

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

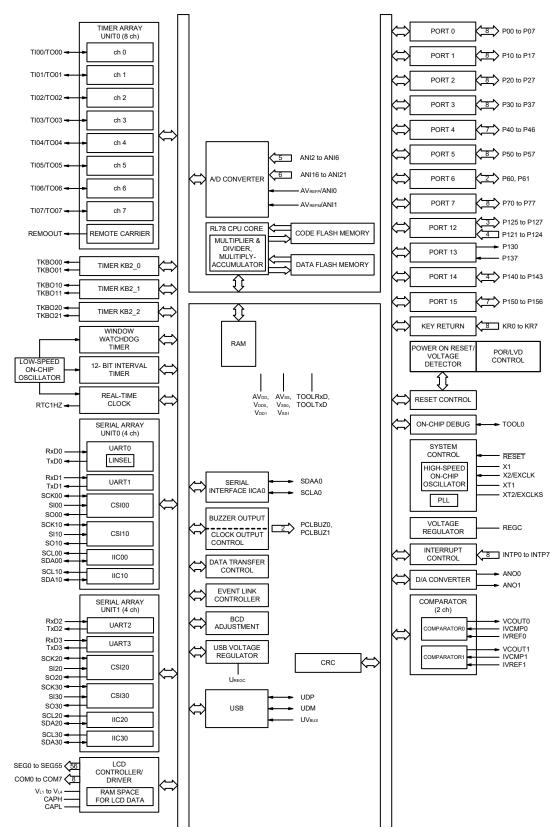
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART, USB
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 9x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	85-VFLGA
Supplier Device Package	85-VFLGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f110nhala-u0

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Identification

ANI0 to ANI6,	: Analog Input	SCL00, SCL10, SCL20, SCL30	· Serial Clock Output
ANI16 to ANI21		SDAA0, SDA00, SDA10,	: Serial Data Input/Output
ANO0, ANO1	: Analog Output	SDA10, SDA00, SDA10, SDA20, SDA30	
AVDD	: Analog Power Supply	SEG0 to SEG55	: LCD Segment Output
AVREFM	: Analog Reference Voltage	SI00, SI10, SI20, SI30	: Serial Data Input
AVREIM	Minus	SO00, SO10, SO20, SO30	: Serial Data Mput
		TI00 to TI07	: Timer Input
AVREFP	: Analog Reference Voltage		
A)/00	Plus		: Timer Output
AVss	: Analog Ground		
CAPH, CAPL	: Capacitor for LCD	TKBO11, TKBO20, TKBO21	· Data lanut/Outrout for Tool
COM0 to COM7	: LCD Common Output	TOOLO	: Data Input/Output for Tool
EXCLK	: External Clock Input	TOOLRXD, TOOLTXD	: Data Input/Output for
	(Main System Clock)		External Device
EXCLKS	: External Clock Input	UDM, UDP	: USB Input/Output
	(Subsystem Clock)	UREGC	: USB Regulator Capacitance
INTP0 to INTP7	: External Interrupt Input	UVBUS	: USB Input/USB Power Supply
IVCMP0, IVCMP1	: Comparator Input	TxD0 to TxD3	: Transmit Data
IVREF0, IVREF1	: Comparator Reference Input	VCOUT0, VCOUT1	: Comparator Output
KR0 to KR7	: Key Return	VDD0, VDD1	: Power Supply
P00 to P07	: Port 0	VL1 to VL4	: LCD Power Supply
P10 to P17	: Port 1	VSS0, VSS1	: Ground
P20 to P27	: Port 2	X1, X2	: Crystal Oscillator
P30 to P37	: Port 3		(Main System Clock)
P40 to P46	: Port 4	XT1, XT2	: Crystal Oscillator
P50 to P57	: Port 5		(Subsystem Clock)
P60 to P62	: Port 6		
P70 to P77	: Port 7		
P80 to P83	: Port 8		
P121 to P127	: Port 12		
P130, P137	: Port 13		
P140 to P143	: Port 14		
P150 to P156	: Port 15		
PCLBUZ0, PCLBUZ1	: Programmable Clock Output/ Buzzer Output		
REGC	: Regulator Capacitance		
REMOOUT	: Remote Control Output		
RESET	: Reset		
RTC1HZ	: Real-time Clock Correction Clock (1 Hz) Output		
RxD0 to RxD3	: Receive Data		
SCK00, SCK10, SCK20, SCK30	: Serial Clock Input/Output		
SCLA0	: Serial Clock Input/Output		

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input voltage, high	VIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	Normal input buffer	0.8 Vdd		Vdd	V
	VIH2	P00, P01, P10, P11, P24, P25, P33, P34, P43, P44	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	2.0		Vdd	V
			TTL input buffer 1.6 V ≤ VDD < 3.3 V	1.50		VDD	V
	VIH3	P150 to P156	0.7 AVDD		AVDD	V	
	VIH4	P60, P61	0.7 Vdd		6.0	V	
	Vih5	P121 to P124, P137, EXCLK, EXCLKS,	0.8 Vdd		Vdd	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	Normal input buffer	0		0.2 VDD	V
	VIL2	P00, P01, P10, P11, P24, P25, P33, P34, P43, P44	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	0		0.5	V
			TTL input buffer 1.6 V ≤ VDD < 3.3 V	0		0.32	V
	VIL3	P150 to P156		0		0.3 AVDD	V
	VIL4	P60, P61		0		0.3 Vdd	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS,	RESET	0		0.2 Vdd	V

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

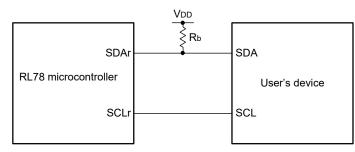
Caution The maximum value of VIH of pins P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 is VDD, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

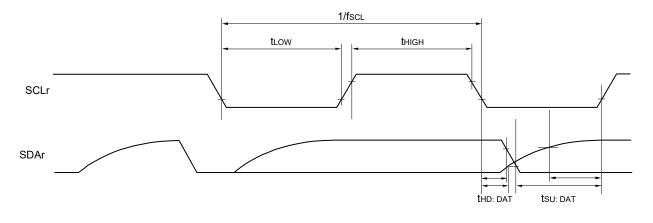
- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 Note 3. When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}_{@}1 \text{ MHz}$ to 24 MHz
	2.4 V ≤ VDD ≤ 3.6 V@1 MHz to 16 MHz
LS (low-speed main) mode:	1.8 V ≤ VDD ≤ 3.6 V@1 MHz to 8 MHz
LV (low-voltage main) mode	1.6 V ≤ VDD ≤ 3.6 V@1 MHz to 4 MHz

- **Remark 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- **Remark 2.** fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fill: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C


(TA = -40 to +85°C, 1.6 V ≤ A	Vdd = Vd	D ≤ 3.6 V, Vss = 0 V)					(2/2)
Items	Symbol	Conditio	Conditions			MAX.	Unit
TO00 to TO07, TKBO00,	fто	HS (high-speed main) mode	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			8	MHz
TKBO01, TKBO10, TKBO11,			$2.4 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$			8	MHz
TKBO20, TKBO21 output frequency		LS (low-speed main) mode	1.8 V ≤ VDD ≤ 3.6 V			4	MHz
		LV (low-voltage main) mode	1.6 V ≤ VDD ≤ 3.6 V			2	MHz
PCLBUZ0, PCLBUZ1 output frequency	fPCL	HS (high-speed main) mode	2.7 V ≤ VDD ≤ 3.6 V			8	MHz
	-		$2.4 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$			8	MHz
		LS (low-speed main) mode	1.8 V ≤ VDD ≤ 3.6 V			4	MHz
		LV (low-voltage main) mode	1.8 V ≤ VDD ≤ 3.6 V			2	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTP7	1.6 V ≤ VDD ≤ 3.6 V	1			μs
Key interrupt input low-level	tĸĸ	1.8 V ≤ VDD ≤ 3.6 V		250			ns
width		1.6 V ≤ VDD < 1.8 V		1			μs
TMKB2 forced output stop input	tihr	INTP0 to INTP7	fclk > 16 MHz	125			ns
high-level width			fclk ≤ 16 MHz	2			fclk
RESET low-level width	trsl		L	10			μs

$\pm 95^{\circ}C$ 1 G V \leq AV PP = VPP \leq 2 G V Vcc = 0 V/


R01DS0192EJ0220 Rev.2.20 Dec 28, 2017

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remark 1.** $Rb[\Omega]$: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance **Remark 2.** r: IIC number (r = 00, 10, 20, 30), g: PIM number (g = 0 to 3),
- h: POM number (h = 0 to 3)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(6) Communication at different potential (1.8 V, 2.5V) (UART mode)

(TA = -40	to +85°	C, 1.8 ≤ VDI	o ≤ 3.6 V, Vss = 0 V)							(2/2)
Parameter Symbol		Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer transmission rate Note 2	$2.7 V \le V_{DD} \le 3.6 V,$ $2.3 V \le V_{b} \le 2.7 V$		Note 1		Note 1		Note 1	bps		
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 2		1.2 Note 2		1.2 Note 2	Mbps
			$1.8 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Notes 3, 4		Notes 3, 4		Notes 3, 4	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 5		0.43 Note 5		0.43 Note 5	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C} + 1.8 \le \text{V}_{DD} \le 3.6 \text{ V} \text{ V}_{SS} = 0.\text{V})$

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq VDD < 3.6 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =

[bps]
$$\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3$$

1

Baud rate error (theoretical value) =
$$\frac{1}{\frac{1}{\text{Transfer rate} \times 2}} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}$$

$$(\frac{1}{\frac{1}{\text{Transfer rate}}}) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

1

Note 3. Use it with $VDD \ge Vb$.

Note 4. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 1.8 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =

$$\frac{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b}) \times 3}{\left\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\right\} \times 3}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate } \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq Caution pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(7) Communication at different potential (2.5 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter Symbol		Conditions		HS (high-speed main) Mode		LS (low-speed Mode	l main)	LV (low-voltage Mode	Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tĸcy1 ≥ fcLĸ/2	$\begin{array}{l} 2.7 V \leq V_{DD} < 3.6 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 20 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	tкн1	2.7 V ≤ V _{DD} < 2.3 V ≤ V _b ≤ 2 C _b = 20 pF, R _b	7 V,	tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		ns
SCKp low-level width	tKL1	$2.7 V \le VDD < 3.6 V,$ $2.3 V \le Vb \le 2.7 V,$ $Cb = 20 \text{ pF, } Rb = 1.4 \text{ k}\Omega$		tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tSIK1	$2.7 V \le V_{DD} < 3.6 V,$ $2.3 V \le V_b \le 2.7 V,$ $C_b = 20 \text{ pF, } R_b = 2.7 \text{ k}\Omega$		121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tKSI1	2.7 V \leq VDD $<$ 3.6 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 20 pF, Rb = 1.4 k Ω		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tKSO1	2.7 V \leq VDD $<$ 3.6 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 20 pF, Rb = 1.4 k Ω			130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tSIK1	$2.3 \text{ V} \leq \text{Vb} \leq 2.$	2.7 V \leq VDD $<$ 3.6 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 20 pF, Rb = 2.7 k Ω			110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tKSI1	2.7 V ≤ VDD < 2.3 V ≤ Vb ≤ 2. Cb = 20 pF, Rb	7 V,	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tKSO1	2.7 V ≤ VDD < 2.3 V ≤ Vb ≤ 2. Cb = 20 pF, Rb	7 V,		10		10		10	ns

$(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 2)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = AVDD Reference voltage (-) = AVSS	Reference voltage (+) = Internal reference voltage Reference voltage (-) = AVSS
High-accuracy channel; ANI0 to ANI6 (input buffer power supply: AVDD)	Refer to 2.6.1 (1) . Refer to 2.6.1 (2) .	Refer to 2.6.1 (3) .	Refer to 2.6.1 (6) .
Standard channel; ANI16 to ANI21 (input buffer power supply: VDD)	Refer to 2.6.1 (4) .	Refer to 2.6.1 (5) .	
Internal reference voltage, Temperature sensor output voltage	Refer to 2.6.1 (4) .	Refer to 2.6.1 (5) .	_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target for conversion: ANI2 to ANI6

(TA = -40 to +85°C, 2.4 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, VSS = 0 V, AVSS = 0 V, reference voltage (+) = AVREFP,
reference voltage (-) = AVREFM = 0 V, HALT mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res				12	bit
Overall error Notes 1, 2, 3	AINL	12-bit resolution		±1.7	±3.3	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	3.375			μs
Zero-scale error Notes 1, 2, 3	Ezs	12-bit resolution		±1.3	±3.2	LSB
Full-scale error Notes 1, 2, 3	EFS	12-bit resolution		±0.7	±2.9	LSB
Integral linearity error Notes 1, 2, 3	ILE	12-bit resolution		±1.0	±1.4	LSB
Differential linearity error Notes 1, 2, 3	DLE	12-bit resolution		±0.9	±1.2	LSB
Analog input voltage	VAIN		0		AVREFP	V

Note 1. TYP. Value is the average value at AVDD = AVREFP = 3 V and TA = 25° C. MAX. value is the average value $\pm 3\sigma$ at normalized distribution.

Note 2. These values are the results of characteristic evaluation and are not checked for shipment.

Note 3. Excludes quantization error (±1/2 LSB).

Caution 1. Route the wiring so that noise will not be superimposed on each power line and ground line, and insert a capacitor to suppress noise.

In addition, separate the reference voltage line of AVREFP from the other power lines to keep it free from the influences of noise.

Caution 2. During A/D conversion, keep a pulse, such as a digital signal, that abruptly changes its level from being input to or output from the pins adjacent to the converter pins and P150 to P156.

3.1 Absolute Maximum Ratings

		20 0)		(1/3)
Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to + 6.5	V
	UVBUS		-0.5 to + 6.5	V
	AVdd	AVDD ≤ VDD	-0.5 to + 4.6	V
REGC pin input voltage	VIREGC	REGC	-0.3 to + 2.8	V
			and -0.3 to VDD + 0.3 Note 1	
UREGC pin input voltage	VIUREGC	UREGC	-0.3 to UVBUS + 0.3 Note 2	V
Input voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, EXCLK, EXCLKS, RESET	-0.3 to VDD + 0.3 Note 3	V
	VI2	P60, P61 (N-ch open-drain)	-0.3 to + 6.5	V
	Vıз	UDP, UDM	-0.3 to + 6.5	V
	VI4	P150 to P156	-0.3 to AVDD + 0.3 Note 4	V
Output voltage	V01	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-0.3 to VDD + 0.3 Note 3	V
	Vo2	P150 to P156	-0.3 to AVDD + 0.3 Note 3	V
	V03	UDP, UDM	-0.3 to + 3.8	V
Analog input voltage	VAI1	ANI16 to ANI21	-0.3 to VDD + 0.3	V
			and AVREF(+) + 0.3 Notes 3, 5	
	VAI2	ANI0 to ANI6	-0.3 to AVDD + 0.3 and AVREF(+) + 0.3 Notes 3, 5	V

Absolute Maximum Ratings (TA = 25°C)

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Connect the UREGC pin to Vss via a capacitor (0.33 μF). This value regulates the absolute maximum rating of the UREGC pin. Do not use this pin with voltage applied to it.

Note 3. Must be 6.5 V or lower.

Note 4. Must be 4.6 V or lower.

Note 5. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

(1/3)

<R>

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Output current, IOL1 Iow Note 1	IOL1	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143				8.5 Note 2	mA
		Per pin for P60 and P61				15.0 Note 2	mA
l0L2		Total of P40 to P46, P130	2.7 V ≤ VDD ≤ 3.6 V			15.0	mA
		(When duty ≤ 70% ^{Note 3})	2.4 V ≤ VDD < 2.7 V			9.0	mA
		Total of P00 to P07, P10 to P17, P20 to P27,	$2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}$			35.0	mA
		P30 to P37, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P140 to P143 (When duty ≤ 70% ^{Note 3})	2.4 V ≤ VDD < 2.7 V			20.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				50.0	mA
	IOL2	Per pin for P150 to P156				0.4 Note 2	mA
		Total of all pins	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$			2.8	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

Note 2. However, do not exceed the total current value.

<R>

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression

(when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOL \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IOL = 10.0 mA

Total output current of pins = (10.0 × 0.7)/(80 × 0.01) ≈ 8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

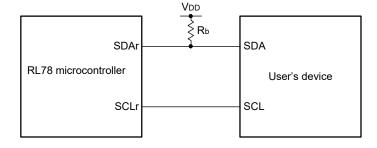
Parameter	Symbol		Conditio	ons		MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	FIL Note 1						0.20		μA
RTC2 operating current	IRTC Notes 1, 3						0.02		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 4						0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fi∟ = 15 kHz					0.22		μA
A/D converter operating current	IADC Notes 6, 7	AVDD = 3.0 V, whe	n conversion at maximu	im speed			422	720	μA
AVREF (+) current	IAVREF Note 8	AVDD = 3.0 V, ADF	REFP1 = 0, ADREFP0 =	0 Note 7			14.0	25.0	μA
		AVREFP = 3.0 V, AI	DREFP1 = 0, ADREFPC) = 1 Note 10			14.0	25.0	
		ADREFP1 = 1, AD	REFP0 = 0 Note 1				14.0	25.0	
A/D converter reference voltage current	IADREF Notes 1, 9	VDD = 3.0 V	= 3.0 V						μA
Temperature sensor operating current	ITMPS Note 1								μA
D/A converter operating current	IDAC Notes 1, 11	Per D/A converter	Per D/A converter channel				0.53	1.5	mA
Comparator	ICMP	VDD = 3.6 V,	Window mode				12.5		μA
operating current	Notes 1, 12	Regulator output voltage = 2.1 V	Comparator high-spee	ed mode			4.5		μA
		5	Comparator low-speed	d mode			1.2		μA
LVD operating current	ILVD Notes 1, 13						0.06		μA
Self-programming operating current	IFSP Notes 1, 14						2.50	12.20	mA
BGO operating current	IBGO Notes 1, 15						1.68	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performe	d Note 16			0.34	1.10	mA
operating current			The A/D conversion of mode, AVREFP = VDD		erformed, Low voltage		0.53	2.04	
		CSI/UART operation	on 				0.70	1.54	mA
LCD operating current	ILCD1 Notes 17, 18	External resistance division method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.6 V, Lv4 = 3.6 V		0.14		μA
	ILCD2 Note 17	Internal voltage boosting method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, LV4 = 3.0 V (VLCD = 04H)		0.61		μA
	ILCD3 Note 17	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, Lv4 = 3.0 V		0.12		μA
USB current	IUSB Note 20	Operating current of	during USB communica	tion			4.88		mA
Note 19	IUSB Note 21	Operating current i	n the USB suspended s	tate		1	0.04		mA

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

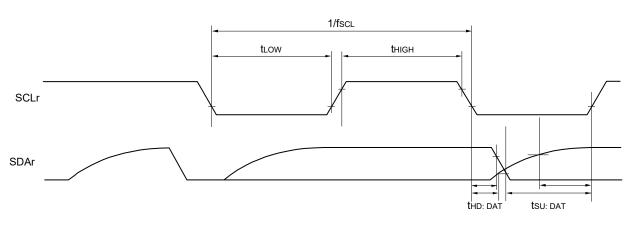
(Notes and Remarks are listed on the next page.)

(4) During communication at same potential (simplified I²C mode)

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Complete J	Conditions	HS (high-speed	main) Mode	Unit kHz kHz ns ns ns ns ns
Parameter	Symbol	Conditions	MIN.	MAX.	
SCLr clock frequency	fSCL	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω		400 Note 1	kHz
		$\begin{array}{l} 2.4 \ V \leq VDD \leq 3.6 \ V, \\ Cb = 100 \ pF, \ Rb = 3 \ k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7 V \le VDD \le 3.6 V$, Cb = 50 pF, Rb = 2.7 kΩ	1200		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	thigh	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega$	1200		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 3 \text{ k}\Omega$	4600	100 Note 1	ns
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega$	1/fMCK + 200 Note 2		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 3 \text{ k}\Omega$	1/fMCK + 580 Note 2		ns
Data hold time (transmission)	thd: dat	$2.7 V \le VDD \le 3.6 V,$ Cb = 50 pF, Rb = 2.7 kΩ	0	770	ns
		$\begin{array}{l} 2.4 \ V \leq VDD \leq 3.6 \ V, \\ Cb = 100 \ pF, \ Rb = 3 \ k\Omega \end{array}$	0	1420	ns

Note 1. The value must be equal to or less than $f_{MCK}/4$.


Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- Remark 1. Rb[Ω]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance
- **Remark 2.** r: IIC number (r = 00, 10, 20, 30), g: PIM number (g = 0 to 3),
- h: POM number (h = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(5) Communication at different potential (1.8 V, 2.5 V) (UART mode)

$(T_{A} = -40 \text{ to } +105^{\circ}\text{C})$	$2.4 V \le VDD \le 3.6 V, VSS = 0 V$	
(1A = -40.00 + 100.0)		

(1/2)

Parameter	Symbol		Conditions			HS (high-speed main) Mode		
Farameter	Symbol			Conduons	MIN.	MAX.	Unit	
Transfer rate Notes 1, 2		Reception		$V \le VDD \le 3.6 V$, $V \le Vb \le 2.7 V$		fMCK/12 Note 1	bps	
			Th	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 4$		2.0	Mbps	
				$V \le V_{DD} < 3.3 V$, $V \le V_b \le 2.0 V$		fMCK/12 Notes 1, 2, 3	bps	
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 4$		1.3	Mbps	

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

Note 2. Use it with $VDD \ge Vb$.

Note 3.The following conditions are required for low voltage interface. $2.4 V \le V \text{DD} < 2.7 V$:MAX. 2.6 Mbps

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are: HS (high-speed main) mode: 24 MHz ($2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$)

16 MHz (2.4 V ≤ VDD ≤ 3.6 V)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)

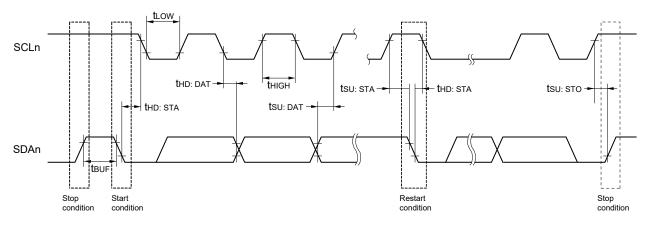
Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

3.5.2 Serial interface IICA

TA = -40 to +105°C, $2.4 V \le VDD \le 3.6 V$, Vss = 0 V)	
--	--

			H	HS (high-speed main) Mode				
Parameter	Symbol	Conditions Standar		rd mode	Fast	mode	Unit	
			MIN.	MAX.	MIN.	MAX.		
SCLA0 clock frequency	fSCL	Fast mode: fCLK ≥ 3.5 MHz	—	—	0	400	kHz	
		Standard mode: fc∟ĸ ≥ 1 MHz	0	100	—	—	kHz	
Setup time of restart condition	tsu: sta		4.7		0.6		μs	
Hold time Note 1	thd: STA		4.0		0.6		μs	
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μs	
Hold time when SCLA0 = "H"	thigh		4.0		0.6		μs	
Data setup time (reception)	tsu: dat		250		100		ns	
Data hold time (transmission) Note 2	thd: dat		0	3.45	0	0.9	μs	
Setup time of stop condition	tsu: sto		4.0		0.6		μs	
Bus-free time	tBUF		4.7		1.3		μs	


Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & \mbox{Cb} = 400 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & \mbox{Cb} = 320 \mbox{ pF}, \mbox{ Rb} = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

(2) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES		$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		12	bit
Overall error Note	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±7.5	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
Full-scale error Note	EFS	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	LSB
Analog input voltage	VAIN		•	0		AVdd	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(4) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V}, \text{AVss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AVDD}, \text{Reference voltage (-)} = \text{AVss} = 0)$

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
Overall error Note 1	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AVDD} \leq 3.6 \text{ V}$			±8.5	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V	4.125			μs
Zero-scale error Note 1	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±8.0	LSB
Full-scale error Note 1	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AVDD} \leq 3.6 \text{ V}$			±8.0	LSB
Integral linearity error Note 1	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±3.5	LSB
Differential linearity error Note 1	DLE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±2.5	LSB
Analog input voltage	VAIN		l	0		AVdd	V
		Internal reference voltage (2.4 V \leq VDD \leq 3.6 V, HS (high-speed main) mode)		VBGR Note 2			
		Temperature sensor outp (2.4 V \leq VDD \leq 3.6 V, HS	ut voltage (high-speed main) mode)	VTMP25 Note 2			

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. Refer to 3.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

(5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6, ANI16 to ANI21

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, 2.4 V \leq VDD, 2.4 V \leq AVDD = VDD, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V, HS (high-speed main) mode)

• • • •		• • • • • •				, ,
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16.0			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AVREF(+)	= Internal reference voltage (VBGR)	1.38	1.45	1.5	V
Analog input voltage	VAIN		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

3.6.2 Temperature sensor, internal reference voltage output characteristics

•						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	F VTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs

(TA = -40 to +105°C, 2.4 V ≤ VDD ≤ 3.6 V, VSS = 0 V (HS (high-speed main) mode))

3.6.3 D/A converter characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res					8	bit
Overall error	AINL	Rload = 4 MΩ	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
		Rload = 8 MΩ	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
Settling time	tSET	Cload = 20 pF	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			3	μs
			$2.4 \text{ V} \leq \text{VDD} \leq 2.7 \text{ V}$			6	μs

3.10 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	f CLK	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C ^{Note 4}	100,000			
		Retained for 20 years TA = 85°C ^{Note 4}	10,000			

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

Note 4. This temperature is the average value at which data are retained.

3.11 Dedicated Flash Memory Programmer Communication (UART)

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

