9Power V_{SS} Ground connectionG9I/OMP5[6]B10Power V_{SS} Ground connectionG10I/OP7[2]C1NCNo connection. Pin must be left floatingH1NCNo connectionC2I/OMP4[1]H2I/OMP5[3]C3I/OMP4[7]H3I/OMP3[1]	P SCLK ^[18]
B3I/OI, MP2[1]Direct switched capacitor block inputG3I/OMP3[3]B4I/OI, MP0[1]Analog column mux inputG4I/OMP1[7]I ² C SCLB5I/OI, MP0[7]Analog column mux inputG5I/OMP1[1]I ² C SCL, ISSB6PowerV _{DD} Supply voltageG6I/OMP1[0]I ² C SDA, ISSB7I/OI, MP0[2]Analog column mux inputG7I/OMP1[6]B8I/OI, MP2[2]Direct switched capacitor block inputG8I/OMP3[4]B9PowerV _{SS} Ground connectionG9I/OMP5[6]B10PowerV _{SS} Ground connectionG10I/OP7[2]C1NCNo connection. Pin must be left floatingH1NCNo connectionC2I/OMP4[1]H2I/OMP5[3]C3I/OMP4[7]H3I/OMP3[1]	
B3I/OI, MP2[1]Direct switched capacitor block inputG3I/OMP3[3]B4I/OI, MP0[1]Analog column mux inputG4I/OMP1[7]I ² C SCLB5I/OI, MP0[7]Analog column mux inputG5I/OMP1[1]I ² C SCL, ISSB6PowerV _{DD} Supply voltageG6I/OMP1[0]I ² C SDA, ISSB7I/OI, MP0[2]Analog column mux inputG7I/OMP1[6]B8I/OI, MP2[2]Direct switched capacitor block inputG8I/OMP3[4]B9PowerV _{SS} Ground connectionG9I/OMP5[6]B10PowerV _{SS} Ground connectionG10I/OP7[2]C1NCNo connection. Pin must be left floatingH1NCNo connectionC2I/OMP4[1]H2I/OMP5[3]C3I/OMP4[7]H3I/OMP3[1]	
B5I/OI, MP0[7]Analog column mux inputG5I/OMP1[1] I^2C SCL, ISSB6PowerV_DDSupply voltageG6I/OMP1[0] I^2C SDA, ISSB7I/OI, MP0[2]Analog column mux inputG7I/OMP1[6]B8I/OI, MP2[2]Direct switched capacitor block inputG8I/OMP3[4]B9PowerV _{SS} Ground connectionG9I/OMP5[6]B10PowerV _{SS} Ground connectionG10I/OP7[2]C1NCNo connection. Pin must be left floatingH1NCNo connectionC2I/OMP4[1]H2I/OMP5[3]C3I/OMP4[7]H3I/OMP3[1]	
B6Power V_{DD} Supply voltageG6I/OMP1[0]I²C SDA, ISSB7I/OI, MP0[2]Analog column mux inputG7I/OMP1[6]B8I/OI, MP2[2]Direct switched capacitor block inputG8I/OMP3[4]B9Power V_{SS} Ground connectionG9I/OMP5[6]B10Power V_{SS} Ground connectionG10I/OP7[2]C1NCNo connection. Pin must be left floatingH1NCNo connectionC2I/OMP4[1]H2I/OMP5[3]C3I/OMP4[7]H3I/OMP3[1]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	P SDATA ^[18]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
B10 Power V _{SS} Ground connection G10 I/O P7[2] C1 NC No connection. Pin must be left floating H1 NC No connection C2 I/O M P4[1] H2 I/O M P5[3] C3 I/O M P4[7] H3 I/O M P3[1]	
C1 NC No connection. Pin must be left floating H1 NC No connection C2 I/O M P4[1] H2 I/O M P5[3] C3 I/O M P4[7] H3 I/O M P3[1]	
C2 I/O M P4[1] H2 I/O M P5[3] C3 I/O M P4[7] H3 I/O M P3[1]	n. Pin must be left floating
C3 I/O M P4[7] H3 I/O M P3[1]	
C5 I/O I/O M P1[0] P0[0] Analog column mux input and column output H5 I/O M P1[3]	
C6 I/O I, M P0[6] Analog column mux input H6 I/O M P1[2]	
C7 I/O I, M P0[0] Analog column mux input H7 I/O M P1[4] Optional EXT	CLK
C8 I/O I, M P2[0] Direct switched capacitor block input H8 I/O M P3[2]	GER
C9 I/O M P4[2] H9 I/O M P5[4]	
C10 NC No connection. Pin must be left floating H10 I/O P7[3]	
Ç i	action
č	
	e
D6 I/O I, M P0[4] Analog column mux input J6 I/O P7[7]	
D7 I/O M P2[6] External VREF input J7 I/O P7[0]	
D8 I/O M P4[6] J8 I/O M P5[2]	P
D9 I/O M P4[0] J9 Power V _{SS} Ground conn	
D10 CCLK OCD CPU clock output J10 Power V _{SS} Ground connu	
E1 NC No connection. Pin must be left floating K1 Power V _{SS} Ground connection.	
E2 NC No connection. Pin must be left floating K2 Power V _{SS} Ground connection.	
	n. Pin must be left floating
	n. Pin must be left floating
E5 Power V _{SS} Ground connection K5 Power V _{DD} Supply voltage	е
E6 Power V _{SS} Ground connection K6 I/O P7[6]	
E7 I/O M P2[4] External AGND input K7 I/O P7[5]	
E8 I/O M P4[4] K8 I/O P7[4]	
E9 I/O M P3[6] K9 Power V _{SS} Ground connection	
E10 HCLK OCD high speed clock output K10 Power V _{SS} Ground connection	ection

LEGEND A = Analog, I = Input, O = Output, M = Analog Mux Input, NC = No connection. Pin must be left floating, OCD = On-Chip Debugger.

Notes

All V_{SS} pins should be brought out to one common GND plane.
 These are the ISSP pins, which are not High Z at POR. See the PSoC Technical Reference Manual for details.

11.3.3 DC Full Speed USB Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-10 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-10 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Symbol	Description	Min	Тур	Мах	Units	Notes		
USB Interface								
V _{DI}	Differential input sensitivity	0.2	-	-	V	(D+) – (D–)		
V _{CM}	Differential input common mode range	0.8	-	2.5	V			
V _{SE}	Single ended receiver threshold	0.8	-	2.0	V			
C _{IN}	Transceiver capacitance	-	-	20	pF			
I _{I/O}	High Z state data line leakage	-10	-	10	μA	0 V < V _{IN} < 3.3 V.		
R _{EXT}	External USB series resistor	23	-	25	Ω	In series with each USB pin.		
V _{UOH}	Static output high, driven	2.8	-	3.6	V	15 k $\Omega \pm$ 5% to ground. Internal pull-up enabled.		
V _{UOHI}	Static output high, idle	2.7	-	3.6	V	15 k $\Omega \pm 5\%$ to ground. Internal pull-up enabled.		
V _{UOL}	Static output low	-	-	0.3	V	15 k Ω ± 5% to ground. Internal pull-up enabled.		
Z _O	USB driver output impedance	28	-	44	Ω	Including R _{EXT} resistor.		
V _{CRS}	D+/D- crossover voltage	1.3	-	2.0	V			

11.3.4 DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

The operational amplifier is a component of both the analog continuous time PSoC blocks and the analog switched capacitor PSoC blocks. The guaranteed specifications are measured in the analog continuous time PSoC block.

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -	1.6 1.3 1.2	10 8 7.5	mV mV mV	
TCV _{OSOA}	Average input offset voltage drift	-	7.0	35.0	µV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	-	20	-	pА	Gross tested to 1 µA.
C _{INOA}	Input capacitance (Port 0 analog pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common mode voltage range Common mode voltage range (high power or high Opamp bias)	0.0 0.5	_	V _{DD} V _{DD} – 0.5	> >	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open loop gain Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	60 60 80		_ _ _	dB dB dB	
V _{OHIGHOA}	High output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	V _{DD} - 0.2 V _{DD} - 0.2 V _{DD} - 0.5		_ _ _	V V V	
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -		0.2 0.2 0.5	V V V	
ISOA	Supply current (including associated AGND buffer) Power = low, Opamp bias = low Power = low, Opamp bias = high Power = medium, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = low Power = high, Opamp bias = high		400 500 800 1200 2400 4600	800 900 1000 1600 3200 6400	μΑ μΑ μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply voltage rejection ratio	65	80	-	dB	$ \begin{array}{l} V_{SS} \leq V_{IN} \leq (V_{DD}-2.25) \text{ or} \\ (V_{DD}-1.25 \text{ V}) \leq V_{IN} \leq V_{DD}. \end{array} $

 Table 14. 5-V DC Operational Amplifier Specifications

11.3.6 DC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 17. 5-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
CL	Load Capacitance	-	-	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (absolute value)	_	3	12	mV	
TCV _{OSOB}	Average input offset voltage drift	-	+6	-	µV/°C	
V _{CMOB}	Common mode input voltage range	0.5	-	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high		0.6 0.6		Ω Ω	
V _{OHIGHOB}	High output voltage swing (Load = 32 ohms to V _{DD} /2) Power = low Power = high	0.5 × V _{DD} + 1.1 0.5 × V _{DD} + 1.1	-		V V	
V _{OLOWOB}	Low output voltage swing (Load = 32 ohms to V _{DD} /2) Power = low Power = high		-	0.5 × V _{DD} – 1.3 0.5 × V _{DD} – 1.3	V V	
I _{SOB}	Supply current including opamp bias cell (No Load) Power = low Power = high		1.1 2.6	5.1 8.8	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	53	64	-	dB	$\begin{array}{l} (0.5 \times V_{DD} - 1.3) \leq V_{OUT} \leq \\ (V_{DD} - 2.3). \end{array}$

Table 19. 5-V DC Analog Reference Specifications (continued)

Refer- ence ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit s
0b001	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.092	P2[4] + P2[6] - 0.011	P2[4] + P2[6] + 0.064	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.031	P2[4] – P2[6] + 0.007	P2[4] – P2[6] + 0.056	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.078	P2[4] + P2[6] - 0.008	P2[4] + P2[6] + 0.063	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.031	P2[4] – P2[6] + 0.004	P2[4] – P2[6] + 0.043	V
	RefPower = medium	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.073	P2[4] + P2[6] - 0.006	P2[4] + P2[6] + 0.062	V
	Opamp bias = high	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.032	P2[4] – P2[6] + 0.003	P2[4] – P2[6] + 0.038	V
	RefPower = medium	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.073	P2[4] + P2[6] - 0.006	P2[4] + P2[6] + 0.062	V
	Opamp bias = low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.034	P2[4] – P2[6] + 0.002	P2[4] – P2[6] + 0.037	V
0b010	RefPower = high	V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.037	V _{DD} – 0.007	V _{DD}	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.036	V _{DD} /2 – 0.001	V _{DD} /2 + 0.036	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.005	V _{SS} + 0.029	V
	RefPower = high	V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.034	V _{DD} – 0.006	V _{DD}	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.036	V _{DD} /2 – 0.001	V _{DD} /2 + 0.035	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.024	V
	RefPower =	V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.032	V _{DD} – 0.005	V _{DD}	V
	medium Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.036	V _{DD} /2 – 0.001	V _{DD} /2 + 0.035	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.022	V
	RefPower =	V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.031	V _{DD} – 0.005	V _{DD}	V
	medium Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.037	V _{DD} /2 – 0.001	V _{DD} /2 + 0.035	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.020	V

Table 19. 5-V DC Analog Reference Specifications (continued)

Refer- ence ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit s
0b111	RefPower = high	V _{REFHI}	Ref High	3.2 × Bandgap	4.028	4.144	4.242	V
	Opamp bias = high	V _{AGND}	AGND	1.6 × Bandgap	2.028	2.076	2.125	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.008	V _{SS} + 0.034	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	3.2 × Bandgap	4.032	4.142	4.245	V
		V _{AGND}	AGND	1.6 × Bandgap	2.029	2.076	2.126	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.005	V _{SS} + 0.025	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	3.2 × Bandgap	4.034	4.143	4.247	V
		V _{AGND}	AGND	1.6 × Bandgap	2.029	2.076	2.126	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.021	V
	RefPower =	V _{REFHI}	Ref High	3.2 × Bandgap	4.036	4.144	4.249	V
	medium Opamp bias = low	V _{AGND}	AGND	1.6 × Bandgap	2.029	2.076	2.126	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.019	V

Note The bits PORLEV and VM in the following table refer to bits in the VLT_CR register. See the PSoC Technical Reference Manual for more information on the VLT_CR register.

	Table 22.	DC POR and LVD Specification	ons
--	-----------	------------------------------	-----

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0R} V _{PPOR1R} V _{PPOR2R}	V _{DD} value for PPOR trip (positive ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_	2.91 4.39 4.55	-	V V V	
V _{PPOR0} ^[23] V _{PPOR1} ^[23] V _{PPOR2} ^[23]	V _{DD} value for PPOR trip (negative ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_	2.82 4.39 4.55	_	V V V	
V _{PH0} V _{PH1} V _{PH2}	PPOR hysteresis PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_ _ _	92 0 0	- - -	mV mV mV	
$\begin{array}{c} V_{LVD0} \\ V_{LVD1} \\ V_{LVD2} \\ V_{LVD3} \\ V_{LVD4} \\ V_{LVD5} \\ V_{LVD6} \\ V_{LVD7} \end{array}$	$\begin{array}{l} V_{DD} \text{ value for LVD trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \end{array}$	2.86 2.96 3.07 3.92 4.39 4.55 4.63 4.72	2.92 3.02 3.13 4.00 4.48 4.64 4.73 4.81	$\begin{array}{c} 2.98^{[24]}\\ 3.08\\ 3.20\\ 4.08\\ 4.57\\ 4.74^{[25]}\\ 4.82\\ 4.91 \end{array}$	V V V V V V V	

Notes

23. Errata: When V_{DD} of the device is pulled below ground just before power on, the first read from each 8K Flash page may be corrupted. This issue does not affect Flash page 0 because it is the selected page upon reset. More details in "Errata" on page 66.
24. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.
25. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.

11.4 AC Electrical Characteristics

11.4.1 AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 25. AC Chip Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO245V}	Internal main oscillator frequency for 24 MHz (5 V)	23.04	24	24.96 ^[29]	MHz	Trimmed for 5 V operation using factory trim values.
F _{IMO243V}	Internal main oscillator frequency for 24 MHz (3.3 V)		24	25.92 ^[30]	MHz	Trimmed for 3.3 V operation using factory trim values.
F _{IMOUSB5V}	Internal main oscillator frequency with USB (5 V) Frequency locking enabled and USB traffic present.		24	24.06	MHz	$-10 \text{ °C} \le T_A \le 85 \text{ °C}$ $4.35 \le V_{DD} \le 5.15$
F _{IMOUSB3V}	Internal main oscillator frequency with USB (3.3 V) Frequency locking enabled and USB traffic present.		24	24.06	MHz	$\begin{array}{l} -0 \ ^{\circ}C \leq T_{A} \leq 70 \ ^{\circ}C \\ 3.15 \leq V_{DD} \leq 3.45 \end{array}$
F _{CPU1}	CPU frequency (5 V nominal)	0.093	24	24.96 ^[29]	MHz	SLIMO Mode = 0.
F _{CPU2}	CPU frequency (3.3 V nominal)	0.086	12	12.96 ^[30]	MHz	SLIMO Mode = 0.
F _{BLK5}	Digital PSoC block frequency (5 V nominal)	0	48	49.92 ^[29,31]	MHz	Refer to the AC digital block Specifications.
F _{BLK3}	Digital PSoC block frequency (3.3 V nominal)	0	24	25.92 ^[31]	MHz	
F _{32K1}	Internal low speed oscillator frequency	15	32	64	kHz	
F _{32K_U}	Internal low speed oscillator untrimmed frequency	5	_	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference Manual for details on this timing
t _{XRST}	External reset pulse width	10	—	-	μs	
DC24M	24 MHz duty cycle	40	50	60	%	
DC _{ILO}	Internal low speed oscillator duty cycle	20	50	80	%	
Step24M	24 MHz trim step size	-	50	-	kHz	
Fout48M	48 MHz output frequency	46.08	48.0	49.92 ^[29,30]	MHz	Trimmed. Utilizing factory trim values.
F _{MAX}	Maximum frequency of signal on row input or row output.	_	_	12.96	MHz	
SR _{POW-} ER_UP	Power supply slew rate	-	-	250	V/ms	V _{DD} slew rate during power-up.

Notes

For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. See the Flash APIs application note Design Aids – Reading and Writing PSoC[®] Flash – AN2015 for more information.
 All GPIOs meet the DC GPIO V_{IL} and V_{IH} specifications found in the DC GPIO Specifications sections. The I²C GPIO pins also meet the mentioned specifications.

^{26.} The 50,000 cycle flash endurance per block is only guaranteed if the flash is operating within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V.
27. A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36 × 1 blocks of 50,000 maximum cycles each, 36 × 2 blocks of 25,000 maximum cycles each, or 36 × 4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36 × 50,000 and ensure that no single block ever sees more than 50,000 cycles).

11.4.5 AC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V at 25 °C and are for design guidance only.

Table 30. AC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
t _{RLPC}	LPC response time	-	1	50	μs	\geq 50 mV overdrive comparator reference set within V _{REFLPC} .

11.4.6 AC Digital Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, or 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 31. AC Digital Block Specifications

Function	Description	Min	Тур	Max	Unit	Notes
All	Block input clock frequency					
functions	$V_{DD} \ge 4.75 \text{ V}$	-	-	49.9 2	MHz	
	V _{DD} < 4.75 V	_	-	25.9 2	MHz	
Timer	Input clock frequency					
	No capture, $V_{DD} \ge 4.75 V$	_	_	49.9 2	MHz	
	No capture, V _{DD} < 4.75 V	-	-	25.9 2	MHz	
	With capture	-	-	25.9 2	MHz	
	Capture pulse width	50 ^[33]	_	-	ns	
Counter	Input clock frequency	•				
	No enable input, $V_{DD} \ge 4.75$ V	-	-	49.9 2	MHz	
	No enable input, V _{DD} < 4.75 V	_	-	25.9 2	MHz	
	With enable input	-	-	25.9 2	MHz	
	Enable input pulse width	50 ^[33]	-	-	ns	
	Kill pulse width					
	Asynchronous restart mode	20	_	-	ns	
	Synchronous restart mode	50 ^[33]	-	-	ns	
	Disable mode	50 ^[33]	Ι	-	ns	
	Input clock frequency	•		-		
	$V_{DD} \ge 4.75 \text{ V}$	-	-	49.9 2	MHz	
	V _{DD} < 4.75 V	_	I	25.9 2	MHz	

Table 31. AC Digital Block Specifications (continued)

Function	Description	Min	Тур	Max	Unit	Notes
CRCPRS	Input clock frequency					
(PRS Mode)	$V_{DD} \ge 4.75 \text{ V}$	-	-	49.9 2	MHz	
	V _{DD} < 4.75 V	-	Ι	25.9 2	MHz	
CRCPRS (CRC Mode)	Input clock frequency	-	_	24.6	MHz	
SPIM	Input clock frequency	-	Ι	8.2	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input clock (SCLK) frequency	-	-	4.1	MHz	The input clock is the SPI SCLK in SPIS mode.
	Width of SS_negated between transmissions	50 ^[33]	Ι	-	ns	
Transmitter	Input clock frequency	•		•	The baud rate is equal to the input clock	
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	-	49.9 2	MHz	frequency divided by 8.
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	-	24.6	MHz	
	V _{DD} < 4.75 V	-	-	24.6	MHz	
Receiver	Input clock frequency		The baud rate is equal to the input clock			
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	-	49.9 2	MHz	frequency divided by 8.
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	_	24.6	MHz	
	V _{DD} < 4.75 V	-	_	24.6	MHz	

11.4.7 AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 32. AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
FOSCEXT	Frequency for USB applications	23.94	24	24.06	MHz	
-	Duty cycle	47	50	53	%	
-	Power-up to IMO switch	150	-	-	μs	

11.5 Thermal Impedance

Table 37. Thermal Impedances per Package

Package	Typical θ _{JA} ^[36]
56-Pin QFN ^[37]	12.93 °C/W
68-Pin QFN ^[37]	13.05 °C/W
100-Ball VFBGA	65 °C/W
100-Pin TQFP	51 °C/W

11.6 Solder Reflow Peak Specifications

Table 38 shows the solder reflow temperature limits that must not be exceeded.

Table 38. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C)	Maximum Time above T _C – 5 °C
56-Pin QFN	260 °C	30 seconds
68-Pin QFN	260 °C	30 seconds
100-Ball VFBGA	260 °C	30 seconds
100-Pin TQFP	260 °C	30 seconds

Notes

36. T_J = T_A + POWER × θ_{JA}.
 37. To achieve the thermal impedance specified for the QFN package, see the Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com.

- Getting Started guide
- USB 2.0 cable

12.4.2 CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment.

Note: CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

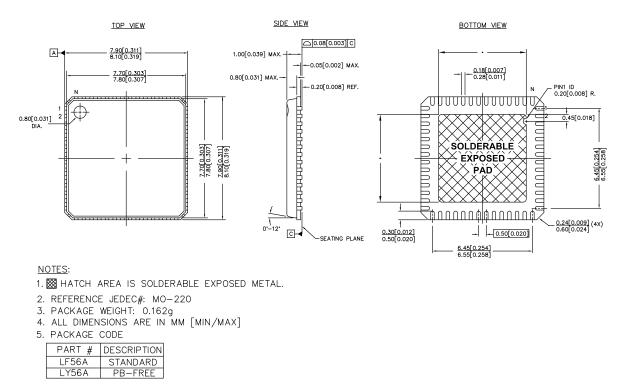
12.5 Accessories (Emulation and Programming)

Table 39. Emulation and Programming Accessories

- CY3207 programmer unit
- PSoC ISSP software CD
- 110 ~ 240 V power supply, Euro-Plug adapter
- USB 2.0 cable

Part #	Pin Package	Flex-Pod Kit ^[38]	Foot Kit ^[39]	Adapter ^[40]
CY8C24794-24LQXI	56-pin QFN	CY3250-24X94QFN		Adapters can be found at http://www.emulation.com.

Notes


^{38.} Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

Foot kit includes upted a product for both and product for both anget PCB.
 Foot kit includes surface mount feet that are soldered to the target PCB.
 Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters are found at http://www.emulation.com.

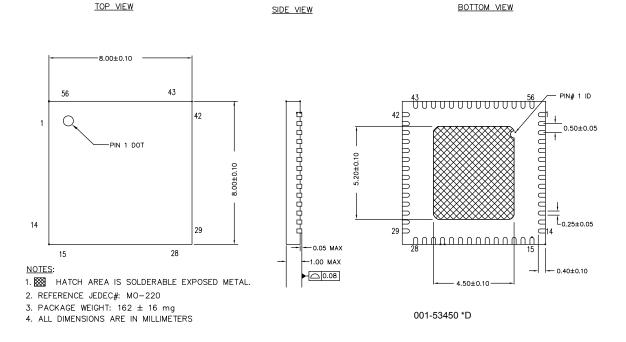
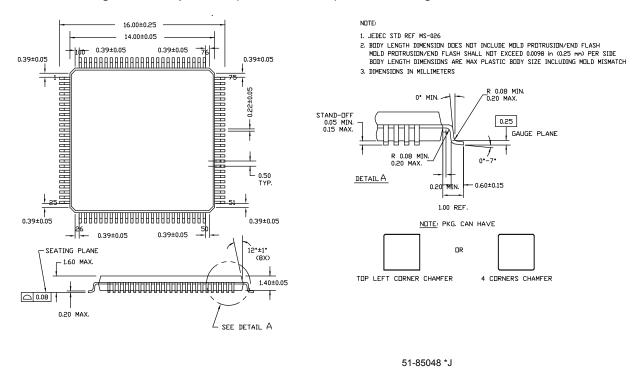


Figure 17. 56-pin QFN (8 × 8 × 1.0 mm) LF56A/LY56A 4.5 × 5.21 E-Pad (Subcon Punch Type Pkg.) Package Outline, 001-12921



001-12921 *C

Figure 18. 56-pin QFN (8 × 8 × 1.0 mm) LT56B 4.5 × 5.2 E-Pad (Sawn) Package Outline, 001-53450

Figure 21. 100-pin TQFP (14 × 14 × 1.4 mm) A100SA Package Outline, 51-85048

Important Note

- For information on the preferred dimensions for mounting QFN packages, see the Application Note, Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com.
- Pinned vias for thermal conduction are not required for the low power PSoC device.

When Vdd is pulled below ground before power on, an internal Flash reference may deviate from its nominal voltage. The reference deviation tends to result in the first Flash read from that page returning 0xFF. During the first read from each page, the reference is reset resulting in all future reads returning the correct value. A short delay of 5 µs before the first real read provides time for the reference voltage to stabilize.

WORKAROUND

To prevent an invalid Flash read, a dummy read from each Flash page must occur before use of the pages. A delay of 5 µs must occur after the dummy read and before a real read. The dummy reads occurs as soon as possible and must be located in Flash page 0 before a read from any other Flash page. An example for reading a byte of memory from each Flash page is listed below. Placed it in boot.tpl and boot.asm immediately after the 'start:' label.

// dummy read from each 8K Flash page // page 1 mov A, 0x20 // MSB mov X, 0x00 // LSB romx // wait at least 5 µs mov X, 14 loop1: dec X jnz loop1

19. Document History Page

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	133189	NWJ	01/27/2004	New silicon and new document – Advance datasheet.
*A	251672	SFV	See ECN	First Preliminary datasheet. Changed title to encompass only the CY8C24794 because the CY8C24494 and CY8C24694 are not being offered by Cypress.
*В	289742	HMT	See ECN	Add standard DS items from SFV memo. Add Analog Input Mux on pinouts. 2 MACs. Change 512 bytes of SRAM to 1 K. Add dimension key to package. Remove HAPI. Update diagrams, registers and specs.
*C	335236	НМТ	See ECN	Add CY logo. Update CY copyright. Update new CY.com URLs. Re-add ISSP programming pinout notation. Add Reflow Temp. table. Update features (MAC, Oscillator, and voltage range), registers (INT_CLR2/MSK2, second MAC), and specs. (Rext, IMO, analog output buffer).
*D	344318	HMT	See ECN	Add new color and logo. Expand analog arch. diagram. Fix I/O #. Update Electrical Specifications.
*E	346774	HMT	See ECN	Add USB temperature specifications. Make datasheet Final.
*F	349566	HMT	See ECN	Remove USB logo. Add URL to preferred dimensions for mounting MLF packages.
*G	393164	HMT	See ECN	Add new device, CY8C24894 56-pin MLF with XRES pin. Add Fimousb3v char. to specs. Upgrade to CY Perform logo and update corporate address and copyright.
*H	469243	НМТ	See ECN	Add ISSP note to pinout tables. Update typical and recommended Storage Temperature per industrial specs. Update Low Output Level maximum I/OL budget. Add FLS_PR1 to Register Map Bank 1 for users to specify which Flash bank should be used for SROM operations. Add two new devices for a 68-pin QFN and 100-ball VFBGA under RPNs: CY8C24094 and CY8C24994. Add two packages for 68-pin QFN. Add OCD non-production pinouts and package diagrams. Update CY branding and QFN convention. Add new Dev. Tool section. Update copyright and trademarks.
*	561158	HMT	See ECN	Add Low Power Comparator (LPC) AC/DC electrical spec. tables. Add CY8C20x34 to PSoC Device Characteristics table. Add detailed dimensions to 56-pin QFN package diagram and update revision. Secure one package diagram/manufacturing per QFN. Update emulation pod/feet kit part numbers. Fix pinout type-o per TestTrack.
*J	728238	НМТ	See ECN	Add CapSense SNR requirement reference. Update figure standards. Update Technical Training paragraphs. Add QFN package clarifications and dimensions. Update ECN-ed Amkor dimensioned QFN package diagram revisions. Reword SNR reference. Add new 56-pin QFN spec.
*K	2552459	AZIE / PYRS	08/14/08	Add footnote on AGND descriptions to avoid using P2[4] for digital signaling as it may add noise to AGND. Remove reference to CMP_GO_EN1 in Map Bank 1 Table on Address 65; this register has no functionality on 24xxx. Add footnote on die sales. Add description 'Optional External Clock Input' on P1[4] to match description of P1[4].
*L	2616550	OGNE / PYRS	12/05/08	Updated Programmable Pin Configuration detail. Changed title from PSoC® Mixed-Signal Array to PSoC® Programmable System-on-Chip™
*M	2657956	DPT / PYRS	02/11/09	Added package diagram 001-09618 and updated Ordering Information table

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP| PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2004-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or of affect its safety or effectiveness. Cypress products. You shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.