

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART, USB
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	192KB (192K × 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 9x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f110mhafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.2 80-pin products (without USB)

• 80-pin plastic LFQFP (fine pitch) (12 × 12 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 µF).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

<R>

1.5.2 80/85-pin products (without USB)

(2/2)

		80/85-pin	100-pin			
	Item	R5F110Mx/R5F110Nx (x = E to H, J)	R5F110Px (x = E to H, J)			
Clock output/buzzer o	utput	2	2			
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fSuB = 32.768 kHz operation) 				
8/12-bit resolution A/D) converter	9 channels	13 channels			
D/A converter		2 channels	2 channels			
Comparator		1 channel	2 channels			
Serial interface		CSI: 1 channel/UART (UART supporting LIN-bu CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C:	us): 1 channel/simplified I ² C: 1 channel 1 channel 1 channel 1 channel			
	I ² C bus	1 channel	1 channel			
USB	Function	1 cha	nnel			
LCD controller/driver		Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.				
Segment signal output		44 (40) ^{Note 1}	56 (52) ^{Note 1}			
Common s	ignal output	4 (8) Note 1				
Data transfer controlle	er (DTC)	32 sources	33 sources			
Event link controller (E	ELC)	Event input: 30, Event trigger output: 22	Event input: 31, Event trigger output: 22			
Vectored interrupt	Internal	36	37			
sources	External	9	9			
Key interrupt		8	8			
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note 2 Internal reset by RAM parity error Internal reset by illegal-memory access				
Power-on-reset circuit		 Power-on-reset: 1.51 ± 0.03 V Power-down-reset: 1.50 ± 0.03 V 				
Voltage detector		Rising edge: 1.67 V to 3.13 V (12 stages) Falling edge: 1.63 V to 3.06 V (12 stages)				
On-chip debug functio	n	Provided				
Power supply voltage		VDD = 1.6 to 3.6 V (TA = -40 to +85°C) VDD = 2.4 to 3.6 V (TA = -40 to +105°C)				
Operating ambient ter	nperature	TA = -40 to +85°C (A: Consumer applications), TA = -40 to +105°C (G: Industrial applications)				

Note 1. The number in parentheses indicates the number of signal outputs when 8 coms are used.

Note 2. The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

<R>

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tĸcy1 ≥ fcLĸ/2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	167		250		500		ns
SCKp high-/ low-level width	tĸ∟1	2.7 V ≤ V _{DD} ≤	$2.7 V \leq V_{DD} \leq 3.6 V$			tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tSIK1	$2.7 V \leq V_{DD} \leq$	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			110		110		ns
SIp hold time (from SCKp↑) ^{Note 2}	tKSI1	2.7 V ≤ V _{DD} ≤	$2.7 V \leq V_{DD} \leq 3.6 V$			10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tKSO1	C = 20 pF Note	4		10		10		10	ns

$(T_A = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 2)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

Parameter Symbol		Cond	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit			
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.			
SCKp cycle	tKCY2	$2.7 \text{ V} \leq \text{VDD} < 3.6 \text{ V}$	fмск > 16 MHz	8/fмск		—		_		ns		
time Note 5			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns		
		2.4 V ≤ VDD < 3.6 V		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns		
		1.8 V ≤ VDD < 3.6 V		_		6/fмск and 750		6/fмск and 750		ns		
		1.6 V ≤ VDD < 3.6 V		_		—		6/fмск and 1500		ns		
SCKp high-/	tkh2, tkl2	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$		tkcy2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns		
low-level width		$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		_		tксү2/2 - 18		tkcy2/2 - 18		ns		
		$1.6 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		_		—		tkcy1/2 - 66		ns		
SIp setup time	tsik2	$2.7~\text{V} \leq \text{VDD} \leq 3.6~\text{V}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns			
(to SCKp↑) Note 1		$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns		
		1.8 V ≤ VDD < 3.6 V		—		1/fмск + 30		1/fмск + 30		ns		
		1.6 V ≤ VDD < 3.6 V		_		—		1/fмск + 40		ns		
Slp hold time	tKSI2	$2.4 \text{ V} \leq \text{VDD} < 3.6 \text{ V}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns		
(from SCKp↑) Note 2		1.8 V ≤ VDD < 3.6 V		—		1/fмск + 31		1/fмск + 31		ns		
1002		1.6 V ≤ VDD < 3.6 V		_		—		1/fмск + 250		ns		
Delay time from SCKp↓ to	tKSO2	C = 30 pF Note 4	2.7 V ≤ VDD ≤ 3.6 V		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns		
SOp output Note 3			2.4 V ≤ VDD < 3.6 V		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns		
						1.8 V ≤ VDD < 3.6 V		_		2/fмск + 110		2/fмск + 110
			1.6 V ≤ VDD < 3.6 V		_		_		2/fмск + 220	ns		

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, Vss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 10, 20, 30) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

Timing of UDP and UDM

(2) BC standard

(TA = -40 to +85°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6 V, VSS = 0 V, HS (High-speed main) mode only)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB standard BC1.2	UDP sink current	IDP_SINK		25	100	175	μΑ
	UDM sink current	Idm_sink		25	100	175	μΑ
	DCD source current	IDP_SRC		7	10	13	μΑ
	Data detection voltage	VDAT_REF		0.25	0.325	0.4	V
	UDP source voltage	VDP_SRC	Output current 250 µA	0.5	0.6	0.7	V
	UDM source voltage	VDM_SRC	Output current 250 µA	0.5	0.6	0.7	V

(5) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit	
Resolution	Res		$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		12	bit	
			$1.8 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1		
			1.6 V ≤ AVDD ≤ 3.6 V		8 Note 2			
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±8.5	LSB	
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V		1	±6.0		
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V		1	±3.5		
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V	4.125			μs	
		ADTYP = 0, 10-bit resolution ^{Note 1}	1.8 V ≤ AVDD ≤ 3.6 V	9.5				
		ADTYP = 0, 8-bit resolution ^{Note 2}	1.6 V ≤ AVDD ≤ 3.6 V	57.5				
		ADTYP = 1,	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.3125				
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	7.875				
			$1.6 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	54.25				
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±8.0	LSB	
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.5		
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.0		
Full-scale error Note 3	EFS	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±8.0	LSB	
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.5		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0		
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.5	LSB	
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.5		
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5		
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.5	LSB	
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.5		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0		
Analog input voltage	VAIN			0		AVDD	V	
		Internal reference voltage (2.4 V \leq VDD \leq 3.6 V, HS (high-speed main) mode)		VBGR Note 4				
		Temperature sensor outp (2.4 V \leq VDD \leq 3.6 V, HS	V	TMP25 Note	4			

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

2.8.2 Internal voltage boosting method

(1) 1/3 bias method

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF ^{Note 2}	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 µF	2 VL1 - 0.1	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 ^{Note 1} = 0.47 µF		3 VL1 - 0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C4 ^{Note 1} =	0.47µF	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 µF±30%

Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = - 40 to +105°C)

This chapter describes the following electrical specifications. Target products G: Industrial applications TA = -40 to +105°C R5F110xxGxx, R5F111xxGxx

- Caution 1. The RL78 microcontroller has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L1C User's Manual.
- Caution 3. Please contact Renesas Electronics sales office for derating of operation under TA = +85°C to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.
- **Remark** When the RL78 microcontroller is used in the range of TA = -40 to +85°C, see **2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)**.

The following functions differ between the products "G: Industrial applications (TA = -40 to +105°C)" and the products "A: Consumer applications and G: Industrial applications (when used in the range of TA = -40 to +85°C)".

Parameter	A: Consumer applications	G: Industrial applications
Operating ambient temperature	TA = -40 to +85°C	TA = -40 to +105°C
Operating mode Operating voltage range	HS (high-speed main) mode: 2.7 V \leq VDD \leq 3.6 V@1 MHz to 24 MHz 2.4 V \leq VDD \leq 3.6 V@1 MHz to 16 MHz LS (low-speed main) mode: 1.8 V \leq VDD \leq 3.6 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq VDD \leq 3.6 V@1 MHz to 4 MHz	HS (high-speed main) mode only: 2.7 V ≤ VDD ≤ 3.6 V@1 MHz to 24 MHz 2.4 V ≤ VDD ≤ 3.6 V@1 MHz to 16 MHz
High-speed on-chip oscillator clock accuracy	1.8 V \leq VDD \leq 3.6 V: \pm 1.0% @ TA = -20 to +85°C \pm 1.5% @ TA = -40 to -20°C 1.6 V \leq VDD \leq 1.8 V: \pm 5.0% @ TA = -20 to +85°C \pm 5.5% @ TA = -40 to -20°C	2.4 V ≤ VDD ≤ 3.6 V: ±2.0% @ TA = +85 to +105°C ±1.0% @ TA = -20 to +85°C ±1.5% @ TA = -40 to -20°C
Serial array unit	UART CSI: fcLK/4 Simplified I ² C communication	UART CSI: fcLK/4 Simplified I ² C communication
lica	Normal mode Fast mode Fast mode plus	Normal mode Fast mode
Voltage detector	 Rise detection: 1.67 V to 3.13 V (12 levels) Fall detection: 1.63 V to 3.06 V (12 levels) 	 Rise detection: 2.61 V to 3.13 V (6 levels) Fall detection: 2.55 V to 3.06 V (6 levels)

Remark The electrical characteristics of the products G: Industrial applications (TA = -40 to +105°C) are different from those of the products "A: Consumer applications". For details, refer to **3.1** to **3.12**.

RENESAS

Absolute Maximum Ratings (TA = 25°C)

(3/3)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-40	mA
		Total of all	P40 to P46	-70	mA
		pins -170 mA	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-100	mA
	Іон2	Per pin	P150 to P156	-0.1	mA
		Total of all pins		-0.7	mA
	Іонз	Per pin	UDP, UDM	-3	mA
Output current, low	IOL1 Per pin		P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	40	mA
		Total of all	P40 to P46	70	mA
		pins 170 mA	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	100	mA
	IOL2	Per pin	P150 to P156	0.4	mA
		Total of all pins		2.8	mA
	IOL3	Per pin	UDP, UDM	3	mA
Operating ambient	TA	In normal c	operation mode	-40 to +105	°C
temperature		In flash me	mory programming mode	-40 to +105	
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

<R>

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	IOL1	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143				8.5 Note 2	mA
		Per pin for P60 and P61				15.0 Note 2	mA
		Total of P40 to P46, P130 (When duty ≤ 70% ^{Note 3})	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			15.0	mA
			2.4 V ≤ VDD < 2.7 V			9.0	mA
		Total of P00 to P07, P10 to P17, P20 to P27,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			35.0	mA
		P30 to P37, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P140 to P143 (When duty \leq 70% ^{Note 3})	2.4 V ≤ V _{DD} < 2.7 V			20.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				50.0	mA
	IOL2	Per pin for P150 to P156				0.4 Note 2	mA
		Total of all pins	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			2.8	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

Note 2. However, do not exceed the total current value.

<R>

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression

(when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOL \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IOL = 10.0 mA

Total output current of pins = (10.0 × 0.7)/(80 × 0.01) ≈ 8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	VI = VDD				1	μΑ
	ILIH2	P20, P21, P140 to P143	VI = VDD				1	μA
	Ilih3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	ILIH4	P150 to P156	VI = AVDI)			1	μA
Input leakage current, low	ILIL1 P00 to P07, P10 to P17, P20 to P27, VI = Vss P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143 RESET					-1	μA	
	ILIL2	P20, P21, P140 to P143	VI = Vss				-1	μA
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
	ILIL4	P150 to P156	VI = AVss	5			-1	μA
On-chip pull-up resistance	Ru1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P140 to P143, P125 to P127	VI = VSS	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	10	20	100	kΩ
	RU2	P40 to P46, P80 to P83	VI = Vss		10	20	100	kΩ

(TA = -40 to +105°C, 2	$2.4 V \leq AVDD = VDD \leq$	3.6 V, Vss = 0 V)
------------------------	------------------------------	-------------------

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- **Note 3.** When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- Note 7.
 Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

 HS (high-speed main) mode:
 2.7 V ≤ VDD ≤ 3.6 V@1 MHz to 24 MHz
 - $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}_{\text{@}1} \text{ MHz to } 16 \text{ MHz}$
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fill: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Simplified I²C mode serial transfer timing (during communication at same potential)

- Remark 1. Rb[Ω]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance
- **Remark 2.** r: IIC number (r = 00, 10, 20, 30), g: PIM number (g = 0 to 3),
- h: POM number (h = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

Timing of UDP and UDM

(2) BC standard

(TA = -40 to +105°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6 V, VSS = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB	UDP sink current	IDP_SINK		25	100	175	μΑ
standard	UDM sink current	IDM_SINK		25	100	175	μΑ
BC1.2	DCD source current	IDP_SRC		7	10	13	μΑ
	Data detection voltage	VDAT_REF		0.25	0.325	0.4	V
	UDP source voltage	VDP_SRC	Output current 250 µA	0.5	0.6	0.7	V
	UDM source voltage	VDM_SRC	Output current 250 µA	0.5	0.6	0.7	V

3.8 LCD Characteristics

3.8.1 Resistance division method

(1) Static display mode

$(TA = -40 \text{ to } +105^{\circ}C, VL4 \text{ (MIN.)} \le VDD \le 3.6 \text{ V}, VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

$(TA = -40 \text{ to } +105^{\circ}C, VL4 \text{ (MIN.)} \le VDD \le 3.6 \text{ V}, VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

(TA = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

3.8.3 Capacitor split method

(1) 1/3 bias method

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		Vdd		V
VL2 voltage	VL2	C1 to C4 = 0.47 µF Note 2	2/3 VL4 - 0.07	2/3 VL4	2/3 V _{L4} + 0.07	V
VL1 voltage	VL1	C1 to C4 = 0.47 µF Note 2	1/3 Vl4 - 0.08	1/3 VL4	1/3 VL4 + 0.08	V
Capacitor split wait time Note 1	t∨wait		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 µF±30%

3.9 RAM Data Retention Characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.44 ^{Note}		3.6	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.10 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C ^{Note 4}	100,000			
		Retained for 20 years TA = 85°C ^{Note 4}	10,000			

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

Note 4. This temperature is the average value at which data are retained.

3.11 Dedicated Flash Memory Programmer Communication (UART)

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

