

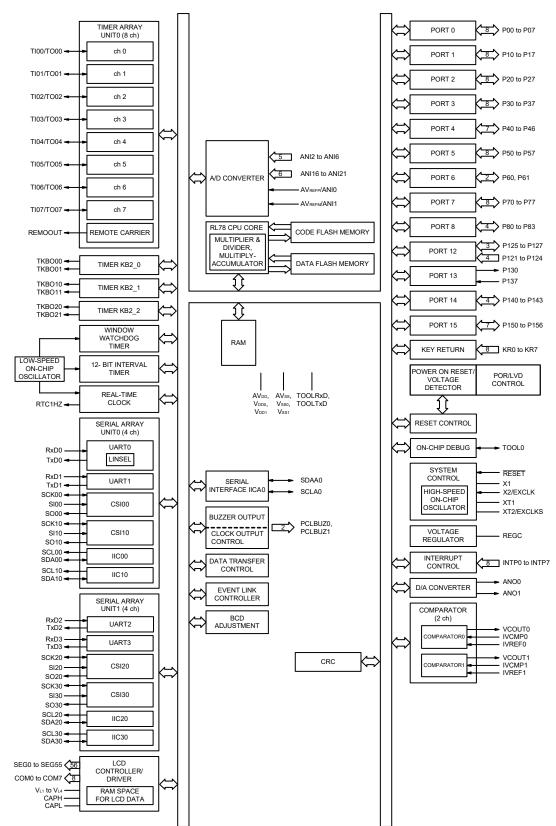
Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details


E·XFl

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Active                                                                          |
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 24MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART, USB                                  |
| Peripherals                | LCD, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 51                                                                              |
| Program Memory Size        | 192KB (192K x 8)                                                                |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 8K x 8                                                                          |
| RAM Size                   | 16K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 3.6V                                                                     |
| Data Converters            | A/D 9x8/12b; D/A 2x8b                                                           |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 80-LQFP                                                                         |
| Supplier Device Package    | 80-LQFP (12x12)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f110mhgfb-30 |
|                            |                                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



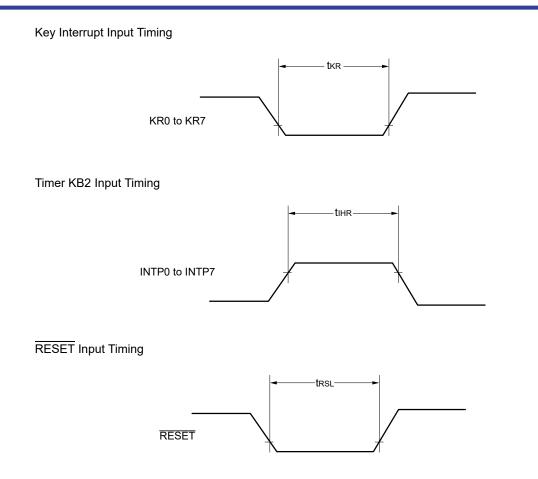




| Items                    | Symbol                                                    | Conditions                                                                 |                                                                              | MIN.       | TYP. | MAX. | Unit |
|--------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|------------|------|------|------|
| Output voltage, high Vон |                                                           | P00 to P07, P10 to P17, P20 to P27,<br>P30 to P37, P40 to P46, P50 to P57, | 2.7 V ≤ VDD ≤ 3.6 V,<br>Іон1 = -2.0 mA                                       | Vdd - 0.6  |      |      | V    |
|                          |                                                           | P70 to P77, P80 to P83, P125 to P127,<br>P130, P140 to P143                | 1.8 V ≤ VDD ≤ 3.6 V,<br>Іон1 = -1.5 mA                                       | Vdd - 0.5  |      |      | V    |
|                          |                                                           |                                                                            | 1.6 V ≤ VDD < 3.6 V,<br>Іон1 = -1.0 mA                                       | Vdd - 0.5  |      |      | V    |
|                          | Voh2                                                      | P150 to P156                                                               | 1.6 V ≤ VDD ≤ 3.6 V,<br>IOH2 = -100 μA                                       | AVDD - 0.5 |      |      | V    |
| Output voltage, low      | VOL1                                                      | P00 to P07, P10 to P17, P20 to P27,<br>P30 to P37, P40 to P46, P50 to P57, | $2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$<br>IOL1 = 3.0 mA           |            |      | 0.6  | V    |
|                          | P70 to P77, P80 to P83, P125 to P12<br>P130, P140 to P143 | 2.7 V ≤ VDD ≤ 3.6 V,<br>IOL1 = 1.5 mA                                      |                                                                              |            | 0.4  | V    |      |
|                          |                                                           |                                                                            | 1.8 V ≤ VDD ≤ 3.6 V,<br>IOL1 = 0.6 mA                                        |            |      | 0.4  | V    |
|                          |                                                           |                                                                            | 1.6 V ≤ VDD < 1.8 V,<br>IOL1 = 0.3 mA                                        |            |      | 0.4  | V    |
|                          | Vol2                                                      | P150 to P156                                                               | 1.6 V ≤ VDD ≤ 3.6 V,<br>IOL2 = 400 μA                                        |            |      | 0.4  | V    |
| V                        | Vol3                                                      | Vol3 P60, P61 2                                                            | $2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$<br>IOL3 = 3.0 mA           |            |      | 0.4  | V    |
|                          |                                                           |                                                                            | $1.8 V \le VDD \le 3.6 V$ ,<br>IOL3 = 2.0 mA                                 |            |      | 0.4  | V    |
|                          |                                                           |                                                                            | $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 1.8 \text{ V},$<br>IOL3 = 1.0 mA |            |      | 0.4  | V    |

## (TA = -40 to +85°C, 1.6 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = 0 V)

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.


**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



| Parameter                                            | Symbol                 |                                           | Condition                                  | ıs                       |                                             | MIN. | TYP. | MAX.  | Unit |
|------------------------------------------------------|------------------------|-------------------------------------------|--------------------------------------------|--------------------------|---------------------------------------------|------|------|-------|------|
| Low-speed<br>on-chip oscillator<br>operating current | FIL Note 1             |                                           |                                            | 0.20                     |                                             | μA   |      |       |      |
| RTC2 operating current                               | IRTC<br>Notes 1, 3     |                                           |                                            |                          |                                             |      |      |       | μA   |
| 12-bit interval<br>timer operating<br>current        | ITMKA<br>Notes 1, 2, 4 |                                           |                                            |                          |                                             |      | 0.02 |       | μA   |
| Watchdog timer operating current                     | IWDT<br>Notes 1, 2, 5  | fi∟ = 15 kHz                              | fil = 15 kHz                               |                          |                                             |      |      |       | μA   |
| A/D converter<br>operating current                   | IADC<br>Notes 6, 7     | AVDD = 3.0 V, whe                         | n conversion at maximur                    | n speed                  |                                             |      | 422  | 720   | μA   |
| AVREF (+) current                                    | IAVREF                 | AVDD = 3.0 V, ADF                         | EFP1 = 0, ADREFP0 = 0                      | 0 Note 7                 |                                             |      | 14.0 | 25.0  | μA   |
|                                                      | Note 8                 | AVREFP = 3.0 V, AI                        | DREFP1 = 0, ADREFP0                        | = 1 Note 10              |                                             |      | 14.0 | 25.0  |      |
|                                                      |                        | ADREFP1 = 1, AD                           | REFP0 = 0 Note 1                           |                          |                                             |      | 14.0 | 25.0  |      |
| A/D converter<br>reference voltage<br>current        | IADREF<br>Notes 1, 9   | VDD = 3.0 V                               |                                            |                          |                                             |      |      |       | μA   |
| Temperature<br>sensor operating<br>current           | ITMPS Note 1           |                                           |                                            |                          |                                             |      |      |       | μA   |
| D/A converter operating current                      | IDAC<br>Notes 1, 11    | Per D/A converter                         | channel                                    |                          |                                             |      | 0.53 | 1.5   | mA   |
| Comparator ICMP<br>operating current Notes           |                        | VDD = 3.6 V,                              | Window mode                                |                          |                                             |      | 12.5 |       | μA   |
|                                                      | Notes 1, 12            | Regulator output<br>voltage = 2.1 V       | Comparator high-speed                      | d mode                   |                                             |      | 4.5  |       | μΑ   |
|                                                      |                        | Comparator low-speed                      | mode                                       |                          |                                             | 1.2  |      | μA    |      |
|                                                      |                        | VDD = 3.6 V, Window mode                  |                                            |                          |                                             |      | 7.05 |       | μΑ   |
|                                                      |                        | Regulator output<br>voltage = 1.8 V       |                                            |                          |                                             |      | 2.2  |       | μA   |
|                                                      |                        |                                           | Comparator low-speed                       | mode                     |                                             |      | 0.9  |       | μA   |
| LVD operating<br>current                             | ILVI<br>Notes 1, 13    |                                           |                                            |                          |                                             |      | 0.06 |       | μA   |
| Self-programming operating current                   | IFSP<br>Notes 1, 14    |                                           |                                            |                          |                                             |      | 2.50 | 12.20 | mA   |
| BGO operating<br>current                             | IBGO<br>Notes 1, 15    |                                           |                                            |                          |                                             |      | 1.68 | 12.20 | mA   |
| SNOOZE                                               | ISNOZ Note 1           | ADC operation                             | The mode is performed                      | Note 16                  |                                             |      | 0.34 | 1.10  | mA   |
| operating current                                    |                        |                                           | The A/D conversion op voltage mode, AVREFP |                          |                                             |      | 0.53 | 2.04  |      |
|                                                      |                        | CSI/UART operation                        | on                                         |                          |                                             |      | 0.70 | 1.54  | mA   |
| LCD operating<br>current                             | ILCD1<br>Notes 17, 18  | External<br>resistance<br>division method | fLCD = fSUB<br>LCD clock = 128 Hz          | 1/3 bias<br>4-time slice | VDD = 3.6 V,<br>LV4 = 3.6 V                 |      | 0.14 |       | μA   |
|                                                      | ILCD2<br>Note 17       | Internal voltage<br>boosting method       | fLCD = fSUB<br>LCD clock = 128 Hz          | 1/3 bias<br>4-time slice | VDD = 3.0 V,<br>LV4 = 3.0 V<br>(VLCD = 04H) |      | 0.61 |       | μA   |
|                                                      | ILCD3<br>Note 17       | Capacitor split method                    | fLCD = fSUB<br>LCD clock = 128 Hz          | 1/3 bias<br>4-time slice | VDD = 3.0 V,<br>Lv4 = 3.0 V                 |      | 0.12 |       | μA   |
| USB current                                          | IUSB Note 20           | Operating current of                      | during USB communicati                     | on                       |                                             |      | 4.88 |       | mA   |
| Note 19                                              | IUSB Note 21           | Operating current i                       | n the USB suspended st                     | ate                      |                                             |      | 0.04 |       | mA   |

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$ 

(Notes and Remarks are listed on the next page.)





| Parameter                                 | Symbol                                             | Conc                                                         | litions                                         | HS (high-<br>main) M | •                 | LS (low-speed main)<br>Mode |                    | LV (low-voltage main)<br>Mode |                 | Unit |
|-------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|----------------------|-------------------|-----------------------------|--------------------|-------------------------------|-----------------|------|
|                                           |                                                    |                                                              |                                                 | MIN.                 | MAX.              | MIN.                        | MAX.               | MIN.                          | MAX.            |      |
| SCKp cycle                                | tKCY2                                              | 2.7 V ≤ VDD < 3.6 V                                          | fмск > 16 MHz                                   | 8/fмск               |                   | —                           |                    | —                             |                 | ns   |
| time Note 5                               |                                                    |                                                              | fмск ≤ 16 MHz                                   | 6/fмск               |                   | 6/fмск                      |                    | 6/fмск                        |                 | ns   |
|                                           | 2.4 V ≤ VDD < 3.6 V                                |                                                              | 6/fмск<br>and 500                               |                      | 6/fмск<br>and 500 |                             | 6/fмск<br>and 500  |                               | ns              |      |
|                                           | 1.8 V ≤ VDD < 3.6 V                                |                                                              | —                                               |                      | 6/fмск<br>and 750 |                             | 6/fмск<br>and 750  |                               | ns              |      |
|                                           | 1.6 V ≤ VDD < 3.6 V                                |                                                              | —                                               |                      | —                 |                             | 6/fмск<br>and 1500 |                               | ns              |      |
| SCKp high-/ tKH2, tKL2<br>low-level width | $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ |                                                              | tkcy2/2 - 8                                     |                      | tkcy2/2 - 8       |                             | tkcy2/2 - 8        |                               | ns              |      |
|                                           | 1.8 V ≤ VDD ≤ 3.6 V                                |                                                              | —                                               |                      | tксү2/2 - 18      |                             | tkcy2/2 - 18       |                               | ns              |      |
|                                           |                                                    | 1.6 V ≤ VDD ≤ 3.6 V                                          |                                                 | —                    |                   | —                           |                    | tkcy1/2 - 66                  |                 | ns   |
| SIp setup time                            | tSIK2                                              | $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$           |                                                 | 1/fмск + 20          |                   | 1/fмск + 30                 |                    | 1/fмск + 30                   |                 | ns   |
| (to SCKp↑)<br>Note 1                      |                                                    | $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$ |                                                 | 1/fмск + 30          |                   | 1/fмск + 30                 |                    | 1/fмск + 30                   |                 | ns   |
|                                           |                                                    | 1.8 V ≤ VDD < 3.6 V                                          |                                                 | —                    |                   | 1/fмск + 30                 |                    | 1/fмск + 30                   |                 | ns   |
|                                           |                                                    | 1.6 V ≤ VDD < 3.6 V                                          |                                                 | —                    |                   | —                           |                    | 1/fмск + 40                   |                 | ns   |
| SIp hold time                             | tKSI2                                              | $2.4 \text{ V} \leq \text{V}_{\text{DD}} < 3.6 \text{ V}$    |                                                 | 1/fмск + 31          |                   | 1/fмск + 31                 |                    | 1/fмск + 31                   |                 | ns   |
| (from SCKp↑)<br>Note 2                    |                                                    | 1.8 V ≤ VDD < 3.6 V                                          |                                                 | —                    |                   | 1/fмск + 31                 |                    | 1/fмск + 31                   |                 | ns   |
| 11010 2                                   |                                                    | 1.6 V ≤ VDD < 3.6 V                                          |                                                 | —                    |                   | —                           |                    | 1/fмск + 250                  |                 | ns   |
| Delay time<br>from SCKp↓ to               | tKSO2                                              | C = 30 pF Note 4                                             | 2.7 V ≤ VDD ≤ 3.6 V                             |                      | 2/fмск<br>+ 44    |                             | 2/fмск<br>+ 110    |                               | 2/fмск<br>+ 110 | ns   |
| SOp output<br>Note 3                      |                                                    |                                                              | $2.4 \text{ V} \leq \text{VDD} < 3.6 \text{ V}$ |                      | 2/fмск<br>+ 75    |                             | 2/fмск<br>+ 110    |                               | 2/fмск<br>+ 110 | ns   |
|                                           |                                                    |                                                              | 1.8 V ≤ VDD < 3.6 V                             |                      | —                 |                             | 2/fмск<br>+ 110    |                               | 2/fмск<br>+ 110 | ns   |
|                                           |                                                    |                                                              | 1.6 V ≤ VDD < 3.6 V                             |                      | —                 |                             | —                  |                               | 2/fмск<br>+ 220 | ns   |

# (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V $\leq$ VDD $\leq$ 3.6 V, Vss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

**Note 5.** The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

**Remark 1.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))



Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

## RL78/L1C

# (8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

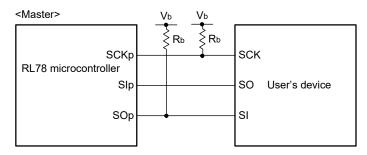
| Parameter                                             | Symbol | Conditions                                                                                                                                                            |      | h-speed<br>Mode | LS (low<br>main) | •    | LV (low-voltage main) Mode |      | Unit |
|-------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|------------------|------|----------------------------|------|------|
|                                                       |        |                                                                                                                                                                       | MIN. | MAX.            | MIN.             | MAX. | MIN.                       | MAX. |      |
| SIp setup time<br>(to SCKp↑) <sup>Note 1</sup>        | tsik1  | $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$<br>Cb = 30 pF, Rb = 2.7 k $\Omega$                             | 177  |                 | 479              |      | 479                        |      | ns   |
|                                                       |        | $\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$                  | 479  |                 | 479              |      | 479                        |      | ns   |
| SIp hold time tKSI1<br>(from SCKp↑) <sup>Note 1</sup> | tKSI1  | $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$<br>$C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$        | 19   |                 | 19               |      | 19                         |      | ns   |
|                                                       |        | $\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$            | 19   |                 | 19               |      | 19                         |      | ns   |
| Delay time from t⊮<br>SCKp↓ to SOp                    | tKSO1  | $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$<br>$C_{b} = 30 \text{ pF}, \text{R}_{b} = 2.7 \text{ k}\Omega$ |      | 195             |                  | 195  |                            | 195  | ns   |
| output <sup>Note 1</sup>                              |        | $\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note } 3, \\ C_b = 30 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{array}$        |      | 483             |                  | 483  |                            | 483  | ns   |
| SIp setup time<br>(to SCKp↓) <sup>Note 2</sup>        | tSIK1  | $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$<br>$C_{b} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$    | 44   |                 | 110              |      | 110                        |      | ns   |
|                                                       |        | $\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$            | 110  |                 | 110              |      | 110                        |      | ns   |
| SIp hold time<br>(from SCKp↓) <sup>Note 2</sup>       | tKSI1  | $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$<br>Cb = 30 pF, Rb = 2.7 kΩ                                     | 19   |                 | 19               |      | 19                         |      | ns   |
|                                                       |        | $\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ \mbox{Note 3}, \\ C_{b} = 30 \ p\mbox{F}, \ R_{b} = 5.5 \ k\Omega \end{array}$   | 19   |                 | 19               |      | 19                         |      | ns   |
| Delay time from<br>SCKp↑ to SOp                       | tKSO1  | $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$<br>$C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$        |      | 25              |                  | 25   |                            | 25   | ns   |
| output <sup>Note 2</sup>                              |        | $\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$                  |      | 25              |                  | 25   |                            | 25   | ns   |

### $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


**Note 3.** Use it with  $V_{DD} \ge V_b$ .

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)



## CSI mode connection diagram (during communication at different potential)



**Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

**Remark 2.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))



(3) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6

# (TA = -40 to +85°C, 1.6 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

| Parameter                    | Symbol | Con                                               | ditions                                                       | MIN.   | TYP.     | MAX.      | Unit |  |
|------------------------------|--------|---------------------------------------------------|---------------------------------------------------------------|--------|----------|-----------|------|--|
| Resolution                   | Res    |                                                   | $2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$ | 8      |          | 12        | bit  |  |
|                              |        |                                                   | 1.8 V ≤ AVDD ≤ 3.6 V                                          | 8      |          | 10 Note 1 |      |  |
|                              |        |                                                   | 1.6 V ≤ AVDD ≤ 3.6 V                                          |        | 8 Note 2 |           |      |  |
| Overall error Note 3         | AINL   | 12-bit resolution                                 | 2.4 V ≤ AVDD ≤ 3.6 V                                          |        |          | ±7.5      | LSB  |  |
|                              |        | 10-bit resolution                                 | 1.8 V ≤ AVDD ≤ 3.6 V                                          |        |          | ±5.5      |      |  |
|                              |        | 8-bit resolution                                  | 1.6 V ≤ AVDD ≤ 3.6 V                                          |        |          | ±3.0      |      |  |
| Conversion time              | tCONV  | ADTYP = 0,<br>12-bit resolution                   | $2.4 \text{ V} \leq \text{AVDD} \leq 3.6 \text{ V}$           | 3.375  |          |           | μs   |  |
|                              |        | ADTYP = 0,<br>10-bit resolution <sup>Note 1</sup> | 1.8 V ≤ AVDD ≤ 3.6 V                                          | 6.75   |          |           |      |  |
|                              |        | ADTYP = 0,<br>8-bit resolution <sup>Note 2</sup>  | 1.6 V ≤ AVDD ≤ 3.6 V                                          | 13.5   |          |           |      |  |
|                              |        | ADTYP = 1,                                        | $2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$ | 2.5625 |          |           |      |  |
|                              |        | 8-bit resolution                                  | 1.8 V ≤ AVDD ≤ 3.6 V                                          | 5.125  |          |           |      |  |
|                              |        |                                                   | 1.6 V ≤ AVDD ≤ 3.6 V                                          | 10.25  |          |           |      |  |
| Zero-scale error Note 3      | Ezs    | 12-bit resolution                                 | $2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$   |        |          | ±6.0      | LSB  |  |
|                              |        | 10-bit resolution                                 | 1.8 V ≤ AVDD ≤ 3.6 V                                          |        |          | ±5.0      |      |  |
|                              |        | 8-bit resolution                                  | 1.6 V ≤ AVDD ≤ 3.6 V                                          |        |          | ±2.5      |      |  |
| Full-scale error Note 3      | Efs    | 12-bit resolution                                 | $2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$   |        |          | ±6.0      | LSB  |  |
|                              |        | 10-bit resolution                                 | 1.8 V ≤ AVDD ≤ 3.6 V                                          |        |          | ±5.0      |      |  |
|                              |        | 8-bit resolution                                  | 1.6 V ≤ AVDD ≤ 3.6 V                                          |        |          | ±2.5      |      |  |
| Integral linearity error     | ILE    | 12-bit resolution                                 | $2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$   |        |          | ±3.0      | LSB  |  |
| Note 3                       |        | 10-bit resolution                                 | 1.8 V ≤ AVDD ≤ 3.6 V                                          |        |          | ±2.0      |      |  |
|                              |        | 8-bit resolution                                  | 1.6 V ≤ AVDD ≤ 3.6 V                                          |        |          | ±1.5      |      |  |
| Differential linearity error | DLE    | 12-bit resolution                                 | $2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$ |        |          | ±2.0      | LSB  |  |
| Note 3                       |        | 10-bit resolution                                 | 1.8 V ≤ AVDD ≤ 3.6 V                                          |        |          | ±2.0      |      |  |
|                              |        | 8-bit resolution                                  | 1.6 V ≤ AVDD ≤ 3.6 V                                          |        |          | ±1.5      |      |  |
| Analog input voltage         | VAIN   | ANI0 to ANI6                                      | 1                                                             | 0      |          | AVdd      | V    |  |

Note 1. Cannot be used for lower 2 bit of ADCR register

**Note 2.** Cannot be used for lower 4 bit of ADCR register

**Note 3.** Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.



# (6) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6, ANI16 to ANI21

(TA = -40 to +85°C, 2.4 V  $\leq$  VDD  $\leq$  3.6 V, 1.6 V  $\leq$  VDD, 1.6 V  $\leq$  AVDD = VDD, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V, HS (high-speed main) mode)

| Parameter                         | Symbol   | Conditions                          | MIN. | TYP. | MAX. | Unit |
|-----------------------------------|----------|-------------------------------------|------|------|------|------|
| Resolution                        | Res      |                                     | 8    |      | bit  |      |
| Conversion time                   | tCONV    | 8-bit resolution                    | 16   |      |      | μs   |
| Zero-scale error Note             | Ezs      | 8-bit resolution                    |      |      | ±4.0 | LSB  |
| Integral linearity error Note     | ILE      | 8-bit resolution                    |      |      | ±2.0 | LSB  |
| Differential linearity error Note | DLE      | 8-bit resolution                    |      |      | ±2.5 | LSB  |
| Reference voltage (+)             | AVREF(+) | = Internal reference voltage (VBGR) | 1.38 | 1.45 | 1.5  | V    |
| Analog input voltage              | VAIN     |                                     | 0    |      | Vbgr | V    |

**Note** Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

## 2.6.2 Temperature sensor, internal reference voltage output characteristics

| Parameter                         | Symbol         | Conditions                                                        | MIN. | TYP. | MAX. | Unit  |
|-----------------------------------|----------------|-------------------------------------------------------------------|------|------|------|-------|
| Temperature sensor output voltage | VTMPS25        | Setting ADS register = 80H, TA = +25°C                            |      | 1.05 |      | V     |
| Internal reference voltage        | Vbgr           | Setting ADS register = 81H                                        | 1.38 | 1.45 | 1.5  | V     |
| Temperature coefficient           | <b>F</b> VTMPS | Temperature sensor output voltage that depends on the temperature |      | -3.6 |      | mV/°C |
| Operation stabilization wait time | tamp           |                                                                   | 10   |      |      | μs    |

# 2.6.3 D/A converter characteristics

## $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

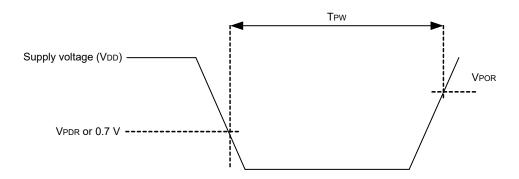
| Parameter     | Symbol       | Cor           | nditions                                           | MIN. | TYP. | MAX. | Unit |
|---------------|--------------|---------------|----------------------------------------------------|------|------|------|------|
| Resolution    | Res          |               |                                                    |      |      | 8    | bit  |
| Overall error | AINL         | Rload = 4 MΩ  | $1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ |      |      | ±2.5 | LSB  |
|               |              | Rload = 8 MΩ  | $1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ |      |      | ±2.5 | LSB  |
| Settling time | <b>t</b> SET | Cload = 20 pF | $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ |      |      | 3    | μs   |
|               |              |               | $1.6 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$    |      |      | 6    | μs   |



## 2.6.4 Comparator

| Parameter                                     | Symbol | Co                                                    | nditions                                  | MIN. | TYP.     | MAX.      | Unit |
|-----------------------------------------------|--------|-------------------------------------------------------|-------------------------------------------|------|----------|-----------|------|
| Input voltage range                           | lvref  |                                                       |                                           | 0    |          | Vdd - 1.4 | V    |
|                                               | lvcmp  |                                                       |                                           | -0.3 |          | VDD + 0.3 | V    |
| Output delay                                  | td     | V <sub>DD</sub> = 3.0 V<br>Input slew rate > 50 mV/µs | High-speed comparator mode, standard mode |      |          | 1.2       | μs   |
|                                               |        |                                                       | High-speed comparator mode, window mode   |      |          | 2.0       | μs   |
|                                               |        |                                                       | Low-speed comparator mode, standard mode  |      | 3        | 5.0       | μs   |
| High-electric-potential judgment voltage      | VTW+   | High-speed comparator mod                             | de, window mode                           |      | 0.76 Vdd |           | V    |
| Low-electric-potential judgment voltage       | VTW-   | High-speed comparator mod                             | de, window mode                           |      | 0.24 Vdd |           | V    |
| Operation stabilization wait time             | tCMP   |                                                       |                                           | 100  |          |           | μs   |
| Internal reference<br>voltage <sup>Note</sup> | Vbgr   |                                                       |                                           | 1.38 | 1.45     | 1.50      | V    |

## $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$


Note Not usable in LS (low-speed main) mode, LV (low-voltage main) mode, sub-clock operation, or STOP mode.

# 2.6.5 POR circuit characteristics

## (TA = -40 to +85°C, Vss = 0 V)

| Parameter           | Symbol | Conditions                             | MIN. | TYP. | MAX. | Unit |
|---------------------|--------|----------------------------------------|------|------|------|------|
| Detection voltage   | VPOR   | Power supply rise time                 | 1.47 | 1.51 | 1.55 | V    |
|                     | VPDR   | Power supply fall time <sup>Note</sup> | 1.46 | 1.50 | 1.54 | V    |
| Minimum pulse width | TPW    |                                        | 300  |      |      | μs   |

Note Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).





## 2.6.6 LVD circuit characteristics

|              | Parameter | Symbol | Conditions             | MIN. | TYP. | MAX. | Unit |
|--------------|-----------|--------|------------------------|------|------|------|------|
| Detection    | 11.5 5    |        | Power supply rise time | 3.07 | 3.13 | 3.19 | V    |
| voltage      |           |        | Power supply fall time | 3.00 | 3.06 | 3.12 | V    |
|              |           | VLVD3  | Power supply rise time | 2.96 | 3.02 | 3.08 | V    |
|              |           |        | Power supply fall time | 2.90 | 2.96 | 3.02 | V    |
|              |           | VLVD4  | Power supply rise time | 2.86 | 2.92 | 2.97 | V    |
|              |           |        | Power supply fall time | 2.80 | 2.86 | 2.91 | V    |
|              |           | VLVD5  | Power supply rise time | 2.76 | 2.81 | 2.87 | V    |
|              |           |        | Power supply fall time | 2.70 | 2.75 | 2.81 | V    |
|              |           | VLVD6  | Power supply rise time | 2.66 | 2.71 | 2.76 | V    |
|              |           |        | Power supply fall time | 2.60 | 2.65 | 2.70 | V    |
|              |           | VLVD7  | Power supply rise time | 2.56 | 2.61 | 2.66 | V    |
|              |           |        | Power supply fall time | 2.50 | 2.55 | 2.60 | V    |
|              |           | VLVD8  | Power supply rise time | 2.45 | 2.50 | 2.55 | V    |
|              |           |        | Power supply fall time | 2.40 | 2.45 | 2.50 | V    |
|              |           | VLVD9  | Power supply rise time | 2.05 | 2.09 | 2.13 | V    |
|              |           |        | Power supply fall time | 2.00 | 2.04 | 2.08 | V    |
|              |           | VLVD10 | Power supply rise time | 1.94 | 1.98 | 2.02 | V    |
|              |           |        | Power supply fall time | 1.90 | 1.94 | 1.98 | V    |
|              |           | VLVD11 | Power supply rise time | 1.84 | 1.88 | 1.91 | V    |
|              |           |        | Power supply fall time | 1.80 | 1.84 | 1.87 | V    |
|              |           | VLVD12 | Power supply rise time | 1.74 | 1.77 | 1.81 | V    |
|              |           |        | Power supply fall time | 1.70 | 1.73 | 1.77 | V    |
|              |           | VLVD13 | Power supply rise time | 1.64 | 1.67 | 1.70 | V    |
|              |           |        | Power supply fall time | 1.60 | 1.63 | 1.66 | V    |
| Minimum pul  | se width  | tLW    |                        | 300  |      |      | μs   |
| Detection de | lay time  |        |                        |      |      | 300  | μs   |

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range. HS (high-speed main) mode: VDD = 2.7 to 3.6 V at 1 MHz to 24 MHz

 $V_{DD} = 2.4$  to 3.6 V at 1 MHz to 16 MHz

LS (low-speed main) mode: VDD = 1.8 to 3.6 V at 1 MHz to 8 MHz

LV (low-voltage main) mode: VDD = 1.6 to 3.6 V at 1 MHz to 4 MHz

## Absolute Maximum Ratings (TA = 25°C)

(3/3)

|                         |         | - ,                  |                                                                                                                                                  |             | (5/  |
|-------------------------|---------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|
| Parameter               | Symbols |                      | Conditions                                                                                                                                       | Ratings     | Unit |
| Output current, high    | Юн1     | Per pin              | P00 to P07, P10 to P17, P20 to P27, P30 to P37,<br>P40 to P46, P50 to P57, P70 to P77, P80 to P83,<br>P125 to P127, P130, P140 to P143           | -40         | mA   |
|                         |         | Total of all         | P40 to P46                                                                                                                                       | -70         | mA   |
|                         |         | pins<br>-170 mA      | P00 to P07, P10 to P17, P20 to P27, P30 to P37,<br>P50 to P57, P70 to P77, P80 to P83,<br>P125 to P127, P130, P140 to P143                       | -100        | mA   |
|                         | Іон2    | Per pin              | P150 to P156                                                                                                                                     | -0.1        | mA   |
|                         |         | Total of all<br>pins |                                                                                                                                                  | -0.7        | mA   |
|                         | Юнз     | Per pin              | UDP, UDM                                                                                                                                         | -3          | mA   |
| Output current, low IOL | IOL1    | Per pin              | P00 to P07, P10 to P17, P20 to P27, P30 to P37,<br>P40 to P46, P50 to P57, P60, P61, P70 to P77,<br>P80 to P83, P125 to P127, P130, P140 to P143 | 40          | mA   |
|                         |         | Total of all         | P40 to P46                                                                                                                                       | 70          | mA   |
|                         |         | pins<br>170 mA       | P00 to P07, P10 to P17, P20 to P27, P30 to P37,<br>P50 to P57, P70 to P77, P80 to P83,<br>P125 to P127, P130, P140 to P143                       | 100         | mA   |
|                         | IOL2    | Per pin              | P150 to P156                                                                                                                                     | 0.4         | mA   |
|                         |         | Total of all<br>pins |                                                                                                                                                  | 2.8         | mA   |
|                         | IOL3    | Per pin              | UDP, UDM                                                                                                                                         | 3           | mA   |
| Operating ambient       | ТА      | In normal o          | operation mode                                                                                                                                   | -40 to +105 | °C   |
| temperature             |         | In flash me          | mory programming mode                                                                                                                            | -40 to +105 |      |
| Storage temperature     | Tstg    |                      |                                                                                                                                                  | -65 to +150 | °C   |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



## 3.2.2 On-chip oscillator characteristics

| Oscillators                                                 | Parameters | Conditions    | MIN. | TYP. | MAX. | Unit |
|-------------------------------------------------------------|------------|---------------|------|------|------|------|
| High-speed on-chip oscillator<br>clock frequency Notes 1, 2 | fносо      |               | 1    |      | 24   | MHz  |
| High-speed on-chip oscillator                               |            | -20 to +85°C  | -1.0 |      | +1.0 | %    |
| clock frequency accuracy                                    |            | -40 to -20°C  | -1.5 |      | +1.5 | %    |
|                                                             |            | +85 to +105°C | -2.0 |      | +2.0 | %    |
| Low-speed on-chip oscillator<br>clock frequency             | fiL        |               |      | 15   |      | kHz  |
| Low-speed on-chip oscillator<br>clock frequency accuracy    |            |               | -15  |      | +15  | %    |

## $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

## 3.2.3 PLL oscillator characteristics

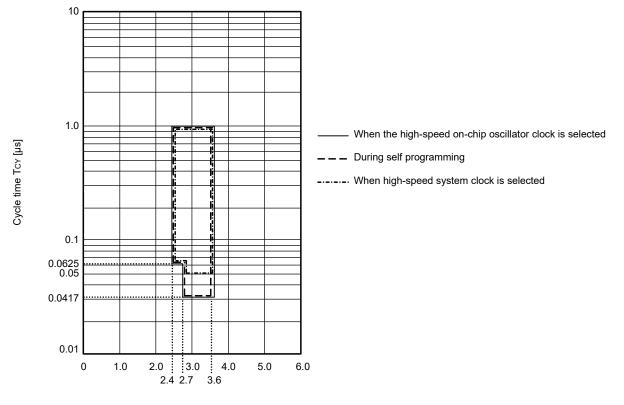
### $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

| Oscillators               | Parameters | Conditions              | MIN. | TYP.  | MAX.  | Unit |
|---------------------------|------------|-------------------------|------|-------|-------|------|
| PLL input frequency Note  | fpllin     | High-speed system clock | 6.00 |       | 16.00 | MHz  |
| PLL output frequency Note | fpll       |                         |      | 48.00 |       | MHz  |

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

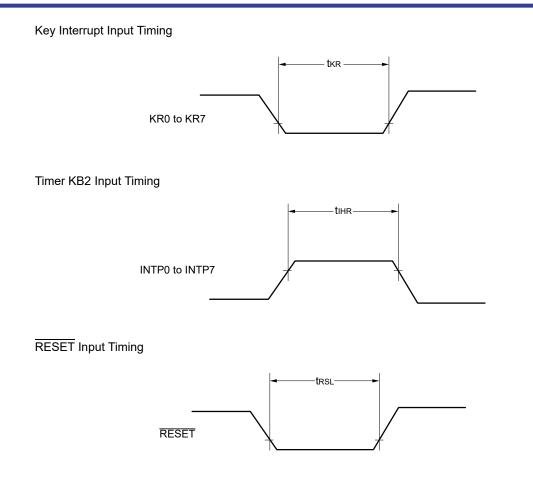


| Note 1. | Current flowing to VDD. |  |
|---------|-------------------------|--|


- **Note 2.** When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
- **Note 4.** Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode.
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing to the AVDD.
- Note 8. Current flowing from the reference voltage source of A/D converter.
- **Note 9.** Operation current flowing to the internal reference voltage.
- Note 10. Current flowing to the AVREFP.
- **Note 11.** Current flowing only to the D/A converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDA when the D/A converter operates in an operation mode or the HALT mode.
- **Note 12.** Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates in the Operating, HALT or STOP mode.
- **Note 13.** Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- Note 14. Current flowing only during self-programming.
- Note 15. Current flowing only during data flash rewrite.
- Note 16. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/L1C User's Manual..
- Note 17. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.
- Note 18. Not including the current that flows through the external divider resistor divider resistor.
- Note 19. Current flowing to the UVBUS.
- Note 20. Including the operating current when fPLL = 48 MHz.
- **Note 21.** Including the current supplied from the pull-up resistor of the UDP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fCLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C



## RL78/L1C


Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)



Supply voltage VDD [V]







## (2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +105°C, 2.4 V ≤ VDD ≤ 3.6 V, VSS = 0 V)

| Parameter                                             | Symbol     | Conditions                                                 |                                                    | HS (high-spee | Unit |       |
|-------------------------------------------------------|------------|------------------------------------------------------------|----------------------------------------------------|---------------|------|-------|
| Farameter                                             | Symbol     |                                                            |                                                    | MIN.          | MAX. | Offic |
| SCKp cycle time                                       | tKCY1      | tĸcy1 ≥ fclĸ/4                                             | tKCY1 ≥ fCLK/4 2.7 V ≤ VDD ≤ 3.6 V                 |               |      | ns    |
|                                                       |            |                                                            | $2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ | 500           |      | ns    |
| SCKp high-/low-level width                            | tĸн1, tĸ∟1 | 2.7 V ≤ VDD ≤ 3.6 V                                        |                                                    | tkcy1/2 - 36  |      | ns    |
|                                                       |            | $2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$         |                                                    | tkcy1/2 - 76  |      | ns    |
| SIp setup time (to SCKp↑) <sup>Note 1</sup>           | tSIK1      | $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$ |                                                    | 66            |      | ns    |
|                                                       |            | $2.4 \text{ V} \leq \text{VDD} \leq 3.$                    | 6 V                                                | 133           |      | ns    |
| SIp hold time (from SCKp↑) Note 2                     | tKSI1      |                                                            |                                                    | 38            |      | ns    |
| Delay time from SCKp↓ to SOp output <sup>Note 3</sup> | tKSO1      | C = 30 pF Note 4                                           |                                                    |               | 50   | ns    |

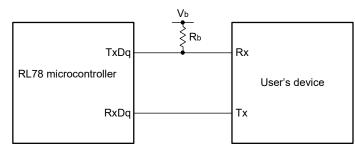
Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

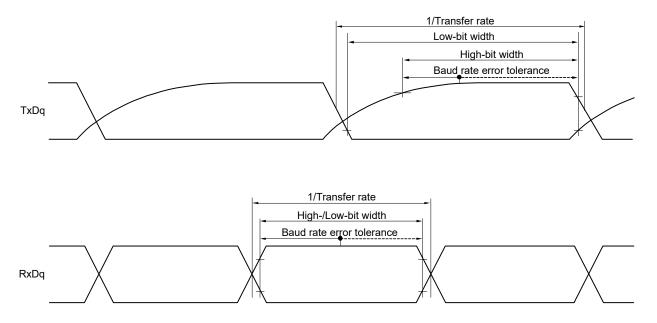
Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).


**Remark 1.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)

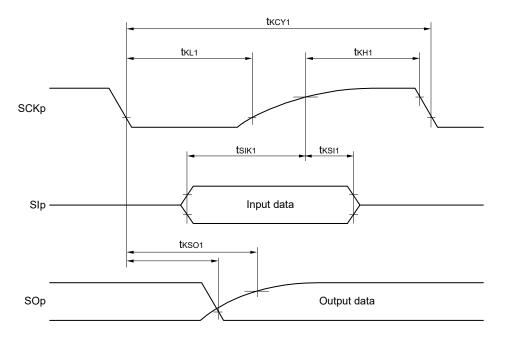
Remark 2. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

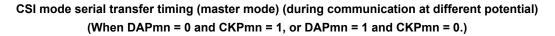


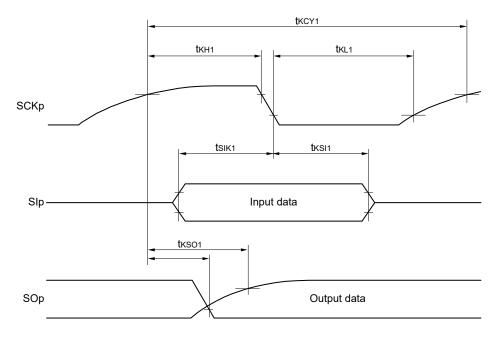
## UART mode connection diagram (during communication at different potential)




## UART mode bit width (during communication at different potential) (reference)



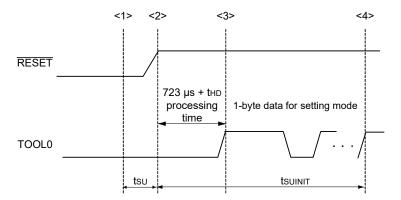

- **Remark 1.** Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)


Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))





## CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)






**Remark** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

## 3.12 Timing of Entry to Flash Memory Programming Modes

| Parameter                                                                                                                                                   | Symbol  | Conditions                                                    | MIN. | TYP. | MAX. | Unit |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------|------|------|------|------|
| How long from when an external reset ends until the initial communication settings are specified                                                            | tsuinit | POR and LVD reset must end<br>before the external reset ends. |      |      | 100  | ms   |
| How long from when the TOOL0 pin is placed at the low level until an external reset ends                                                                    | tsu     | POR and LVD reset must end<br>before the external reset ends. | 10   |      |      | μs   |
| Time to hold the TOOL0 pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory) | thd     | POR and LVD reset must end before the external reset ends.    | 1    |      |      | ms   |



<R>

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends.).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

- **Remark** tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
  - tsu: How long from when the TOOL0 pin is placed at the low level until a external reset ends
  - tHD: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (except soft processing time)

