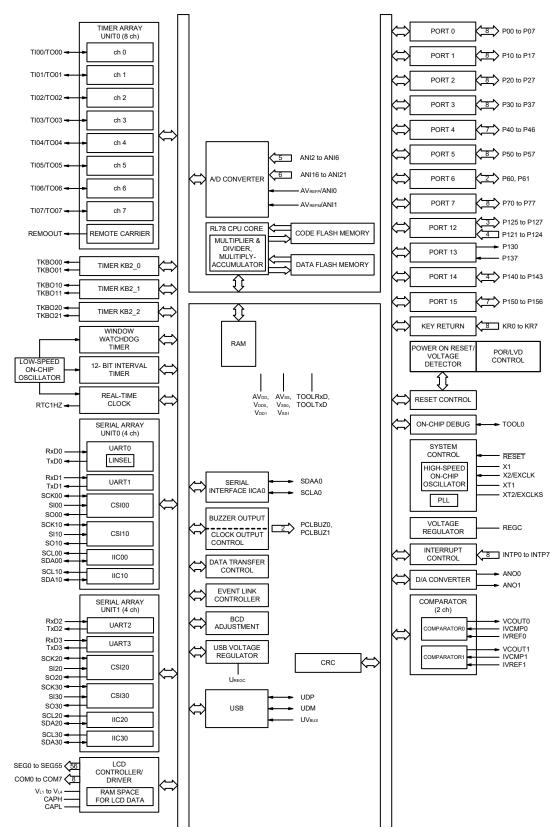


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART, USB
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 9x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	85-VFLGA
Supplier Device Package	85-VFLGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f110ngala-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Absolute Max	ximum Rat	ings (TA = 25°C)			(2/3)
Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	VLI1	VL1 input voltage	Note 1	-0.3 to +2.8	V
	VLI2	VL2 input voltage	Note 1	-0.3 to +6.5	V
	VLI3	VL3 input voltage	Note 1	-0.3 to +6.5	V
	VLI4	VL4 input voltage ^I	Note 1	-0.3 to +6.5	V
	VLI5	CAPL, CAPH inpu	it voltage ^{Note 1}	-0.3 to +6.5	V
	VLO1	VL1 output voltage	•	-0.3 to +2.8	V
	VLO2	VL2 output voltage)	-0.3 to +6.5	V
	VLO3	VL3 output voltage)	-0.3 to +6.5	V
	VLO4	VL4 output voltage)	-0.3 to +6.5	V
	VLO5	CAPL, CAPH outp	out voltage	-0.3 to +6.5	V
	VLO6	COM0 to COM7	External resistance division method	-0.3 to VDD + 0.3 Note 2	V
		SEG0 to SEG55	Capacitor split method	-0.3 to VDD + 0.3 Note 2	V
		output voltage	Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V

Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 ± 30%) and connect a capacitor (0.47 ± 30%) between the CAPL and CAPH pins.

Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Ratings (TA = 25°C)

(3/3)

		,			(3/
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	ЮН1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-40	mA
		Total of all	P40 to P46	-70	mA
		pins -170 mA	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-100	mA
	Іон2	Per pin	P150 to P156	-0.1	mA
		Total of all pins		-0.7	mA
	Іонз	Per pin	UDP, UDM	-3	mA
Output current, low	IOL1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	40	mA
		Total of all	P40 to P46	70	mA
		pins 170 mA	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	100	mA
	IOL2	Per pin	P150 to P156	0.4	mA
		Total of all pins		2.8	mA
	IOL3	Per pin	UDP, UDM	3	mA
Operating ambient temperature	TA	-	pperation mode mory programming mode	-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, Vss = 0 V)

(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT mode	HS (high-speed main)	fHOCO = 48 MHz Note 4,	VDD = 3.6 V		0.77	2.70	mA
urrent	Note 2		mode Note 7	fiH = 24 MHz ^{Note 4}	VDD = 3.0 V		0.77	2.70	1
lote 1				fHOCO = 24 MHz Note 4,	VDD = 3.6 V		0.55	1.91	1
				fiH = 24 MHz ^{Note 4}	VDD = 3.0 V		0.55	1.90	
				fHOCO = 16 MHz Note 4,	VDD = 3.6 V		0.48	1.41	
				fiH = 16 MHz ^{Note 4}	VDD = 3.0 V		0.47	1.41	
			LS (low-speed main)	fHOCO = 8 MHz Note 4,	VDD = 3.0 V		300	770	μA
			mode Note 7	fiH = 8 MHz Note 4	VDD = 2.0 V		300	770	
			LV (low-voltage main)	fHOCO = 4 MHz Note 4,	VDD = 3.0 V		440	770	μA
			mode Note 7	fiH = 4 MHz Note 4	VDD = 2.0 V		440	770	1
			HS (high-speed main)	fmx = 20 MHz Note 3,	Square wave input		0.35	1.63	m/
			mode Note 7	VDD = 3.6 V	Resonator connection		0.51	1.68	
				fmx = 20 MHz Note 3,	Square wave input		0.34	1.63	
			VDD = 3.0 V	Resonator connection		0.51	1.68		
				fMX = 16 MHz Note 3.	Square wave input		0.30	1.22	
				VDD = 3.6 V	Resonator connection		0.45	1.39	1
				fMX = 16 MHz Note 3,	Square wave input		0.29	1.20	
			VDD = 3.0 V	Resonator connection		0.45	1.38		
			fmx = 10 MHz ^{Note 3} ,	Square wave input		0.23	0.82		
			VDD = 3.6 V	Resonator connection		0.30	0.90		
			fMX = 10 MHz ^{Note 3} .	Square wave input		0.22	0.81		
			VDD = 3.0 V	Resonator connection		0.30	0.89		
			LS (low-speed main)	fmx = 8 MHz Note 3,	Square wave input		120	510	μ/
			mode Note 7	VDD = 3.0 V	Resonator connection		170	560	1
				fMX = 8 MHz ^{Note 3} ,	Square wave input		130	520	
				VDD = 2.0 V	Resonator connection		170	570	1
			HS	fмх = 48 MHz,	VDD = 3.6 V		0.99	2.89	m
			(High-speed main)	fCLK = 24 MHz Note 3	VDD = 3.0 V		0.99	2.88	
			mode	fмх = 48 MHz,	VDD = 3.6 V		0.89	2.48	
			(PLL operation)	fCLK = 12 MHz Note 3	VDD = 3.0 V		0.89	2.40	
				fмх = 48 MHz,	VDD = 3.6 V		0.84	2.27	
				fCLK = 6 MHz Note 3	VDD = 3.0 V		0.84	2.27	{
			Subsystem clock	fsub = 32.768 kHz Note 5	Square wave input		0.32	0.61	μA
			operation	$T_A = -40^{\circ}C$	Resonator connection		0.52	0.80	μ/
				fsub = 32.768 kHz Note 5			0.31	0.00	
				$T_A = +25^{\circ}C$	Resonator connection		0.41	0.91	
				four = 22 768 kl l= Note 5			0.02	2.30	
				fsub = 32.768 kHz ^{Note 5} TA = +50°C	Resonator connection		0.52	2.30	
								4.03	
				fsub = 32.768 kHz ^{Note 5} TA = +70°C			0.82		
					Resonator connection		1.08	4.22	
				fsub = 32.768 kHz ^{Note 5} TA = +85°C			1.38	8.04	
	IDDS		T 40°0		Resonator connection		1.62	8.23	<u> </u>
	IDD3 Note 6	STOP mode Note 8	$T_A = -40^{\circ}C$				0.18	0.52	μA
			T _A = +25°C				0.25	0.52	
		T _A = +50°C				0.34	2.21		
			T _A = +70°C				0.64	3.94	
	1		TA = +85°C				1.18	7.95	

(Notes and Remarks are listed on the next page.)

Parameter	Symbol		Condition	ıs		MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	FIL Note 1						0.20		μA
RTC2 operating current	IRTC Notes 1, 3						0.02		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 4						0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fi∟ = 15 kHz					0.22		μA
A/D converter operating current	IADC Notes 6, 7	AVDD = 3.0 V, whe	n conversion at maximur	n speed			422	720	μA
AVREF (+) current	IAVREF	AVDD = 3.0 V, ADF	EFP1 = 0, ADREFP0 = 0	0 Note 7			14.0	25.0	μA
	Note 8	AVREFP = 3.0 V, AI	DREFP1 = 0, ADREFP0	= 1 Note 10			14.0	25.0	
		ADREFP1 = 1, AD	REFP0 = 0 Note 1				14.0	25.0	
A/D converter reference voltage current	IADREF Notes 1, 9	VDD = 3.0 V							μA
Temperature sensor operating current	ITMPS Note 1								μA
D/A converter operating current	IDAC Notes 1, 11	Per D/A converter	Per D/A converter channel					1.5	mA
Comparator	Ісмр	VDD = 3.6 V,	,						μA
operating current	Notes 1, 12	Regulator output voltage = 2.1 V	Comparator high-speed	d mode			4.5		μΑ
				1.2		μA			
		VDD = 3.6 V,		7.05		μΑ			
		Regulator output voltage = 1.8 V	Comparator high-speed	d mode			2.2		μA
			Comparator low-speed	mode			0.9		μA
LVD operating current	ILVI Notes 1, 13						0.06		μA
Self-programming operating current	IFSP Notes 1, 14						2.50	12.20	mA
BGO operating current	IBGO Notes 1, 15						1.68	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed	Note 16			0.34	1.10	mA
operating current			The A/D conversion op voltage mode, AVREFP	•			0.53	2.04	
		CSI/UART operation	on				0.70	1.54	mA
LCD operating current	ILCD1 Notes 17, 18	External resistance division method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.6 V, LV4 = 3.6 V		0.14		μA
	ILCD2 Note 17	Internal voltage boosting method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, LV4 = 3.0 V (VLCD = 04H)		0.61		μA
	ILCD3 Note 17	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, Lv4 = 3.0 V		0.12		μA
USB current	IUSB Note 20	Operating current of	during USB communicati	on			4.88		mA
Note 19	IUSB Note 21	Operating current i	n the USB suspended st	ate			0.04		mA

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(Notes and Remarks are listed on the next page.)

Parameter	Symbol	Conc	litions	HS (high- main) M	•	LS (low-spee Mode	,	LV (low-voltag Mode	. ,	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tKCY2	2.7 V ≤ VDD < 3.6 V	fмск > 16 MHz	8/fмск		—		—		ns
time Note 5			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		2.4 V ≤ VDD < 3.6 V		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ VDD < 3.6 V		—		6/fмск and 750		6/fмск and 750		ns
		1.6 V ≤ VDD < 3.6 V		—		—		6/fмск and 1500		ns
SCKp high-/	tKH2, tKL2	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		tkcy2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns
low-level width		1.8 V ≤ VDD ≤ 3.6 V		—		tксү2/2 - 18		tkcy2/2 - 18		ns
		1.6 V ≤ VDD ≤ 3.6 V		—		—		tkcy1/2 - 66		ns
SIp setup time	tSIK2	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) Note 1		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		1.8 V ≤ VDD < 3.6 V		—		1/fмск + 30		1/fмск + 30		ns
		1.6 V ≤ VDD < 3.6 V		—		—		1/fмск + 40		ns
SIp hold time	tKSI2	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 3.6 \text{ V}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		1.8 V ≤ VDD < 3.6 V		—		1/fмск + 31		1/fмск + 31		ns
11010 2		1.6 V ≤ VDD < 3.6 V		—		—		1/fмск + 250		ns
Delay time from SCKp↓ to	tKSO2	C = 30 pF Note 4	2.7 V ≤ VDD ≤ 3.6 V		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
SOp output Note 3			$2.4 \text{ V} \leq \text{VDD} < 3.6 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			1.8 V ≤ VDD < 3.6 V		—		2/fмск + 110		2/fмск + 110	ns
			1.6 V ≤ VDD < 3.6 V		—		—		2/fмск + 220	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, Vss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

(1/2)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter Symbo	Symbol	ymbol Conditions			HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time			$\label{eq:VDD} \begin{array}{l} 2.7 V \leq V D D < 3.6 \; V, \; 2.3 \; V \leq V b \leq 2.7 \; V, \\ C b = 30 \; p F, \; R b = 2.7 \; k \Omega \end{array}$	500 Note		1150		1150		ns
			$\label{eq:VD} \begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 1.8 \ V, \\ C_{b} = 30 \ p\text{F}, \ R_{b} = 5.5 \ k\Omega \end{array}$	1150 ^{Note}		1150		1150		ns
SCKp high- level width	tкн1	2.7 V ≤ VDD Cb = 30 pF, F	tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		ns	
			\leq VDD < 3.3 V, 1.6 V \leq Vb \leq 2.0 V, 30 pF, Rb = 5.5 k Ω			tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low- level width	tKL1	L1 $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 kΩ		tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
	$1.8 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$ Cb = 30 pF, Rb = 5.5 kΩ		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns	

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the page after the next page.)

RL78/L1C

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low main)	•	LV (low- main)	•	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	177		479		479		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tKSI1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↓ to SOp	tKSO1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, \text{R}_{b} = 2.7 \text{ k}\Omega$		195		195		195	ns
output ^{Note 1}		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note } 3, \\ C_b = 30 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{array}$		483		483		483	ns
SIp setup time (to SCKp↓) ^{Note 2}	tSIK1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	44		110		110		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tKSI1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 kΩ	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ \mbox{Note 3}, \\ C_{b} = 30 \ p\mbox{F}, \ R_{b} = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↑ to SOp	tKSO1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		25		25		25	ns
output Note 2		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		25		25		25	ns

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(3) BC option standard

(TA = -40 to +85°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6 V, VSS = 0 V, HS (High-speed main) mode only)

Para	meter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit																																			
UDP/UDM input reference	VDSELi [3: 0]	0000	VDDET0		27	32	37	%UVBUS																																			
voltage	(i = 0, 1)	0001	VDDET1		29	34	39	%UVBUS																																			
(UVBUS divider ratio)		0010	VDDET2		32	37	42	%UVBUS																																			
(Function)						0011	VDDET3		35	40	45	%UVBUS																															
			0100	VDDET4		38	43	48	%UVBUS																																		
			0101	VDDET5		41	46	51	%UVBUS																																		
		0110	VDDET6		44	49	54	%UVBUS																																			
				0111	VDDET7		47	52	57	%UVBUS																																	
								1000	VDDET8		51	56	61	%UVBUS																													
					1001	VDDET9		55	60	65	%UVBUS																																
							1010	VDDET10		59	64	69	%UVBUS																														
																										1011	VDDET11		63	68	73	%UVBUS											
		1100	VDDET12		67	72	73	%UVBUS																																			
																			-		-						-						-			1	1101	VDDET13		71	76	81	%UVBUS
		1110	VDDET14		75	80	85	%UVBUS																																			
		1111	VDDET15		79	84	89	%UVBUS																																			

(4) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, VSS = 0 V, AVSS = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1	
			$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$		8 Note 2	2	
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±7.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	
Conversion time	tCONV	ADTYP = 0,	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs
		12-bit resolution					
		ADTYP = 0,	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	9.5			
		10-bit resolution Note 1					
		ADTYP = 0,	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	57.5			
		8-bit resolution Note 2					
		ADTYP = 1,	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.3125			
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	7.875			
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	
Full-scale error Note 3	EFS	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
Analog input voltage	VAIN			0		AVREFP	V
		Internal reference volta (2.4 V \leq VDD \leq 3.6 V, H		VBGR Not	e 4		
		Temperature sensor out (2.4 V \leq VDD \leq 3.6 V, H	V	TMP25 No	ote 4		

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

(5) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	RES		$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
			1.8 V ≤ AVDD ≤ 3.6 V	8		10 Note 1	
			1.6 V ≤ AVDD ≤ 3.6 V		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±8.5	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±6.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.5	
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	1.8 V ≤ AVDD ≤ 3.6 V	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	1.6 V ≤ AVDD ≤ 3.6 V	57.5			
		ADTYP = 1,	2.4 V ≤ AVDD ≤ 3.6 V	3.3125			
		8-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V	7.875			
			1.6 V ≤ AVDD ≤ 3.6 V	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±8.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.0	
Full-scale error Note 3	EFS	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±8.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.5	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
Analog input voltage	VAIN			0		AVdd	V
		Internal reference voltages (2.4 V \leq VDD \leq 3.6 V, HS	,	VBGR Note	4		
		Temperature sensor out (2.4 V \leq VDD \leq 3.6 V, HS	put voltage S (high-speed main) mode)	V	TMP25 Note	4	

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.6 LVD circuit characteristics

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD2	Power supply rise time	3.07	3.13	3.19	V
voltage			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pul	se width	tLW		300			μs
Detection de	lav time					300	μs

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range. HS (high-speed main) mode: VDD = 2.7 to 3.6 V at 1 MHz to 24 MHz

 $V_{DD} = 2.4$ to 3.6 V at 1 MHz to 16 MHz

LS (low-speed main) mode: VDD = 1.8 to 3.6 V at 1 MHz to 8 MHz

LV (low-voltage main) mode: VDD = 1.6 to 3.6 V at 1 MHz to 4 MHz

2.8 LCD Characteristics

2.8.1 Resistance division method

(1) Static display mode

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

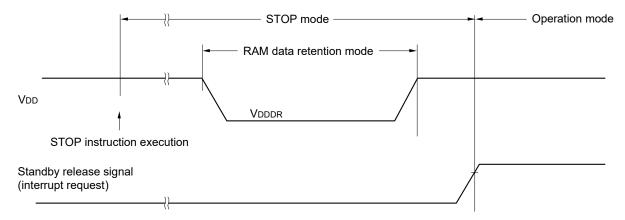
$(TA = -40 \text{ to } +85^{\circ}C, VL4 \text{ (MIN.)} \le VDD \le 3.6 \text{ V}, VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V



2.9 **RAM Data Retention Characteristics**

F	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data reter voltage	ntion supply	Vdddr		1.46 ^{Note}		3.6	V
Note	This depends on	the POR det	tection voltage. For a falling voltage, data i	n RAM are r	etained until	the voltage	reaches the

(TA = -40 to +85°C, Vss = 0 V)

level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

Flash Memory Programming Characteristics 2.10

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite. Note 1.

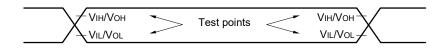
When using flash memory programmer and Renesas Electronics self programming library Note 2.

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.11 **Dedicated Flash Memory Programmer Communication (UART)**

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps



Parameter	Symbol		Conditio	ons		MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	FIL Note 1						0.20		μA
RTC2 operating current	IRTC Notes 1, 3						0.02		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 4						0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fi∟ = 15 kHz					0.22		μA
A/D converter operating current	IADC Notes 6, 7	AVDD = 3.0 V, when conversion at maximum speed					422	720	μA
AVREF (+) current	IAVREF Note 8	AVDD = 3.0 V, ADF	REFP1 = 0, ADREFP0 =	0 Note 7			14.0	25.0	μA
		AVREFP = 3.0 V, AI		14.0	25.0				
		ADREFP1 = 1, AD	REFP0 = 0 Note 1		14.0	25.0			
A/D converter reference voltage current	IADREF Notes 1, 9	VDD = 3.0 V					75.0		μA
Temperature sensor operating current	ITMPS Note 1						78		μA
D/A converter operating current	IDAC Notes 1, 11	Per D/A converter channel					0.53	1.5	mA
Comparator ICMP		VDD = 3.6 V,	Window mode				12.5		μA
operating current	Notes 1, 12	Notes 1, 12 Regulator output voltage = 2.1 V	1 V				4.5		μA
		5	Comparator low-speed	d mode			1.2		μA
LVD operating current	ILVD Notes 1, 13						0.06		μA
Self-programming operating current	IFSP Notes 1, 14						2.50	12.20	mA
BGO operating current	IBGO Notes 1, 15						1.68	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performe	d Note 16			0.34	1.10	mA
operating current			The A/D conversion of mode, AVREFP = VDD		erformed, Low voltage		0.53	2.04	
		CSI/UART operation	on 				0.70	1.54	mA
LCD operating current	ILCD1 Notes 17, 18	External resistance division method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.6 V, Lv4 = 3.6 V		0.14		μA
	ILCD2 Note 17	Internal voltage boosting method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, LV4 = 3.0 V (VLCD = 04H)		0.61		μA
	ILCD3 Note 17	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, Lv4 = 3.0 V		0.12		μA
USB current	IUSB Note 20	Operating current of	during USB communica	tion			4.88		mA
Note 19	IUSB Note 21	Operating current i	n the USB suspended s	tate		1	0.04		mA

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(Notes and Remarks are listed on the next page.)

3.5 Peripheral Functions Characteristics

3.5.1 Serial array unit

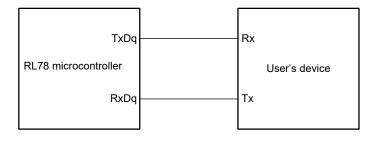
(1) During communication at same potential (UART mode)

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)

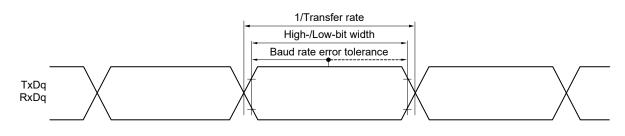
Parameter	Symbol	Conditions	HS (high-spee	Unit	
i arameter		Conditions	MIN.	MAX.	onit
Transfer rate Note 1		$2.4 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$		fMCK/12 Note 2	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		2.0	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2. The following conditions are required for low voltage interface.


2.4 V ≤ VDD < 2.7 V: MAX. 1.3 Mbps

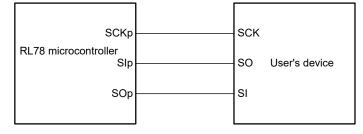
Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:


HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V) 16 MHz (2.4 V \leq VDD \leq 3.6 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)



Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at same potential)

Remark 1. p: CSI number (p = 00, 10, 20, 30)

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(7) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Can	ditions	HS (high-spe	ed main) Mode	Unit
Parameter	Symbol	Con	alions	MIN.	MAX.	Unit
SCKp cycle time Note 1	tKCY2	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$	20 MHz < fмск ≤ 24 MHz	32/fмск		ns
		$2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}$	16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	20 MHz < fмск ≤ 24 MHz	72/fмск		ns
		$1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$ Note 2	16 MHz < fмск ≤ 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
		_	4 MHz < fмск ≤ 8 MHz	32/fмск		ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tkh2, tkl2	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$		tkcy2/2 - 36		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$ Note 2		tксү2/2 - 100		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsik2	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		1/fмск + 40		ns
		$2.4 \text{ V} \leq \text{VDD} < 3.3 \text{ V}$		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 4	tKSI2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 5}	tKSO2	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V}$ Cb = 30 pF, Rb = 2.7 kΩ	$V \le Vb \le 2.7 V$		2/fмск + 428	ns
		2.4 V ≤ VDD < 3.3 V, 1.6 V Cb = 30 pF, Rb = 5.5 kΩ	$V \le V_b \le 2.0 V$ Note 2		2/fмск + 1146	ns

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Note 2. Use it with $VDD \ge Vb$.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6, ANI16 to ANI21

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, 2.4 V \leq VDD, 2.4 V \leq AVDD = VDD, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V, HS (high-speed main) mode)

• • • •		• • • • • •				, ,
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16.0			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AVREF(+)	= Internal reference voltage (VBGR)	1.38	1.45	1.5	V
Analog input voltage	VAIN		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

3.6.2 Temperature sensor, internal reference voltage output characteristics

•						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	F VTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs

(TA = -40 to +105°C, 2.4 V ≤ VDD ≤ 3.6 V, VSS = 0 V (HS (high-speed main) mode))

3.6.3 D/A converter characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Со	MIN.	TYP.	MAX.	Unit	
Resolution	Res					8	bit
Overall error	AINL	Rload = 4 MΩ	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
		Rload = 8 MΩ	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
Settling time	tSET	Cload = 20 pF	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			3	μs
			$2.4 \text{ V} \leq \text{VDD} \leq 2.7 \text{ V}$			6	μs

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard" Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances: machine tools: personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.3.0-1 November 2016) RENESAS **Renesas Electronics Corporation** SALES OFFICES http://www.renesas.com Refer to "http://www.renesas.com/" for the latest and detailed information Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

 Renesas Electronics (China) Co., Ltd.

 Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China

 Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

 Renesas Electronics (Shanghai) Co., Ltd.

 Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333

 Tel: +86-17-2226-0888, Fax: +86-228-0999

 Renesas Electronics Hong Kong Limited

 Unit 1001-1611, 1617, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +86-2226-0888, Fax: +86-22886-9022

 Renesas Electronics Taiwan Co., Ltd.

 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

 Tel: +88-2-8175-9600, Fax: +882 2886-9022

 Renesas Electronics Singapore Pte. Ltd.

 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

 Tel: +261-20200, Fax: +865 -210-3000

 Renesas Electronics Malaysia Sdn.Bhd.

 Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

 Tel: +20-7555-9390, Fax: +616-2708777

 Renesas Electronics Korea Co., Ltd.

 12F., 234 Teheran-ro, Gangman-Gu, Seoul, 135-080, Korea

 12F., 234 Teheran-ro, Gangman-Gu, Seoul, 135-080, Korea

 12F., 234 Teheran-ro, Korea Co., Ltd.

 12F., 234 Teheran-ro, Korea Co., Ltd.