

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART, USB
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 9x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f110meafb-30

Email: info@E-XFL.COM

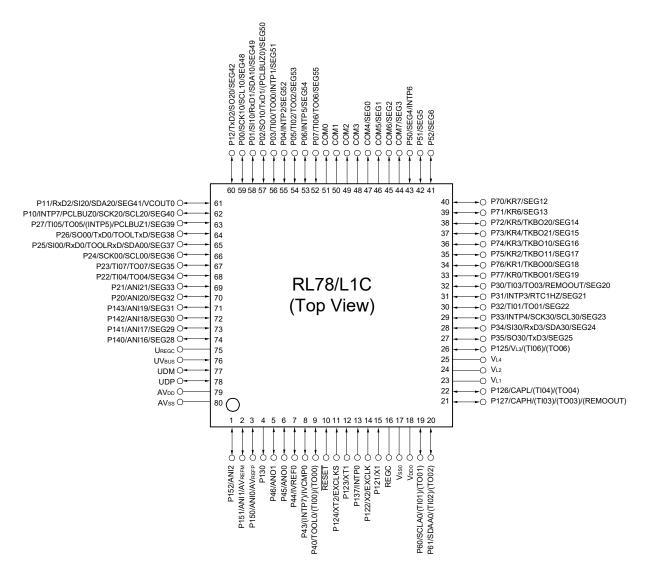
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Ordering Information

Products with USB

Pin Count	Package	Fields of Application	Orderable Part Number
80 pins	80-pin plastic LFQFP	A	R5F110MEAFB#30, R5F110MFAFB#30, R5F110MGAFB#30, R5F110MHAFB#30, R5F110MJAFB#30 R5F110MEAFB#50, R5F110MFAFB#50, R5F110MGAFB#50, R5F110MHAFB#50, R5F110MJAFB#50
	(12 × 12 mm, 0.5 mm pitch)	G	R5F110MEGFB#30, R5F110MFGFB#30, R5F110MGGFB#30, R5F110MHGFB#30, R5F110MJGFB#30 R5F110MEGFB#50, R5F110MFGFB#50, R5F110MGGFB#50, R5F110MHGFB#50, R5F110MJGFB#50
85 pins	85-pin plastic VFLGA	A	R5F110NEALA#U0, R5F110NFALA#U0, R5F110NGALA#U0, R5F110NHALA#U0, R5F110NJALA#U0 R5F110NEALA#W0, R5F110NFALA#W0, R5F110NGALA#W0, R5F110NHALA#W0, R5F110NJALA#W0
	(7 × 7 mm, 0.65 mm pitch)	G	R5F110NEGLA#U0, R5F110NFGLA#U0, R5F110NGGLA#U0, R5F110NHGLA#U0, R5F110NJGLA#U0 R5F110NEGLA#W0, R5F110NFGLA#W0, R5F110NGGLA#W0, R5F110NHGLA#W0, R5F110NJGLA#W0
100 pins	100-pin plastic LFQFP	A	R5F110PEAFB#30, R5F110PFAFB#30, R5F110PGAFB#30, R5F110PHAFB#30, R5F110PJAFB#30 R5F110PEAFB#50, R5F110PFAFB#50, R5F110PGAFB#50, R5F110PHAFB#50, R5F110PJAFB#50
	(14 × 14 mm, 0.5 mm pitch)	G	R5F110PEGFB#30, R5F110PFGFB#30, R5F110PGGFB#30, R5F110PHGFB#30, R5F110PJGFB#30 R5F110PEGFB#50, R5F110PFGFB#50, R5F110PGGFB#50, R5F110PHGFB#50, R5F110PJGFB#50

Products without USB


Pin Count	Package	Fields of Application	Orderable Part Number
80 pins	80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	A G	R5F111MEAFB#30, R5F111MFAFB#30, R5F111MGAFB#30, R5F111MHAFB#30, R5F111MJAFB#30 R5F111MEAFB#50, R5F111MFAFB#50, R5F111MGAFB#50, R5F111MHAFB#50, R5F111MJAFB#50 R5F111MEGFB#30, R5F111MFGFB#30, R5F111MGGFB#30, R5F111MHGFB#30, R5F111MJGFB#30 R5F111MEGFB#50, R5F111MFGFB#50, R5F111MGGFB#50, R5F111MHGFB#50, R5F111MJGFB#50
85 pins	85-pin plastic VFLGA (7 × 7 mm, 0.65 mm pitch)	A G	R5F111NEALA#U0, R5F111NFALA#U0, R5F111NGALA#U0, R5F111NHALA#U0, R5F111NJALA#U0 R5F111NEALA#W0, R5F111NFALA#W0, R5F111NGALA#W0, R5F111NHALA#W0, R5F111NJALA#W0 R5F111NEGLA#U0, R5F111NFGLA#U0, R5F111NGGLA#U0, R5F111NHGLA#U0, R5F111NJGLA#U0 R5F111NEGLA#W0, R5F111NFGLA#W0, R5F111NGGLA#W0, R5F111NHGLA#W0, R5F111NJGLA#W0
100 pins	100-pin plastic LFQFP (14 × 14 mm, 0.5 mm pitch)	A G	R5F111PEAFB#30, R5F111PFAFB#30, R5F111PGAFB#30, R5F111PHAFB#30, R5F111PJAFB#30 R5F111PEAFB#50, R5F111PFAFB#50, R5F111PGAFB#50, R5F111PHAFB#50, R5F111PJAFB#50 R5F111PEGFB#30, R5F111PFGFB#30, R5F111PGGFB#30, R5F111PHGFB#30, R5F111PJGFB#30 R5F111PEGFB#50, R5F111PFGFB#50, R5F111PGGFB#50, R5F111PHGFB#50, R5F111PJGFB#50

1.3 Pin Configuration (Top View)

1.3.1 80-pin products (with USB)

• 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)

Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F). Caution 2. Connect the UREGC pin to Vss pin via a capacitor (0.33 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Absolute Maximum Ratings (TA = 25°C)

(3/3)

		,			(3/
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	ЮН1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-40	mA
		Total of all	P40 to P46	-70	mA
		pins -170 mA	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-100	mA
	Іон2	Per pin	P150 to P156	-0.1	mA
		Total of all pins		-0.7	mA
	Іонз	Per pin	UDP, UDM	-3	mA
Output current, low	IOL1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	40	mA
		Total of all	P40 to P46	70	mA
		pins 170 mA	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	100	mA
	IOL2	Per pin	P150 to P156	0.4	mA
		Total of all pins		2.8	mA
	IOL3	Per pin	UDP, UDM	3	mA
Operating ambient temperature	Та	-	pperation mode mory programming mode	-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)Parameter Symbol Conditions MIN. TYP. MAX. Unit VDD = 3.6 V 2.8 Supply IDD1 Operating HS fHOCO = 48 MHz Note 3, Basic 2.2 mΑ current Note 1 mode (high-speed main) fiH = 24 MHz Note 3 operation VDD = 3.0 V 2.2 2.8 mode Note 5 Normal VDD = 3.6 V 4.4 8.5 operation VDD = 3.0 V 4.4 8.5 VDD = 3.6 V fHOCO = 24 MHz Note 3. Basic 2.0 2.6 operation fiH = 24 MHz Note 3 VDD = 3.0 V 2.0 2.6 VDD = 3.6 V Normal 4.2 6.8 operation VDD = 3.0 V 4.2 6.8 VDD = 3.6 V fHOCO = 16 MHz Note 3, Normal 3.1 4.9 operation fiH = 16 MHz Note 3 VDD = 3.0 V 3.1 4.9 IS fHOCO = 8 MHz Note 3, Normal VDD = 3.0 V 1.4 2.2 mΑ (low-speed main) fIH = 8 MHz Note 3 operation VDD = 2.0 V 1.4 2.2 mode Note 5 ١V fHOCO = 4 MHz Note 3, VDD = 3.0 V 1.3 1.8 Normal mΑ (low-voltage main) fIH = 4 MHz Note 3 operation VDD = 2.0 V 1.3 1.8 mode Note 5 HS 3.5 5.5 fmx = 20 MHz Note 2, Normal Square wave input mΑ (high-speed main) VDD = 3.6 V operation Resonator connection 3.6 5.7 mode Note 5 fmx = 20 MHz Note 2, 3.5 5.5 Normal Square wave input VDD = 3.0 V operation Resonator connection 3.6 5.7 fMX = 16 MHz Note 2, 2.9 4.5 Normal Square wave input VDD = 3.6 V operation Resonator connection 3.1 4.6 fmx = 16 MHz Note 2, Normal Square wave input 2.9 4.5 VDD = 3.0 Voperation Resonator connection 3.1 4.6 fmx = 10 MHz Note 2, Normal Square wave input 2.1 3.2 VDD = 3.6 V operation Resonator connection 2.2 3.2 2.1 3.2 $f_{MX} = 10 MH_7 Note 2$ Normal Square wave input VDD = 3.0 V operation Resonator connection 2.2 3.2 IS fMX = 8 MHz Note 2, Normal Square wave input 1.2 2.0 mΑ (low-speed main) operation VDD = 3.6 V Resonator connection 1.3 2.0 mode Note 5 fMX = 8 MHz Note 2. Normal Square wave input 1.2 2.1 VDD = 3.0 V operation Resonator connection 1.3 22 HS fPLL = 48 MHz, Normal VDD = 3.6 V 4.7 7.5 mΑ (High-speed main) fCLK = 24 MHz Note 2 operation VDD = 3.0 V 4.7 7.5 mode fPLL = 48 MHz, Vdd = 3.6 V 3.1 5.1 Normal (PLL operation) fCLK = 12 MHz Note 2 operation VDD = 3.0 V 3.1 5.1 fPLL = 48 MHz. VDD = 3.6 V 23 39 Normal fclk = 6 MHz Note 2 operation VDD = 3.0 V 2.3 3.9 Subsystem clock 4.6 fSUB = 32.768 kHz Note 4 Normal Square wave input 6.9 μΑ operation TA = -40°C operation Resonator connection 47 69 fsub = 32.768 kHz^{Note 4} Normal Square wave input 4.9 7.0 TA = +25°C operation Resonator connection 5.0 7.2 5.2 fsub = 32.768 kHzNote 4 Normal Square wave input 76 TA = +50°C operation Resonator connection 5.2 7.7 fsub = 32.768 kHzNote 4 Normal Square wave input 5.5 9.3 $T_A = +70^{\circ}C$ operation Resonator connection 5.6 9.4 13.3 fsub = 32.768 kHz^{Note 4} Normal Square wave input 6.2 TA = +85°C operation 62 134 Resonator connection

(Notes and Remarks are listed on the next page.)

14/2)

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode)

TA - 40 to 105°C	$4.9.1 \le 100 \le 2.6.1$ $100 = 0.1$	`
IA = -40 LO TOD C,	$1.8 V \le VDD \le 3.6 V, Vss = 0 V$)

Parameter	Symbol	Conditions		HS (hig	HS (high-speed main) Mode		LS (low-speed main) Mode		-voltage main) Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Notes 1, 2		reception	$2.7 V \le VDD \le 3.6 V,$ $2.3 V \le Vb \le 2.7 V$		fмск/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		4.0		1.3		0.6	Mbps
			$1.8 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_{b} \le 2.0 V$		fMCK/6 Notes 1, 2, 3		fмск/6 Notes 1, 2, 3		fмск/6 Notes 1, 2, 3	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		4.0		1.3		0.6	Mbps

Use it with $VDD \ge Vb$. Note 2.

Note 3. The following conditions are required for low voltage interface. 2.4 V ≤ VDD < 2.7 V: MAX. 2.6 Mbps $1.8 V \le VDD < 2.4 V$: MAX. 1.3 Mbps 1.6 V ≤ VDD < 1.8 V: MAX. 0.6 Mbps Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are: HS (high-speed main) mode: 24 MHz ($2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$) 16 MHz (2.4 V \leq VDD \leq 3.6 V) LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V})$ LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$

Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq Caution pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Con	ditions	HS (higl main)	•	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
					MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tKCY2	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$	20 MHz < fмск ≤ 24 MHz	16/fмск		—		—		ns
time Note 1		2.3 V ≤ Vb ≤ 2.7 V	16 MHz < fмск ≤ 20 MHz	14/fмск		—		—		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		—		—		ns
			4 MHz < fмcк ≤ 8 MHz	8/fMCK		16/fмск		—		ns
			fмск ≤4 MHz	6/fMCK		10/fмск		10/fмск		ns
		$1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V} \text{ Note } 2$	20 MHz < fмск ≤ 24 MHz	36/fмск		—		—		ns
			16 MHz < fмск ≤ 20 MHz	32/fмск		—		—		ns
			8 MHz < fмск ≤ 16 MHz	26/fмск		—		—		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		16/fмск		—		ns
			fмск ≤4 MHz	10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level width	tкн2, tкL2	2.7 V ≤ VDD ≤ 3.6 V, 2.3 \	/ ≤ Vb ≤ 2.7 V	tксү2/2 - 18		tксү2/2 - 50		tксү2/2 - 50		ns
		1.8 V ≤ VDD < 3.3 V, 1.6 V	$V \le V_b \le 2.0 V$ Note 2	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑)	tsik2	2.7 V ≤ VDD ≤ 3.6 V		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
Note 3		1.8 V ≤ VDD < 3.3 V		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) _{Note 4}	tKSI2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp	tKSO2	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V}$ Cb = 30 pF, Rb = 2.7 kΩ	/ ≤ Vb ≤ 2.7 V		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
output ^{Note 5}		1.8 V ≤ VDD < 3.3 V, 1.6 V Cb = 30 pF, Rb = 5.5 kΩ	/ ≤ Vb ≤ 2.0 V Note 2		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Note 2. Use it with $VDD \ge Vb$.

- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

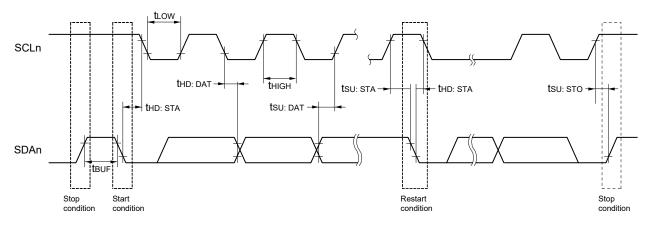
Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SCLA0 clock frequency	fscl	Fast mode plus: 2.7 V ≤ VDD ≤ 3.6 V fcLk ≥ 10 MHz 10 MHz		0	1000	—		_		kHz
Setup time of restart condition	ts∪: sta	2.7 V ≤ VDD ≤ 3.6 V		0.26		-		_	_	μs
Hold time Note 1	thd: Sta	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	2.7 V ≤ VDD ≤ 3.6 V					—		μs
Hold time when SCLA0 = "L"	tLOW	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		0.5		_		_		μs
Hold time when SCLA0 = "H"	thigh	2.7 V ≤ VDD ≤ 3.6	3 V	0.26		—		_		μs
Data setup time (reception)	tsu: dat	2.7 V ≤ VDD ≤ 3.6	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			_		-		ns
Data hold time (transmission) ^{Note 2}	thd: dat	$2.7 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$		0	0.45	-	_	_	_	μs
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 3.6 \text{ V}$		0.26		-	_	-	_	μs
Bus-free time	tBUF	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	S V	0.5		-	_	-	_	μs

(3) I²C fast mode plus

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$


Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: Cb = 120 pF, Rb = 1.1 k Ω

IICA serial transfer timing

(3) BC option standard

(TA = -40 to +85°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6 V, VSS = 0 V, HS (High-speed main) mode only)

Para	meter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit																																		
UDP/UDM input reference	VDSELi [3: 0]	0000	VDDET0		27	32	37	%UVBUS																																		
voltage	(i = 0, 1)	0001	VDDET1		29	34	39	%UVBUS																																		
(UVBUS divider ratio) (Function)				0010	VDDET2		32	37	42	%UVBUS																																
		0011	VDDET3		35	40	45	%UVBUS																																		
		0100	VDDET4		38	43	48	%UVBUS																																		
		0101	VDDET5		41	46	51	%UVBUS																																		
								0110	VDDET6		44	49	54	%UVBUS																												
				0111	VDDET7		47	52	57	%UVBUS																																
											1000	VDDET8		51	56	61	%UVBUS																									
				1001	VDDET9		55	60	65	%UVBUS																																
									1010	VDDET10		59	64	69	%UVBUS																											
		1011	VDDET11		63	68	73	%UVBUS																																		
																																				1100	VDDET12		67	72	73	%UVBUS
																																					-				-	-
		1110	VDDET14		75	80	85	%UVBUS																																		
		1111	VDDET15		79	84	89	%UVBUS																																		

(5) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	MIN.	TYP.	MAX.	Unit	
Resolution	RES		$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
			1.8 V ≤ AVDD ≤ 3.6 V	8		10 Note 1	
			1.6 V ≤ AVDD ≤ 3.6 V		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±8.5	LSB
		10-bit resolution $1.8 V \le AVDD \le 3$	1.8 V ≤ AVDD ≤ 3.6 V			±6.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.5	
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	1.8 V ≤ AVDD ≤ 3.6 V	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	1.6 V ≤ AVDD ≤ 3.6 V	57.5			
		ADTYP = 1,	2.4 V ≤ AVDD ≤ 3.6 V	3.3125			
		8-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V	7.875			
			1.6 V ≤ AVDD ≤ 3.6 V	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±8.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.0	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±8.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.5	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	
Analog input voltage	VAIN			0		AVdd	V
		Internal reference voltage (2.4 V \leq VDD \leq 3.6 V, HS (high-speed main) mod		,	VBGR Note	4	
		Temperature sensor out (2.4 V \leq VDD \leq 3.6 V, HS	put voltage S (high-speed main) mode)	V	TMP25 Note	4	

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

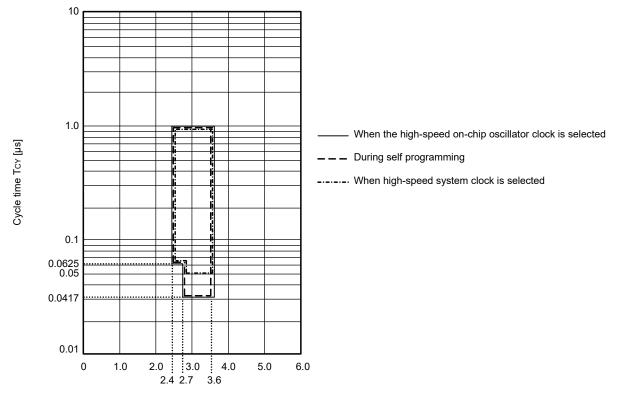
LVD Detection Voltage of Interrupt & Reset Mode
$(TA = -40 \text{ to } +85^{\circ}C, VPDR \le VDD \le 3.6 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	l Conditions				TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC0	, VPOC1, VPOC2 = 0, 0, 0,	falling reset voltage: 1.6 V	1.60	1.63	1.66	V
mode	VLVDA1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC0	, VPOC1, VPOC2 = 0, 0, 1,	falling reset voltage: 1.8 V	1.80	1.84	1.87	V
	VLVDB1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC0	VPOC1, VPOC2 = 0, 1, 0,	falling reset voltage: 2.4 V	2.40	2.45	2.50	V
	VLVDC1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDD0	VPOC0	, VPOC1, VPOC2 = 0, 1, 1,	falling reset voltage: 2.7 V	2.70	2.75	2.81	V
	VLVDD1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V

2.7 Power supply voltage rising slope characteristics

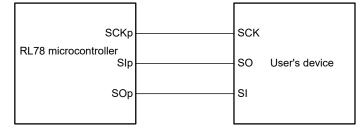
(TA = -40 to +85°C, Vss = 0 V)

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD			54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

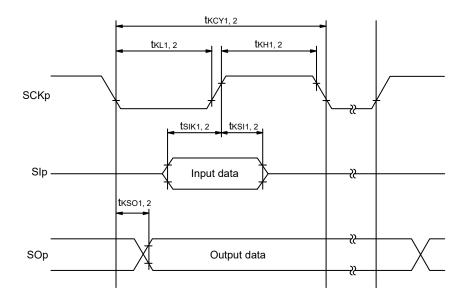
RL78/L1C

Minimum Instruction Execution Time during Main System Clock Operation

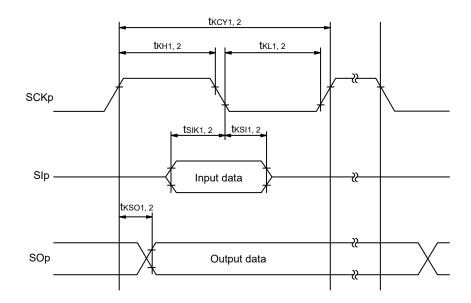

TCY vs VDD (HS (high-speed main) mode)

Supply voltage VDD [V]

CSI mode connection diagram (during communication at same potential)



Remark 1. p: CSI number (p = 00, 10, 20, 30)


Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 10, 20, 30) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(5) Communication at different potential (1.8 V, 2.5V) (UART mode) $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \le VDD \le 3.6 \text{ V}, \text{ Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol		Conditions	HS (high-	Unit	
Falametei	Symbol		Conditions	MIN.	MAX.	Onit
Transfer rate Note 2		Transmission	$V \le V_{DD} \le 3.6 V$, $V \le V_{b} \le 2.7 V$		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 2	Mbps
			$V \le V_{DD} < 3.3 V,$ $V \le V_b \le 2.0 V$		Notes 3, 4	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 5	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq VDD < 3.6 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

1

Baud rate error

$$\frac{1}{\text{Transfer rate } \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- Note 3. Use it with $VDD \ge Vb$.
- Note 4. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer ra

ate =
$$\frac{1.5}{(-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})) \times 3}$$

1

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate } \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

3.5.3 USB

(1) Electrical specifications

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UREGC	UREGC output voltage characteristic	Uregc	UVBUS = 4.0 to 5.5 V, PXXCON = VDDUSBE = 1	3.0	3.3	3.6	V
UVBUS	UVBUS input voltage characteristic	UVBUS	Function	4.35 (4.02 ^{Note})	5.00	5.25	V

Note Value of instantaneous voltage

$(TA = -40 \text{ to } +105^{\circ}C, 4.35 \text{ V} \le UVBUS \le 5.25 \text{ V}, 2.4 \text{ V} \le VDD \le 3.6 \text{ V}, \text{VSS} = 0 \text{ V})$

	Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Input voltag	ge	Vih		2.0			V
characteristic (FS/LS receiver)			VIL				0.8	V
	Difference sensitivity	input	Vdi	UDP voltage - UDM voltage	0.2			V
	Difference mode rang		Vсм		0.8		2.5	V
Output	Output volt	age	Vон	Іон = -200 μА	2.8		3.6	V
characteristic			Vol	IOL = 2 mA	0		0.3	V
(FS driver)	Transition	Rising	tFR	Rising: From 10% to 90% of amplitude,	4		20	ns
	time	Falling	tFF	Falling: From 90% to 10% of amplitude,			20	ns
	Matching (TFR/TFF)		VFRFM	- CL = 50 pF	90		111.1	%
	Crossover	Crossover voltage		7			2.0	V
	Output Impedance		Zdrv		28		44	Ω
Output	Output voltage		Vон		2.8		3.6	V
characteristic			Vol		0		0.3	V
(LS driver)	Transition time	Rising	tLR	Rising: From 10% to 90% of amplitude, Falling: From 90% to 10% of amplitude,	75		300	ns
		Falling	tLF		75		300	ns
	Matching (TFR/TFF) Note Crossover voltage Note		VLTFM	CL = 250 pF to 750 pF The UDP and UDM pins are individually pulled	80		125	%
			VLCRS	down via 15 k Ω	1.3		2.0	V
Pull-up,	Pull-down	resistor	RPD		14.25		24.80	kΩ
Pull-down	Pull-up	Idle	Rpui		0.9		1.575	kΩ
	resistor	Reception	Rpua		1.425		3.09	kΩ
UVBUS	UVBUS pull resistor	-down	Rvbus	UVBUS voltage = 5.5 V		1000		kΩ
	UVBUS inp	ut voltage	Viн		3.20			V
			VIL				0.8	V

Note Excludes the first signal transition from the idle state.

LVD Detection Voltage of Interrupt & Reset Mode (TA = -40 to +105°C, VPDR \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol		Conditions			TYP.	MAX.	Unit
Interrupt and reset mode	VLVDD0	VPOC0,	VPOC0, VPOC1, VPOC2 = 0, 1, 1, falling reset voltage: 2.7 V		2.64	2.75	2.86	V
	VLVDD1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V

3.7 Power supply voltage rising slope characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD			54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.

3.8.2 Internal voltage boosting method

(1) 1/3 bias method

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 μF	2 VL1 - 0.1	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 ^{Note 1} =	0.47 µF	3 VL1 - 0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C4 ^{Note 1} = 0.47µF		500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

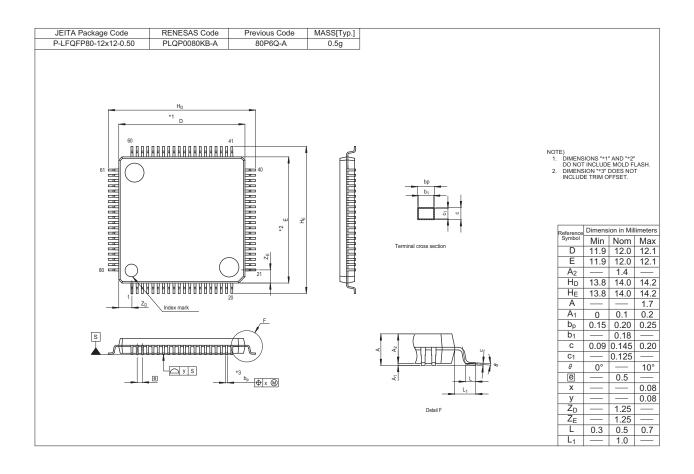
C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 µF±30%

Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).


Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

4. PACKAGE DRAWINGS

4.1 80-pin products

R5F110MEAFB, R5F110MFAFB, R5F110MGAFB, R5F110MHAFB, R5F110MJAFB R5F111MEAFB, R5F111MFAFB, R5F111MGAFB, R5F111MHAFB, R5F111MJAFB R5F110MEGFB, R5F110MFGFB, R5F110MGGFB, R5F110MHGFB, R5F110MJGFB R5F111MEGFB, R5F111MFGFB, R5F111MGGFB, R5F111MHGFB, R5F111MJGFB

REVISION HISTORY

RL78/L1C Datasheet

Dav	Dete		Description
Rev.	Date	Page	Summary
0.01	Oct 15, 2012	_	First Edition issued
1.00	Nov 18, 2013	1, 2	Modification of 1.1 Features
		3, 4	Modification of 1.2 Ordering Information
		5 to 8	Modification of package type in 1.3 Pin Configuration (Top View)
		14 to 17	Modification of vectored interrupt sources in 1.6 Outline of Functions
		14 to 17	Modification of operating ambient temperature in 1.6 Outline of Functions
		19 to 21	Modification of description in tables in 2.1 Absolute Maximum Ratings
		22, 23	Modification of description in 2.2 Oscillator Characteristics
		25	Modification of low-level output current in 2.3.1 Pin characteristics
		26	Modification of error of high-level input voltage conditions in 2.3.1 Pin characteristics
		26	Modification of error of low-level input voltage conditions in 2.3.1 Pin characteristics
		27	Modification of low-level output voltage in 2.3.1 Pin characteristics
		28	Modification of error of internal pull-up resistor conditions in 2.3.1 Pin characteristics
		29 to 34	Modification of 2.3.2 Supply current characteristics
		35, 36	Modification of 2.4 AC Characteristics
		37, 38	Addition of minimum instruction execution time during main system clock operation
		41 to 63	Addition of LS mode and LV mode characteristics in 2.5.1 Serial array unit
		64 to 66	Addition of LS mode and LV mode characteristics in 2.5.2 Serial interface IICA
		67, 68	Modification of conditions in 2.5.3 USB
		69	Addition of (3) BC option standard in 2.5.3 USB
		70 to 75	Addition of characteristics about conversion of internal reference voltage and temperature sensor in 2.6.1 A/D converter characteristics
		76	Addition of characteristic in 2.6.4 Comparator
		76	Deletion of detection delay in 2.6.5 POR circuit characteristics
		78	Modification of 2.7 Power supply voltage rising slope characteristics
		79 to 82	Modification of 2.8 LCD Characteristics
		83	Modification of 2.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics
		83	Modification of 2.10 Flash Memory Programming Characteristics
		84	Addition of 2.12 Timing Specs for Switching Modes
		85 to 144	Addition of 3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)
2.00	Feb 21, 2014	All	Addition of 85-pin product information
		All	Modification from 80-pin to 80/85-pin
		All	Modification from $x = M, P$ to $x = M, N, P$
		All	Modification from high-accuracy real-time clock to real-time clock 2
		All	Modification from RTC to RTC2
		1	Modification of 1.1 Features
		3	Modification of 1.2 Ordering Information

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard" Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances: machine tools: personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.3.0-1 November 2016) RENESAS **Renesas Electronics Corporation** SALES OFFICES http://www.renesas.com Refer to "http://www.renesas.com/" for the latest and detailed information Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

 Renesas Electronics (China) Co., Ltd.

 Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China

 Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

 Renesas Electronics (Shanghai) Co., Ltd.

 Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333

 Tel: +86-17-2226-0888, Fax: +86-228-0999

 Renesas Electronics Hong Kong Limited

 Unit 1001-1611, 1617, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +86-2226-0888, Fax: +86-22886-9022

 Renesas Electronics Taiwan Co., Ltd.

 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

 Tel: +88-2-8175-9600, Fax: +882 2886-9022

 Renesas Electronics Singapore Pte. Ltd.

 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

 Tel: +261-20200, Fax: +865-210-3000

 Renesas Electronics Malaysia Sdn.Bhd.

 Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

 Tel: +20-37955-9390, Fax: +865-2810.

 Renesas Electronics India Pvt. Ltd.

 No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India

 Tel: +20-457208700, Fax: +80-47208777

 Renesas Electronics Korea Co., Ltd.

 12F., 234 Teheran-ro, Gangman-Gu, Seoul, 135-080, Korea</