

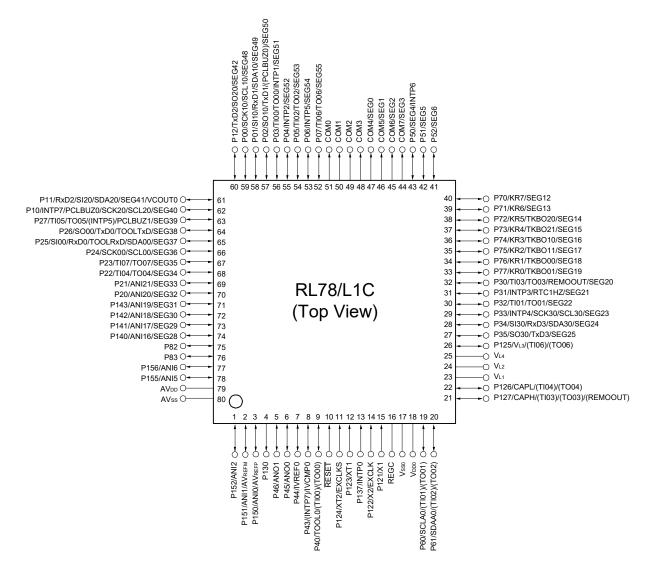
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART, USB
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 9x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f110mfafb-30


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

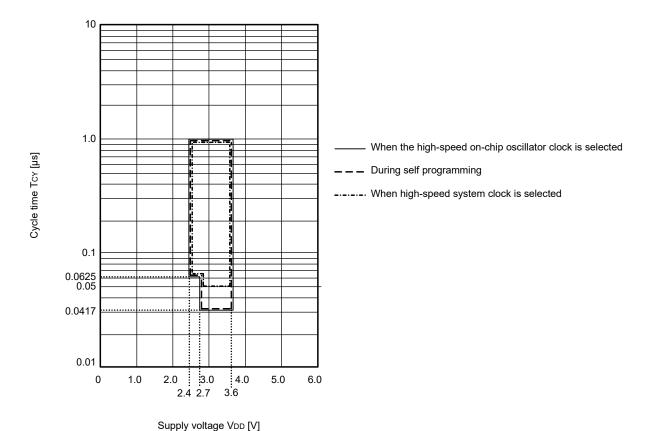
RL78/L1C 1. OUTLINE

1.3.2 80-pin products (without USB)

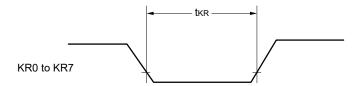
• 80-pin plastic LFQFP (fine pitch) (12 × 12 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

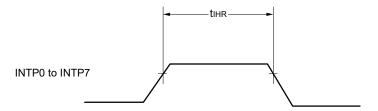
Remark 1. For pin identification, see 1.4 Pin Identification.

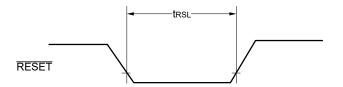

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

- Note 1. Current flowing to VDD.
- Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing to the AVDD.
- Note 8. Current flowing from the reference voltage source of A/D converter.
- **Note 9.** Operation current flowing to the internal reference voltage.
- Note 10. Current flowing to the AVREFP.
- **Note 11.** Current flowing only to the D/A converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDA when the D/A converter operates in an operation mode or the HALT mode.
- Note 12. Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates in the Operating, HALT or STOP mode.
- Note 13. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- Note 14. Current flowing only during self-programming.
- Note 15. Current flowing only during data flash rewrite.
- Note 16. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/L1C User's Manual.
- Note 17. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.
- Note 18. Not including the current that flows through the external divider resistor divider resistor.
- Note 19. Current flowing to the UVBUS.
- **Note 20.** Including the operating current when fPLL = 48 MHz.
- Note 21. Including the current supplied from the pull-up resistor of the UDP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fclk: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C



Minimum Instruction Execution Time during Main System Clock Operation


Tcy vs VDD (HS (high-speed main) mode)

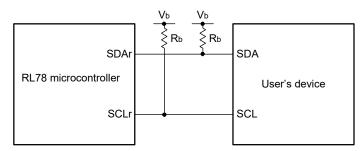

Key Interrupt Input Timing

Timer KB2 Input Timing

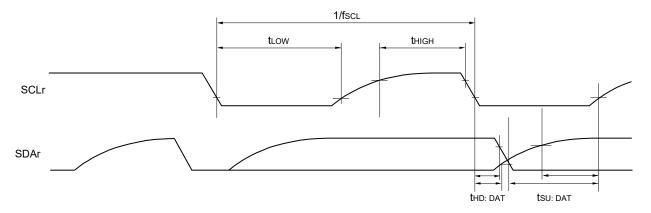
RESET Input Timing

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Con	Conditions		n-speed Mode	LS (low main)		LV (low- main)	-	Unit
						MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tKCY2	2.7 V ≤ VDD ≤ 3.6 V,	20 MHz < fмcк ≤ 24 MHz	16/fмск		_		_		ns
time Note 1		2.3 V ≤ Vb ≤ 2.7 V	16 MHz < fмcк ≤ 20 MHz	14/fmck		_		_		ns
			8 MHz < fmck ≤ 16 MHz	12/fмск		_		_		ns
			4 MHz < fmck ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fMCK ≤ 4 MHz	6/fmck		10/fмск		10/fmck		ns
		$1.8 \text{ V} \le \text{VDD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V} \text{ Note 2}$	20 MHz < fмcк ≤ 24 MHz	36/fмск		_		_		ns
			16 MHz < fмcк ≤ 20 MHz	32/fмск		_		_		ns
			8 MHz < fmck ≤ 16 MHz	26/fмск		_		_		ns
			4 MHz < fmck ≤ 8 MHz	16/fмск		16/fмск		_		ns
			fMCK ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level width	tKH2, tKL2	2.7 V ≤ VDD ≤ 3.6 V, 2.3 \	/ ≤ Vb ≤ 2.7 V	tKCY2/2 - 18		tKCY2/2 - 50		tkcy2/2 - 50		ns
		1.8 V ≤ VDD < 3.3 V, 1.6 V	tKCY2/2 - 50		tKCY2/2 - 50		tkcy2/2 - 50		ns	
SIp setup time (to SCKp↑)	tsık2	2.7 V ≤ VDD ≤ 3.6 V	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns	
Note 3		1.8 V ≤ VDD < 3.3 V		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 4	tKSI2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp	tKSO2	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V}$ Cb = 30 pF, Rb = 2.7 k Ω	/ ≤ Vb ≤ 2.7 V		2/fмcк + 214		2/fмск + 573		2/fмск + 573	ns
output Note 5		1.8 V ≤ V _{DD} < 3.3 V, 1.6 V C _b = 30 pF, R _b = 5.5 kΩ	/ ≤ V _b ≤ 2.0 V Note 2		2/fмcк + 573		2/fмск + 573		2/fмск + 573	ns

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Note 2.** Use it with $VDD \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. $Rb[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 10, 20, 30), g: PIM, POM number (g = 0 to 3)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0, 2), mn = 00, 02, 10, 12)

(2) I²C fast mode

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode			peed main) ode	LV (low-vo	Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fscL	Fast mode:	2.7 V ≤ VDD ≤ 3.6 V	0	400	0	400	0	400	kHz
frequency		fclk ≥ 3.5 MHz	1.8 V ≤ VDD ≤ 3.6 V	0	400	0	400	0	400	kHz
Setup time of restart	tsu: sta	2.7 V ≤ VDD ≤ 3.	6 V	0.6		0.6		0.6		μs
condition		1.8 V ≤ VDD ≤ 3.	6 V	0.6		0.6		0.6		μs
Hold time Note 1	thd: sta	2.7 V ≤ VDD ≤ 3.	6 V	0.6		0.6		0.6		μs
		1.8 V ≤ VDD ≤ 3.6 V		0.6		0.6		0.6		μs
Hold time when tLow		2.7 V ≤ VDD ≤ 3.	1.3		1.3		1.3		μs	
SCLA0 = "L"		1.8 V ≤ VDD ≤ 3.	6 V	1.3		1.3		1.3		μs
Hold time when	tHIGH	2.7 V ≤ VDD ≤ 3.	6 V	0.6		0.6		0.6		μs
SCLA0 = "H"		1.8 V ≤ VDD ≤ 3.	6 V	0.6		0.6		0.6		μs
Data setup time	tsu: DAT	2.7 V ≤ VDD ≤ 3.	6 V	100		100		100		ns
(reception)		1.8 V ≤ VDD ≤ 3.	6 V	100		100		100		ns
Data hold time	thd: dat	2.7 V ≤ VDD ≤ 3.	6 V	0	0.9	0	0.9	0	0.9	μs
(transmission) Note 2		1.8 V ≤ VDD ≤ 3.	6 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop	tsu: sto	2.7 V ≤ VDD ≤ 3.	6 V	0.6		0.6		0.6		μs
condition		1.8 V ≤ VDD ≤ 3.	6 V	0.6		0.6		0.6		μs
Bus-free time	tBUF	2.7 V ≤ VDD ≤ 3.	6 V	1.3		1.3		1.3		μs
		1.8 V ≤ VDD ≤ 3.	6 V	1.3		1.3		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark

The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: Cb = 320 pF, Rb = 1.1 k Ω

(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI6

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	8		12	bit
			1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	8		10 Note 1	
			1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V		8 Note 2	2	
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±6.0	LSB
		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.5	
Conversion time	tconv	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	3.375			μs
		ADTYP = 0, 10-bit resolution Note 1	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	6.75			
		ADTYP = 0, 8-bit resolution Note 2	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	13.5			
		ADTYP = 1,	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	2.5625			
		8-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	5.125			
			1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±4.5	LSB
		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±4.5	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.0	
Full-scale error Note 3	EFS	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±4.5	LSB
		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±4.5	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.0	
Integral linearity error	ILE	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±2.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±1.5	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±1.0	
Differential linearity error	DLE	12-bit resolution	2.4 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±1.5	LSB
Note 3		10-bit resolution	1.8 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±1.5	
		8-bit resolution	1.6 V ≤ AVREFP ≤ AVDD ≤ 3.6 V			±1.0	
Analog input voltage	VAIN			0		AVREFP	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(6) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6, ANI16 to ANI21

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 3.6 V, 1.6 V \leq VDD, 1.6 V \leq AVDD = VDD, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tconv	8-bit resolution	16			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AVREF(+)	= Internal reference voltage (VBGR)	1.38	1.45	1.5	V
Analog input voltage	Vain		0		VBGR	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.2 Temperature sensor, internal reference voltage output characteristics

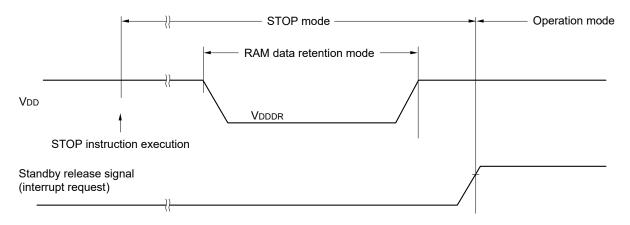
(TA = -40 to +85°C, 2.4 V ≤ VDD ≤ 3.6 V, Vss = 0 V (HS (high-speed main) mode))

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs

2.6.3 D/A converter characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 MΩ	1.8 V ≤ VDD ≤ 3.6 V			±2.5	LSB
		Rload = 8 MΩ	1.8 V ≤ VDD ≤ 3.6 V			±2.5	LSB
Settling time	tset	Cload = 20 pF	2.7 V ≤ VDD ≤ 3.6 V			3	μs
			1.6 V ≤ V _{DD} < 2.7 V			6	μs



2.9 RAM Data Retention Characteristics

$(TA = -40 \text{ to } +85^{\circ}\text{C}, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 Note		3.6	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.10 Flash Memory Programming Characteristics

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fCLK	2.4 V ≤ VDD ≤ 3.6 V	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3	-	Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

- Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
- Note 2. When using flash memory programmer and Renesas Electronics self programming library
- **Note 3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.11 Dedicated Flash Memory Programmer Communication (UART)

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

(1/3)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to + 6.5	V
	UVBUS		-0.5 to + 6.5	V
	AVDD	AVDD ≤ VDD	-0.5 to + 4.6	V
REGC pin input voltage	VIREGC	REGC	-0.3 to + 2.8	V
			and -0.3 to V _{DD} + 0.3 Note 1	
UREGC pin input voltage	VIUREGC	UREGC	-0.3 to UVBUS + 0.3 Note 2	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P37,	-0.3 to V _{DD} + 0.3 Note 3	V
		P40 to P46, P50 to P57, P70 to P77, P80 to P83,		
		P125 to P127, P137, P140 to P143, EXCLK, EXCLKS, RESET		
			201 25	.,
	VI2	P60, P61 (N-ch open-drain)	-0.3 to + 6.5	V
	VI3	UDP, UDM	-0.3 to + 6.5	V
	VI4	P150 to P156	-0.3 to AVDD + 0.3 Note 4	V
Output voltage	Vo1	P00 to P07, P10 to P17, P20 to P27, P30 to P37,	-0.3 to V _{DD} + 0.3 Note 3	V
		P40 to P46, P50 to P57, P60, P61, P70 to P77,		
		P80 to P83, P125 to P127, P130, P140 to P143		
	VO2	P150 to P156	-0.3 to AVDD + 0.3 Note 3	V
	Vo ₃	UDP, UDM	-0.3 to + 3.8	V
Analog input voltage	VAI1	ANI16 to ANI21	-0.3 to VDD + 0.3	V
			and AVREF(+) + 0.3 Notes 3, 5	
	VAI2	ANI0 to ANI6	-0.3 to AVDD + 0.3	V
			and AVREF(+) + 0.3 Notes 3, 5	

- Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
- **Note 2.** Connect the UREGC pin to Vss via a capacitor (0.33 μF). This value regulates the absolute maximum rating of the UREGC pin. Do not use this pin with voltage applied to it.
- Note 3. Must be 6.5 V or lower.
- Note 4. Must be 4.6 V or lower.
- **Note 5.** Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

 That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
- **Remark 2.** AVREF (+): + side reference voltage of the A/D converter.
- Remark 3. Vss: Reference voltage

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT mode	HS (high-speed main)	fHOCO = 48 MHz Note 4,	VDD = 3.6 V		0.77	3.4	mA
current	Note 2		mode Note 7	fih = 24 MHz Note 4	VDD = 3.0 V		0.77	3.4	
Note 1				fHOCO = 24 MHz Note 4,	VDD = 3.6 V		0.55	2.7	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.55	2.7	
				fHOCO = 16 MHz Note 4,	VDD = 3.6 V		0.48	1.9	
				fiH = 16 MHz Note 4	VDD = 3.0 V		0.47	1.9	
			HS (high-speed main)	fmx = 20 MHz Note 3,	Square wave input		0.35	2.10	mA
			mode Note 7	VDD = 3.6 V	Resonator connection		0.51	2.20	
				fmx = 20 MHz Note 3,	Square wave input		0.34	2.10	
				VDD = 3.0 V	Resonator connection		0.51	2.20	
				fmx = 16 MHz Note 3,	Square wave input		0.30	1.25	
				VDD = 3.6 V	Resonator connection		0.45	1.41	
				fmx = 16 MHz Note 3,	Square wave input		0.29	1.23	
				VDD = 3.0 V	Resonator connection		0.45	1.41	
				fmx = 10 MHz Note 3,	Square wave input		0.23	1.10	
				VDD = 3.6 V	Resonator connection		0.30	1.20	
				IS f _{MX} = 48 MHz, V _{DD} = 3.6 V High-speed main) f _{CLK} = 24 MHz Note 3 V _{DD} = 3.0 V	Square wave input		0.22	1.10	
					Resonator connection		0.30	1.20	
			(High and a discount)		VDD = 3.6 V		0.99	2.93	mA
					VDD = 3.0 V		0.99	2.92	
					0.89	2.51			
					0.89	2.50			
				VDD = 3.6 V		0.84	2.30		
				fCLK = 6 MHz Note 3	VDD = 3.0 V		0.84	2.29	
			Subsystem clock	fsuB = 32.768 kHz Note 5	Square wave input		0.32	0.61	μA
			operation	TA = -40°C	Resonator connection		0.51	0.80	
				fsuB = 32.768 kHz Note 5	Square wave input		0.41	0.74	
				TA = +25°C	Resonator connection		0.62	0.91	
				fsuB = 32.768 kHz Note 5	Square wave input		0.52	2.30	
				TA = +50°C	Resonator connection		0.75	2.49	
				fsuB = 32.768 kHz Note 5	Square wave input		0.82	4.03	
				TA = +70°C	Resonator connection		1.08	4.22	
				fsuB = 32.768 kHz Note 5	Square wave input		1.38	8.04	
				TA = +85°C	Resonator connection		1.62	8.23	
				fsuB = 32.768 kHz Note 5	Square wave input		3.29	41.00	
				TA = +105°C	Resonator connection		3.63	41.00	
	IDD3	STOP mode	T _A = -40°C				0.18	0.52	μA
	Note 6	Note 8					0.25	0.52	
							0.34	2.21	
							0.64	3.94	
							1.18	7.95	-
			T _A = +105°C			1	2.92	40.00	

(Notes and Remarks are listed on the next page.)

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)

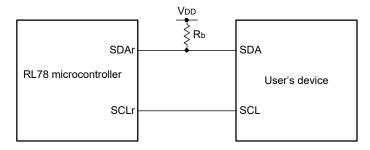
Parameter	Symbol		Condition	ne		MIN.	TYP.	MAX.	Unit
Low-speed	IFIL Note 1		Conditio	פות		IVIIIN.	0.20	IVIAA.	
on-chip oscillator operating current	IEIT More I						0.20		μA
RTC2 operating current	IRTC Notes 1, 3								μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 4						0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fiL = 15 kHz					0.22		μA
A/D converter operating current	IADC Notes 6, 7	AVDD = 3.0 V, whe	n conversion at maximu	m speed			422	720	μA
AVREF (+) current	IAVREF Note 8	AVDD = 3.0 V, ADF	REFP1 = 0, ADREFP0 =	0 Note 7			14.0	25.0	μΑ
		AVREFP = 3.0 V, AI	DREFP1 = 0, ADREFP0) = 1 Note 10			14.0	25.0	
		ADREFP1 = 1, AD	REFP0 = 0 Note 1				14.0	25.0	
A/D converter reference voltage current	IADREF Notes 1, 9	VDD = 3.0 V	VDD = 3.0 V				75.0		μA
Temperature sensor operating current	ITMPS Note 1						78		μА
D/A converter operating current	IDAC Notes 1, 11	Per D/A converter	Per D/A converter channel				0.53	1.5	mA
Comparator	ICMP	VDD = 3.6 V,	Window mode				12.5		μΑ
operating current Notes 1, 12		Regulator output voltage = 2.1 V Comparator high-speed mode					4.5		μΑ
		_	Comparator low-speed	d mode			1.2		μA
LVD operating current	ILVD Notes 1, 13						0.06		μA
Self-programming operating current	IFSP Notes 1, 14						2.50	12.20	mA
BGO operating current	IBGO Notes 1, 15						1.68	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performe	d Note 16			0.34	1.10	mA
operating current		The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V					0.53	2.04	
		CSI/UART operation	on				0.70	1.54	mA
LCD operating current	ILCD1 Notes 17, 18	External resistance division method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.6 V, LV4 = 3.6 V		0.14		μA
	ILCD2 Note 17	Internal voltage boosting method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, LV4 = 3.0 V (VLCD = 04H)		0.61		μА
	ILCD3 Note 17	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, Lv4 = 3.0 V		0.12		μA
USB current	IUSB Note 20	Operating current during USB communication					4.88		mA
Note 19	IUSB Note 21	Operating current in the USB suspended state					0.04		mA

(Notes and Remarks are listed on the next page.)

- Note 1. Current flowing to VDD.
- Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing to the AVDD.
- Note 8. Current flowing from the reference voltage source of A/D converter.
- **Note 9.** Operation current flowing to the internal reference voltage.
- Note 10. Current flowing to the AVREFP.
- **Note 11.** Current flowing only to the D/A converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDA when the D/A converter operates in an operation mode or the HALT mode.
- Note 12. Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates in the Operating, HALT or STOP mode.
- Note 13. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- Note 14. Current flowing only during self-programming.
- Note 15. Current flowing only during data flash rewrite.
- Note 16. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/L1C User's Manual...
- Note 17. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.
- Note 18. Not including the current that flows through the external divider resistor divider resistor.
- Note 19. Current flowing to the UVBUS.
- **Note 20.** Including the operating current when fPLL = 48 MHz.
- Note 21. Including the current supplied from the pull-up resistor of the UDP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.
- Remark 1. flL: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fclk: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

(4) During communication at same potential (simplified I²C mode)

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$


Danamatan	Comple at	O and distance	HS (high-speed	HS (high-speed main) Mode		
Parameter	Symbol	Conditions	MIN.	MAX.	Unit	
SCLr clock frequency	fscl	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ		400 Note 1	kHz	
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ		100 Note 1	kHz	
Hold time when SCLr = "L"	tLOW	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	1200		ns	
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	4600		ns	
Hold time when SCLr = "H"	thigh	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	1200		ns	
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	4600		ns	
Data setup time (reception)	tsu: dat	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	1/fMCK + 200 Note 2		ns	
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	1/fMCK + 580 Note 2		ns	
Data hold time (transmission)	thd: dat	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	0	770	ns	
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	0	1420	ns	

Note 1. The value must be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

(6) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑) Note 1	tsık1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 30 \text{ pF}, Rb = 2.7 \text{ k}\Omega$	354		ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V} \text{ Note } 3,$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	958		ns
SIp hold time (from SCKp†) Note 1	tksi1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	38		ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V} \text{ Note } 3,$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	38		ns
Delay time from SCKp↓ to SOp output Note 1	tKSO1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		390	ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V} \text{ Note } 3,$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$		966	ns
SIp setup time (to SCKp↓) Note 2	tsik1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	88		ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V} \text{ Note } 3,$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	220		ns
SIp hold time (from SCKp↓) Note 2	tksi1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	38		ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V} \text{ Note } 3,$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	38		ns
Delay time from SCKp† to SOp output Note 2	tKSO1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 30 \text{ pF}, Rb = 2.7 \text{ k}\Omega$		50	ns
		$2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V} \text{ Note } 3,$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$		50	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. Use it with $VDD \ge Vb$.

(7) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Dozemstor	Cumphal	Conditions		HS (high-spe	Unit	
Parameter	Symbol	Con	MIN.	MAX.	Unit	
SCKp cycle time Note 1	tKCY2	2.7 V ≤ VDD ≤ 3.6 V,	20 MHz < fMcK ≤ 24 MHz	32/fmck		ns
		2.3 V ≤ Vb ≤ 2.7 V	16 MHz < fMCK ≤ 20 MHz	28/fmck		ns
			8 MHz < fмcк ≤ 16 MHz	24/fmck		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмck		ns
			fMCK ≤ 4 MHz	12/fmck		ns
		2.4 V ≤ VDD < 3.3 V,	20 MHz < fMck ≤ 24 MHz	72/fmck		ns
		1.6 V ≤ Vb ≤ 2.0 V Note 2	16 MHz < fMCK ≤ 20 MHz	64/fmck		ns
			8 MHz < fмcк ≤ 16 MHz	52/fmck		ns
			4 MHz < fмcк ≤ 8 MHz	32/fmck		ns
			fMCK ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tkh2, tkl2	2.7 V ≤ VDD ≤ 3.6 V, 2.3 V	/ ≤ V _b ≤ 2.7 V	tKCY2/2 - 36		ns
		2.4 V ≤ VDD < 3.3 V, 1.6 V	V ≤ Vb ≤ 2.0 V Note 2	tKCY2/2 - 100		ns
SIp setup time (to SCKp↑) Note 3	tsık2	2.7 V ≤ VDD ≤ 3.6 V		1/fмск + 40		ns
		2.4 V ≤ VDD < 3.3 V		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 4	tKSI2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 5	tKSO2	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$ Cb = 30 pF, Rb = 2.7 k Ω			2/fmck + 428	ns
		2.4 V ≤ VDD < 3.3 V, 1.6 V Cb = 30 pF, Rb = 5.5 kΩ	V ≤ Vb ≤ 2.0 V Note 2		2/fмcк + 1146	ns

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Note 2.** Use it with $VDD \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

3.8 LCD Characteristics

3.8.1 Resistance division method

(1) Static display mode

(TA = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 3.6 V, VSS = 0 V)

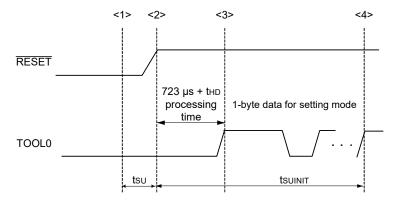
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		VDD	V

(2) 1/2 bias method, 1/4 bias method

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, VL4 \text{ (MIN.)} \le VDD \le 3.6 \text{ V}, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		VDD	V

(3) 1/3 bias method


(TA = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		VDD	V

3.12 Timing of Entry to Flash Memory Programming Modes

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
Time to hold the TOOL0 pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends.).

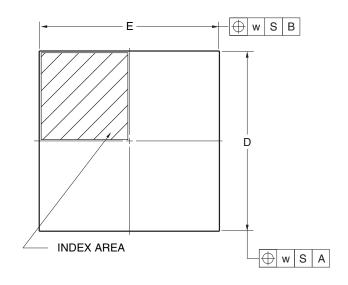
<3> The TOOL0 pin is set to the high level.

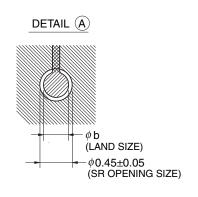
<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

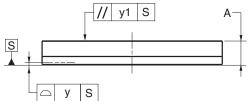
Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from

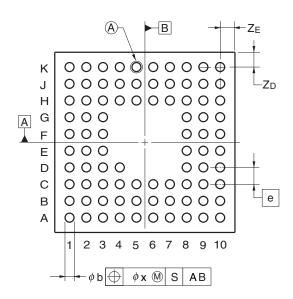
tsu: How long from when the TOOL0 pin is placed at the low level until a external reset ends

 $\hbox{thd:} \qquad \hbox{How long to keep the TOOL0 pin at the low level from when the external and internal resets end (except soft)}$


processing time)




4.2 85-pin products


R5F110NEALA, R5F110NFALA, R5F110NGALA, R5F110NHALA, R5F110NJALA R5F111NEALA, R5F111NFALA, R5F111NGALA, R5F111NHALA, R5F111NJALA R5F110NEGLA, R5F110NFGLA, R5F110NGGLA, R5F110NHGLA, R5F111NGGLA, R5F111NHGLA, R5F111NJGLA

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-VFLGA85-7x7-0.65	PVLG0085JA-A	P85FC-65-BN4	0.1

Referance	Dimension in Millimeters				
Symbol	Min	Nom	Max		
D	6.90	7.00	7.10		
Е	6.90	7.00	7.10		
Α			1.00		
е		0.65			
b	0.30	0.35	0.40		
х	_		0.08		
у			0.10		
У1			0.20		
Z_{D}		0.575			
Z _E		0.575			
W			0.20		

©2013 Renesas Electronics Corporation. All rights reserved.