

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

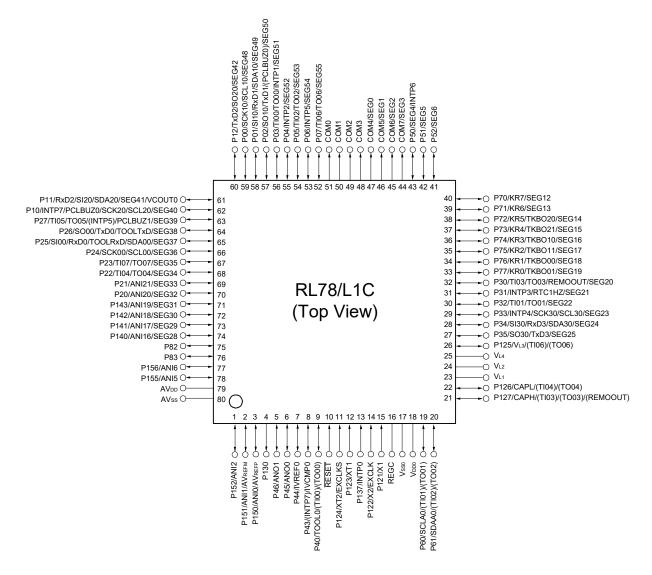
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART, USB
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 9x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	85-VFLGA
Supplier Device Package	85-VFLGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f110neala-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Ordering Information

Products with USB


Pin Count	Package	Fields of Application	Orderable Part Number
80 pins	80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	A G	R5F110MEAFB#30, R5F110MFAFB#30, R5F110MGAFB#30, R5F110MHAFB#30, R5F110MJAFB#30 R5F110MEAFB#50, R5F110MFAFB#50, R5F110MGAFB#50, R5F110MHAFB#50, R5F110MJAFB#50 R5F110MEGFB#30, R5F110MFGFB#30, R5F110MGGFB#30, R5F110MHGFB#30, R5F110MJGFB#30 R5F110MEGFB#50, R5F110MFGFB#50, R5F110MGGFB#50, R5F110MHGFB#50, R5F110MJGFB#50
85 pins	85-pin plastic VFLGA (7 × 7 mm, 0.65 mm pitch)	A G	R5F110NEALA#U0, R5F110NFALA#U0, R5F110NGALA#U0, R5F110NHALA#U0, R5F110NJALA#U0 R5F110NEALA#W0, R5F110NFALA#W0, R5F110NGALA#W0, R5F110NHALA#W0, R5F110NJALA#W0 R5F110NEGLA#U0, R5F110NFGLA#U0, R5F110NGGLA#U0, R5F110NHGLA#U0, R5F110NJGLA#U0 R5F110NEGLA#W0, R5F110NFGLA#W0, R5F110NGGLA#W0, R5F110NHGLA#W0, R5F110NJGLA#W0
100 pins	100-pin plastic LFQFP (14 × 14 mm, 0.5 mm pitch)	A G	R5F110PEAFB#30, R5F110PFAFB#30, R5F110PGAFB#30, R5F110PHAFB#30, R5F110PJAFB#30 R5F110PEAFB#50, R5F110PFAFB#50, R5F110PGAFB#50, R5F110PHAFB#50, R5F110PJAFB#50 R5F110PEGFB#30, R5F110PFGFB#30, R5F110PGGFB#30, R5F110PHGFB#30, R5F110PJGFB#30 R5F110PEGFB#50, R5F110PFGFB#50, R5F110PGGFB#50, R5F110PHGFB#50, R5F110PJGFB#50

Products without USB

Pin Count	Package	Fields of Application	Orderable Part Number
80 pins	80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	A G	R5F111MEAFB#30, R5F111MFAFB#30, R5F111MGAFB#30, R5F111MHAFB#30, R5F111MJAFB#30 R5F111MEAFB#50, R5F111MFAFB#50, R5F111MGAFB#50, R5F111MHAFB#50, R5F111MJAFB#50 R5F111MEGFB#30, R5F111MFGFB#30, R5F111MGGFB#30, R5F111MHGFB#30, R5F111MJGFB#30 R5F111MEGFB#50, R5F111MFGFB#50, R5F111MGGFB#50, R5F111MHGFB#50, R5F111MJGFB#50
85 pins	85-pin plastic VFLGA (7 × 7 mm, 0.65 mm pitch)	A G	R5F111NEALA#U0, R5F111NFALA#U0, R5F111NGALA#U0, R5F111NHALA#U0, R5F111NJALA#U0 R5F111NEALA#W0, R5F111NFALA#W0, R5F111NGALA#W0, R5F111NHALA#W0, R5F111NJALA#W0 R5F111NEGLA#U0, R5F111NFGLA#U0, R5F111NGGLA#U0, R5F111NHGLA#U0, R5F111NJGLA#U0 R5F111NEGLA#W0, R5F111NFGLA#W0, R5F111NGGLA#W0, R5F111NHGLA#W0, R5F111NJGLA#W0
100 pins	100-pin plastic LFQFP (14 × 14 mm, 0.5 mm pitch)	A G	R5F111PEAFB#30, R5F111PFAFB#30, R5F111PGAFB#30, R5F111PHAFB#30, R5F111PJAFB#30 R5F111PEAFB#50, R5F111PFAFB#50, R5F111PGAFB#50, R5F111PHAFB#50, R5F111PJAFB#50 R5F111PEGFB#30, R5F111PFGFB#30, R5F111PGGFB#30, R5F111PHGFB#30, R5F111PJGFB#30 R5F111PEGFB#50, R5F111PFGFB#50, R5F111PGFB#50, R5F111PHGFB#50, R5F111PJGFB#50

1.3.2 80-pin products (without USB)

• 80-pin plastic LFQFP (fine pitch) (12 × 12 mm, 0.5 mm pitch)



Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.3.4 85-pin products (without USB)

Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name
A1	COM7/SEG3	C1	COM2	E1	P04/INTP2/SEG52	G1	P00/SCK10/SCL10/ SEG48	J1	Vsso
A2	P51/SEG5	C2	COM5/SEG1	E2	P05/TI02/TO02/SEG53	G2	Vsso	J2	P11/RxD2/SI20/SDA20/ SEG41/VCOUT0
A3	P70/KR7/SEG12	C3	COM6/SEG2	E3	P06/INTP5/SEG54	G3	P12/TxD2/SO20/SEG42/ VCOUT1	J3	P26/SO00/TxD0/ TOOLTxD/SEG38
A4	P73/KR4/TKBO21/SEG15	C4	P71/KR6/SEG13	E4	_	G4	_	J4	P23/TI07/TO07/SEG35
A5	P74/KR3/TKBO10/SEG16	C5	P76/KR1/TKBO00/SEG18	E5	_	G5	_	J5	P20/ANI20/SEG32
A6	P31/INTP3/RTC1HZ/ SEG21	C6	P77/KR0/TKBO01/ SEG19	E6	_	G6	_	J6	P141/ANI17/SEG29
A7	P33/INTP4/SCK30/ SCL30/SEG23	C7	P34/SI30/RxD3/SDA30/ SEG24	E7	_	G7	_	J7	P82
A8	P35/SO30/TxD3/SEG25	C8	VL1	E8	P40/TOOL0/(TI00)/(TO00)	G8	P44/(SCK10)/(SCL10)/ IVREF0	J8	P83
A9	VL4	C9	P61/SDAA0/(TI02)/(TO02)	E9	P137/INTP0	G9	P45/ANO0	J9	AVDD
A10	P126/CAPL/(TI04)/(TO04)	C10	VDD0	E10	P122/X2/EXCLK	G10	P123/XT1	J10	P150/ANI0/AVREFP
B1	COM4/SEG0	D1	СОМО	F1	P03/TI00/TO00/INTP1/ SEG51	H1	Vsso	K1	Vsso
B2	P50/SEG4/INTP6	D2	COM1	F2	P02/SO10/TxD1/ (PCLBUZ0)/SEG50	H2	Vsso	K2	P27/TI05/TO05/(INTP5)/ PCLBUZ1/SEG39
В3	P52/SEG6	D3	P07/TI06/TO06/SEG55	F3	P01/SI10/RxD1/SDA10/ SEG49	Н3	P10/INTP7/PCLBUZ0/ SCK20/SCL20/SEG40	K3	P25/SI00/RxD0/ TOOLRxD/SDA00/SEG37
B4	P72/KR5/TKBO20/SEG14	D4	СОМЗ	F4	_	H4	P24/SCK00/SCL00/ SEG36	K4	P22/TI04/TO04/SEG34
B5	P75/KR2/TKBO11/SEG17	D5	_	F5	_	H5	P21/ANI21/SEG33	K5	P143/ANI19/SEG31
В6	P30/TI03/TO03/ REMOOUT/SEG20	D6	_	F6	_	H6	P140/ANI16/SEG28	K6	P142/ANI18/SEG30
В7	P32/TI01/TO01/SEG22	D7	_	F7	_	H7	P152/ANI2	K7	P156/ANI6
В8	P125/VL3/(TI06)/(TO06)	D8	P60/SCLA0/(TI01)/(TO01)	F8	P43/(INTP7)/(SI10)/ (RxD1)/(SDA10)/IVCMP0	Н8	P46/ANO1	K8	P155/ANI5
В9	VL2	D9	REGC	F9	RESET	Н9	P130	K9	AVss
B10	P127/CAPH/(TI03)/ (TO03)/(REMOOUT)	D10	P121/X1	F10	Vsso	H10	P124/XT2/EXCLKS	K10	P151/ANI1/AVREFM

1.6 Outline of Functions

[80/85-pin, 100-pin products (with USB)]

(1/2)

		-						
	Item	80/85-pin	100-pin					
	item	R5F110Mx/R5F110Nx (x = E to H, J)	R5F110Px ($x = E \text{ to } H, J$)					
Code flash memory	(KB)	64 to 256	64 to 256					
Data flash memory (KB)	8	8					
RAM (KB)		8 to 16 ^{Note 1}	8 to 16 ^{Note 1}					
Memory space		1 MB						
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main syste 1 to 20 MHz: VDD = 2.7 to 3.6 V, 1 to 8 MHz: VDD	, , ,					
	High-speed on-chip oscillator clock	HS (high-speed main) operation mode: 1 to 24 MHz (VDD = 2.7 to 3.6 V), HS (high-speed main) operation mode: 1 to 16 MHz (VDD = 2.4 to 3.6 V), LS (low-speed main) operation mode: 1 to 8 MHz (VDD = 1.8 to 3.6 V), LV (low-voltage main) operation mode: 1 to 4 MHz (VDD = 1.6 to 3.6 V)						
	PLL clock	6, 12, 24 MHz Note 2: VDD = 2.4 to 3.6 V						
Subsystem clock		XT1 (crystal) oscillation, external subsystem clock i 32.768 kHz (TYP.): VDD = 1.6 to 3.6 V	nput (EXCLKS)					
Low-speed on-chip of	oscillator clock	15 kHz (TYP.): VDD = 1.6 to 3.6 V						
General-purpose reg	gister	8 bits × 32 registers (8 bits × 8 registers × 4 banks)						
Minimum instruction	execution time	0.04167 μs (High-speed on-chip oscillator clock: fн	OCO = fiH = 24 MHz operation)					
		0.04167 µs (PLL clock: fPLL = 48 MHz/fiH = 24 MHz	Note 2 operation)					
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)						
		30.5 µs (Subsystem clock: fs∪B = 32.768 kHz operation)						
Instruction set		Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits + 16 bits, 32 bits + 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.						
I/O port	Total	59	77					
	CMOS I/O	51	69					
	CMOS input	5	5					
	CMOS output	1	1					
	N-ch open-drain I/O (6 V tolerance)	2	2					
Timer	16-bit timer TAU	8 channels (with 1 channel remote control output fu	nction) (Timer outputs: 8, PWM outputs: 7 Note					
	16-bit timer KB2	3 channels (PWM outputs: 6)						
	Watchdog timer	1 channel						
	12-bit interval timer	1 channel	1 channel					
	Real-time clock 2	1 channel						
	RTC output	1 1 Hz (subsystem clock: fsuB = 32.768 kHz)						

Note 1. In the case of the 16 KB, this is about 15 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/L1C User's Manual).

Note 2. In the PLL clock 48 MHz operation, the system clock is 2/4/8 dividing ratio.

Note 3. The number of outputs varies, depending on the setting of channels in use and the number of the master.

2.2.2 On-chip oscillator characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters		MIN.	TYP.	MAX.	Unit	
High-speed on-chip oscillator clock frequency Notes 1, 2	fносо			1		48	MHz
High-speed on-chip oscillator		-20 to +85°C	1.8 V ≤ VDD ≤ 3.6 V	-1.0		+1.0	%
clock frequency accuracy			1.6 V ≤ VDD ≤ 1.8 V	-5.0		+5.0	%
		-40 to -20°C	1.8 V ≤ VDD < 3.6 V	-1.5		+1.5	%
			1.6 V ≤ VDD ≤ 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fıL		·		15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

2.2.3 PLL oscillator characteristics

$(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note	fPLLIN	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	fPLL			48.00		MHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

<R>

<R>

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143				20.0 Note 2	mA
		Per pin for P60 and P61				15.0 Note 2	mA
		Total of P40 to P46, P130	2.7 V ≤ VDD ≤ 3.6 V			15.0	mA
		(When duty ≤ 70% Note 3)	1.8 V ≤ VDD < 2.7 V			9.0	mA
			1.6 V ≤ VDD < 1.8 V			4.5	mA
		Total of P00 to P07, P10 to P17, P20 to P27,	2.7 V ≤ VDD ≤ 3.6 V			35.0	mA
		P30 to P37, P50 to P57, P60, P61,	1.8 V ≤ VDD < 2.7 V			20.0	mA
		P70 to P77, P80 to P83, P125 to P127, P140 to P143 (When duty ≤ 70% Note 3)	1.6 V ≤ VDD < 1.8 V			10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				50.0	mA
	lOL2	Per pin for P150 to P156				0.4 Note 2	mA
		Total of all pins	1.6 V ≤ VDD ≤ 3.6 V			2.8	mA

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
- **Note 2.** However, do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression

(when changing the duty factor from 70% to n%).

- Total output current of pins = (IoL \times 0.7)/(n \times 0.01)
 - <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

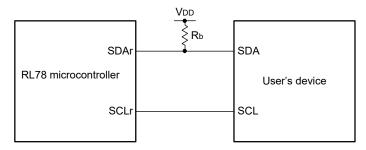
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

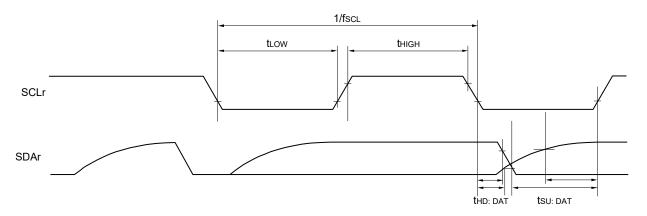
(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voн1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127,	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ $10\text{H1} = -2.0 \text{ mA}$ $1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$	VDD - 0.6			V V
		P130, P140 to P143	IOH1 = -1.5 mA				
			$1.6 \text{ V} \le \text{VDD} < 3.6 \text{ V},$ 10H1 = -1.0 mA	VDD - 0.5			V
	VOH2	P150 to P156	1.6 V ≤ VDD ≤ 3.6 V, IOH2 = -100 μA	AVDD - 0.5			V
Output voltage, low	VOL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57,	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 3.0 mA			0.6	>
		P130, P140 to P143	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 0.6 mA			0.4	٧
			1.6 V ≤ VDD < 1.8 V, IOL1 = 0.3 mA			0.4	V
	VOL2	P150 to P156	1.6 V ≤ VDD ≤ 3.6 V, IOL2 = 400 μA			0.4	٧
	VOL3	P60, P61	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL3 = 3.0 mA			0.4	V
			1.8 V ≤ VDD ≤ 3.6 V, IOL3 = 2.0 mA			0.4	V
			1.6 V ≤ VDD ≤ 1.8 V, IOL3 = 1.0 mA			0.4	V

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.


Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, $1.6 \text{ V} \leq \text{VdD} \leq 3.6 \text{ V}$, Vss = 0 V)


Parameter	Symbol	Conc	litions	HS (high- main) M		LS (low-spee	,	LV (low-voltag Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tKCY2	2.7 V ≤ VDD < 3.6 V	fMCK > 16 MHz	8/fmck		_		_		ns
time Note 5			fMCK ≤ 16 MHz	6/fmck		6/fmck		6/fmck		ns
		2.4 V ≤ VDD < 3.6 V		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ VDD < 3.6 V		_		6/fмск and 750		6/fмск and 750		ns
		1.6 V ≤ VDD < 3.6 V		_		_		6/fмск and 1500		ns
SCKp high-/	tkh2, tkl2	2.7 V ≤ VDD ≤ 3.6 V		tKCY2/2 - 8		tKCY2/2 - 8		tKCY2/2 - 8		ns
low-level width		1.8 V ≤ VDD ≤ 3.6 V		_		tkcy2/2 - 18		tKCY2/2 - 18		ns
		1.6 V ≤ VDD ≤ 3.6 V		_		_		tKCY1/2 - 66		ns
SIp setup time	tsik2	2.7 V ≤ VDD ≤ 3.6 V		1/fмcк + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) Note 1		2.4 V ≤ VDD ≤ 3.6 V		1/fмcк + 30		1/fмск + 30		1/fmck + 30		ns
Note 1		1.8 V ≤ VDD < 3.6 V		_		1/fмск + 30		1/fmck + 30		ns
		1.6 V ≤ VDD < 3.6 V		_		_		1/fмск + 40		ns
SIp hold time	tKSI2	2.4 V ≤ VDD < 3.6 V		1/fмcк + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		1.8 V ≤ VDD < 3.6 V		_		1/fмск + 31		1/fмск + 31		ns
Note 2		1.6 V ≤ VDD < 3.6 V		_		_		1/fмск + 250		ns
Delay time from SCKp↓ to	tKSO2	C = 30 pF Note 4	2.7 V ≤ VDD ≤ 3.6 V		2/fмcк + 44		2/fмск + 110		2/fмcк + 110	ns
SOp output Note 3			2.4 V ≤ VDD < 3.6 V		2/fмcк + 75		2/fмск + 110		2/fмcк + 110	ns
			1.8 V ≤ VDD < 3.6 V		_		2/fмск + 110		2/fмcк + 110	ns
			1.6 V ≤ VDD < 3.6 V		_		_		2/fмск + 220	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SOp output lines.
- Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)
- Remark 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remark 1. $Rb[\Omega]$: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance

Remark 2. r: IIC number (r = 00, 10, 20, 30), g: PIM number (g = 0 to 3), h: POM number (h = 0 to 3)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter Symbo		nbol Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time			$2.7V \le VDD < 3.6 \text{ V}, 2.3 \text{ V} \le Vb \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	500 Note		1150		1150		ns
			1.8 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 1.8 V, Cb = 30 pF, Rb = 5.5 kΩ	1150 Note		1150		1150		ns
SCKp high- tkH1 level width		2.7 V ≤ V _{DD} ≤ C _b = 30 pF, R _b	tkcy1/2 - 170		tKCY1/2 - 170		tKCY1/2 - 170		ns	
		1.8 V ≤ V _{DD} < C _b = 30 pF, R _b	3.3 V, 1.6 V ≤ Vb ≤ 2.0 V, $0.5 = 5.5 \text{ k}\Omega$	tKCY1/2 - 458		tKCY1/2 - 458		tKCY1/2 - 458		ns
SCKp low- level width			$V_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V},$ D pF, Rb = 2.7 kΩ			tKCY1/2 - 50		tKCY1/2 - 50		ns
		1.8 V ≤ V _{DD} < C _b = 30 pF, R _b	3.3 V, 1.6 V ≤ V _b ≤ 2.0 V, $0 = 5.5 \text{ k}\Omega$	tKCY1/2 - 50		tKCY1/2 - 50		tKCY1/2 - 50		ns

Note Use it with $VDD \ge Vb$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol	Conditions	٠	h-speed Mode	LS (low- main)	•	LV (low-voltage main) Mode		Unit
				MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) Note 1	tsik1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	177		479		479		ns
		1.8 V \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note 3} , C _b = 30 pF, R _b = 5.5 kΩ	479		479		479		ns
SIp hold time (from SCKp↑) Note 1	tksi1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	19		19		19		ns
		1.8 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 2.0 V Note 3, Cb = 30 pF, Rb = 5.5 kΩ	19		19		19		ns
Delay time from SCKp↓ to SOp	tKSO1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω		195		195		195	ns
output Note 1		1.8 V \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note 3, C _b = 30 pF, R _b = 5.5 kΩ		483		483		483	ns
SIp setup time (to SCKp↓) Note 2	tsik1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	44		110		110		ns
		1.8 V \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note 3, C _b = 30 pF, R _b = 5.5 kΩ	110		110		110		ns
SIp hold time (from SCKp↓) Note 2	tksi1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	19		19		19		ns
		1.8 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 2.0 V Note 3, Cb = 30 pF, Rb = 5.5 kΩ	19		19		19		ns
Delay time from SCKp↑ to SOp	tKSO1	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω		25		25		25	ns
output Note 2		1.8 V \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note 3, C _b = 30 pF, R _b = 5.5 kΩ		25		25		25	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. Use it with $VDD \ge Vb$.

3.2.2 On-chip oscillator characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fHOCO		1		24	MHz
High-speed on-chip oscillator		-20 to +85°C	-1.0		+1.0	%
clock frequency accuracy		-40 to -20°C	-1.5		+1.5	%
		+85 to +105°C	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fiL			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

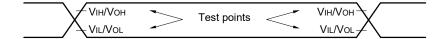
Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

3.2.3 PLL oscillator characteristics

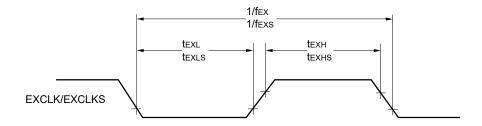
$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note	fPLLIN	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	fPLL			48.00		MHz

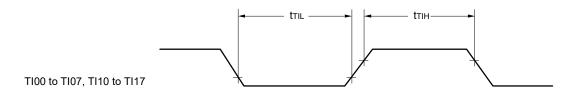
Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

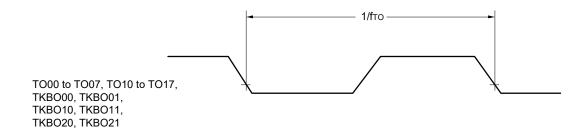

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

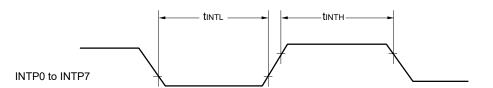

(2/2)

Items	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
TO00 to TO07, TKBO00,	fтo	HS (high-speed main) mode	2.7 V ≤ VDD ≤ 3.6 V			8	MHz
TKBO01, TKBO10, TKBO11,			2.4 V ≤ VDD < 2.7 V			8	MHz
TKBO20, TKBO21							
output frequency							
PCLBUZ0, PCLBUZ1 output	fPCL	HS (high-speed main) mode	2.7 V ≤ VDD ≤ 3.6 V			8	MHz
frequency			2.4 V ≤ VDD < 2.7 V			8	MHz
Interrupt input high-level width,	tinth,	INTP0 to INTP7	2.4 V ≤ VDD ≤ 3.6 V	1			μs
low-level width	tintl						
Key interrupt input low-level	tkr	2.4 V ≤ VDD ≤ 3.6 V		250			ns
width							
TMKB2 forced output stop input	tihr	INTP0 to INTP7	fclk > 16 MHz	125			ns
high-level width			fclk ≤ 16 MHz	2			fclk
RESET low-level width	trsl		•	10			μs

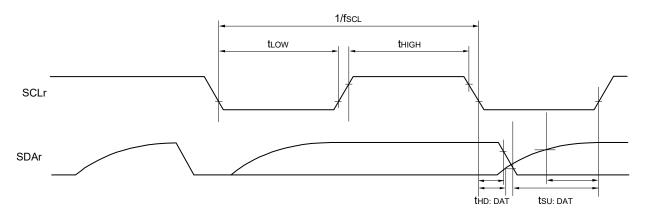

AC Timing Test Points



External System Clock Timing



TI/TO Timing



Interrupt Request Input Timing

Simplified I²C mode serial transfer timing (during communication at same potential)

- Remark 1. $Rb[\Omega]$: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance
- **Remark 2.** r: IIC number (r = 00, 10, 20, 30), g: PIM number (g = 0 to 3), h: POM number (h = 0 to 3)
- Remark 3. fmcK: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

 n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(2) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	С	onditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		2.4 V ≤ AVDD ≤ 3.6 V	8		12	bit
Overall error Note	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±7.5	LSB
Conversion time	tconv	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±6.0	LSB
Full-scale error Note	EFS	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±6.0	LSB
Integral linearity error Note	ILE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±3.0	LSB
Differential linearity error Note	DLE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±2.0	LSB
Analog input voltage	Vain		•	0		AVDD	V

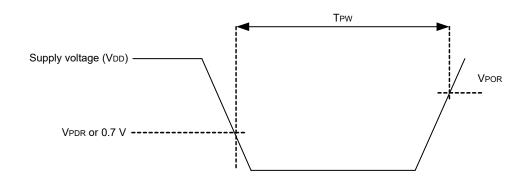
Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

3.6.4 Comparator

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		VDD - 1.4	V
	Ivcmp			-0.3		VDD + 0.3	V
Output delay	td	VDD = 3.0 V Input slew rate > 50 mV/µs	High-speed comparator mode, standard mode			1.2	μs
			High-speed comparator mode, window mode			2.0	μs
			Low-speed comparator mode, standard mode		3	5.0	μs
High-electric-potential judgment voltage	VTW+	High-speed comparator mod	de, window mode		0.76 VDD		V
Low-electric-potential judgment voltage	VTW-	High-speed comparator mod	de, window mode		0.24 VDD		V
Operation stabilization wait time	tCMP			100			μs
Internal reference voltage ^{Note}	VBGR	2.4 V ≤ VDD ≤ 3.6 V, HS (hig	gh-speed main) mode	1.38	1.45	1.50	V


Note Not usable in sub-clock operation or STOP mode.

3.6.5 POR circuit characteristics

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time Note	1.44	1.50	1.56	V
Minimum pulse width	Tpw		300			μs

Note Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.8.2 Internal voltage boosting method

(1) 1/3 bias method

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 µF	2 V _{L1} - 0.1	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 ^{Note 1} =	0.47 μF	3 VL1 - 0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C4 ^{Note 1} =	0.47µF	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between VL4 and GND
- $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$
- Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3.10 Flash Memory Programming Characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fCLK	2.4 V ≤ VDD ≤ 3.6 V	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°CNote 4	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°CNote 4	100,000			
		Retained for 20 years TA = 85°CNote 4	10,000			

- Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
- Note 2. When using flash memory programmer and Renesas Electronics self programming library
- **Note 3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- Note 4. This temperature is the average value at which data are retained.

3.11 Dedicated Flash Memory Programmer Communication (UART)

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

RF\	/ISI	ON	HIST	TORY
17-	\mathbf{v}	\mathbf{v}	1110	

RL78/L1C Datasheet

Davi	Dete		Description
Rev.	Date	Page	Summary
0.01	Oct 15, 2012	_	First Edition issued
1.00	Nov 18, 2013	1, 2	Modification of 1.1 Features
		3, 4	Modification of 1.2 Ordering Information
		5 to 8	Modification of package type in 1.3 Pin Configuration (Top View)
		14 to 17	Modification of vectored interrupt sources in 1.6 Outline of Functions
		14 to 17	Modification of operating ambient temperature in 1.6 Outline of Functions
		19 to 21	Modification of description in tables in 2.1 Absolute Maximum Ratings
		22, 23	Modification of description in 2.2 Oscillator Characteristics
		25	Modification of low-level output current in 2.3.1 Pin characteristics
		26	Modification of error of high-level input voltage conditions in 2.3.1 Pin characteristics
		26	Modification of error of low-level input voltage conditions in 2.3.1 Pin characteristics
		27	Modification of low-level output voltage in 2.3.1 Pin characteristics
		28	Modification of error of internal pull-up resistor conditions in 2.3.1 Pin characteristics
		29 to 34	Modification of 2.3.2 Supply current characteristics
		35, 36	Modification of 2.4 AC Characteristics
		37, 38	Addition of minimum instruction execution time during main system clock operation
		41 to 63	Addition of LS mode and LV mode characteristics in 2.5.1 Serial array unit
		64 to 66	Addition of LS mode and LV mode characteristics in 2.5.2 Serial interface IICA
		67, 68	Modification of conditions in 2.5.3 USB
		69	Addition of (3) BC option standard in 2.5.3 USB
		70 to 75	Addition of characteristics about conversion of internal reference voltage and temperature sensor in 2.6.1 A/D converter characteristics
		76	Addition of characteristic in 2.6.4 Comparator
		76	Deletion of detection delay in 2.6.5 POR circuit characteristics
		78	Modification of 2.7 Power supply voltage rising slope characteristics
		79 to 82	Modification of 2.8 LCD Characteristics
		83	Modification of 2.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics
		83	Modification of 2.10 Flash Memory Programming Characteristics
		84	Addition of 2.12 Timing Specs for Switching Modes
		85 to 144	Addition of 3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)
2.00	Feb 21, 2014	All	Addition of 85-pin product information
		All	Modification from 80-pin to 80/85-pin
		All	Modification from $x = M$, P to $x = M$, N, P
		All	Modification from high-accuracy real-time clock to real-time clock 2
		All	Modification from RTC to RTC2
		1	Modification of 1.1 Features
		3	Modification of 1.2 Ordering Information