

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 24MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART, USB                                  |
| Peripherals                | LCD, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 51                                                                              |
| Program Memory Size        | 256KB (256K x 8)                                                                |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 8K x 8                                                                          |
| RAM Size                   | 16K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 3.6V                                                                     |
| Data Converters            | A/D 9x8/12b; D/A 2x8b                                                           |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 85-VFLGA                                                                        |
| Supplier Device Package    | 85-VFLGA (7x7)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f110njala-u0 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 1.3.6 100-pin products (without USB)

• 100-pin plastic LFQFP (fine pitch) (14 × 14 mm, 0.5 mm pitch)



Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1  $\mu$ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).



(2/2)

|                          |                      | 80/85-pin 100-pin                                                                                                                                                                                                                                                                                                                                        |                                           |  |  |  |
|--------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
|                          | Item                 | R5F110Mx/R5F110Nx (x = E to H, J)                                                                                                                                                                                                                                                                                                                        | R5F110Px (x = E to H, J)                  |  |  |  |
| Clock output/buzzer o    | utput                | 2 2                                                                                                                                                                                                                                                                                                                                                      |                                           |  |  |  |
|                          |                      | <ul> <li>2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz<br/>(Main system clock: fMAIN = 20 MHz operation)</li> <li>256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz<br/>(Subsystem clock: fSuB = 32.768 kHz operation)</li> </ul>                                                                      |                                           |  |  |  |
| 8/12-bit resolution A/D  | ) converter          | 9 channels                                                                                                                                                                                                                                                                                                                                               | 13 channels                               |  |  |  |
| D/A converter            |                      | 2 channels                                                                                                                                                                                                                                                                                                                                               | 2 channels                                |  |  |  |
| Comparator               |                      | 1 channel                                                                                                                                                                                                                                                                                                                                                | 2 channels                                |  |  |  |
| Serial interface         |                      | <ul> <li>CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I<sup>2</sup>C: 1 channel</li> <li>CSI: 1 channel/UART: 1 channel/simplified I<sup>2</sup>C: 1 channel</li> <li>CSI: 1 channel/UART: 1 channel/simplified I<sup>2</sup>C: 1 channel</li> <li>CSI: 1 channel/UART: 1 channel/simplified I<sup>2</sup>C: 1 channel</li> </ul> |                                           |  |  |  |
|                          | I <sup>2</sup> C bus | 1 channel                                                                                                                                                                                                                                                                                                                                                | 1 channel                                 |  |  |  |
| USB                      | Function             | 1 cha                                                                                                                                                                                                                                                                                                                                                    | nnel                                      |  |  |  |
| LCD controller/driver    |                      | Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.                                                                                                                                                                                                                                        |                                           |  |  |  |
| Segment s                | ignal output         | 44 (40) <sup>Note 1</sup>                                                                                                                                                                                                                                                                                                                                | 56 (52) <sup>Note 1</sup>                 |  |  |  |
| Common s                 | ignal output         | 4 (8) Note 1                                                                                                                                                                                                                                                                                                                                             |                                           |  |  |  |
| Data transfer controlle  | er (DTC)             | 32 sources                                                                                                                                                                                                                                                                                                                                               | 33 sources                                |  |  |  |
| Event link controller (E | ELC)                 | Event input: 30, Event trigger output: 22                                                                                                                                                                                                                                                                                                                | Event input: 31, Event trigger output: 22 |  |  |  |
| Vectored interrupt       | Internal             | 36                                                                                                                                                                                                                                                                                                                                                       | 37                                        |  |  |  |
| sources                  | External             | 9                                                                                                                                                                                                                                                                                                                                                        | 9                                         |  |  |  |
| Key interrupt            |                      | 8                                                                                                                                                                                                                                                                                                                                                        | 8                                         |  |  |  |
| Reset                    |                      | Reset by RESET pin     Internal reset by watchdog timer     Internal reset by power-on-reset     Internal reset by voltage detector     Internal reset by illegal instruction execution Note 2     Internal reset by RAM parity error     Internal reset by illegal-memory access                                                                        |                                           |  |  |  |
| Power-on-reset circuit   |                      | <ul> <li>Power-on-reset: 1.51 ± 0.03 V</li> <li>Power-down-reset: 1.50 ± 0.03 V</li> </ul>                                                                                                                                                                                                                                                               |                                           |  |  |  |
| Voltage detector         |                      | Rising edge: 1.67 V to 3.13 V (12 stages)     Falling edge: 1.63 V to 3.06 V (12 stages)                                                                                                                                                                                                                                                                 |                                           |  |  |  |
| On-chip debug functio    | n                    | Provided                                                                                                                                                                                                                                                                                                                                                 |                                           |  |  |  |
| Power supply voltage     |                      | VDD = 1.6 to 3.6 V (TA = -40 to +85°C)<br>VDD = 2.4 to 3.6 V (TA = -40 to +105°C)                                                                                                                                                                                                                                                                        |                                           |  |  |  |
| Operating ambient ter    | nperature            | TA = -40 to +85°C (A: Consumer applications), TA = -40 to +105°C (G: Industrial applications)                                                                                                                                                                                                                                                            |                                           |  |  |  |

**Note 1.** The number in parentheses indicates the number of signal outputs when 8 coms are used.

Note 2. The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

<R>



#### 2.1 **Absolute Maximum Ratings**

| Absolute Maximum Ratings (TA = 25°C) |         |                                                                                                                                                                 |                                                               |      |  |  |
|--------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------|--|--|
| Parameter                            | Symbols | Conditions                                                                                                                                                      | Ratings                                                       | Unit |  |  |
| Supply voltage                       | Vdd     |                                                                                                                                                                 | -0.5 to + 6.5                                                 | V    |  |  |
|                                      | UVBUS   |                                                                                                                                                                 | -0.5 to + 6.5                                                 | V    |  |  |
|                                      | AVdd    | AVDD ≤ VDD                                                                                                                                                      | -0.5 to + 4.6                                                 | V    |  |  |
| REGC pin input voltage               | VIREGC  | REGC                                                                                                                                                            | -0.3 to + 2.8                                                 | V    |  |  |
|                                      |         |                                                                                                                                                                 | and -0.3 to VDD + 0.3 Note 1                                  |      |  |  |
| UREGC pin input voltage              | VIUREGC | UREGC                                                                                                                                                           | -0.3 to UVBUS + 0.3 Note 2                                    | V    |  |  |
| Input voltage                        | VI1     | P00 to P07, P10 to P17, P20 to P27, P30 to P37,<br>P40 to P46, P50 to P57, P70 to P77, P80 to P83,<br>P125 to P127, P137, P140 to P143, EXCLK,<br>EXCLKS, RESET | -0.3 to VDD + 0.3 Note 3                                      | V    |  |  |
|                                      | Vi2     | P60, P61 (N-ch open-drain)                                                                                                                                      | -0.3 to + 6.5                                                 | V    |  |  |
|                                      | Vıз     | UDP, UDM                                                                                                                                                        | -0.3 to + 6.5                                                 | V    |  |  |
|                                      | VI4     | P150 to P156                                                                                                                                                    | -0.3 to AVDD + 0.3 Note 4                                     | V    |  |  |
| Output voltage                       | V01     | P00 to P07, P10 to P17, P20 to P27, P30 to P37,<br>P40 to P46, P50 to P57, P60, P61, P70 to P77,<br>P80 to P83, P125 to P127, P130, P140 to P143                | -0.3 to VDD + 0.3 Note 3                                      | V    |  |  |
|                                      | V02     | P150 to P156                                                                                                                                                    | -0.3 to AVDD + 0.3 Note 3                                     | V    |  |  |
|                                      | Vo3     | UDP, UDM                                                                                                                                                        | -0.3 to + 3.8                                                 | V    |  |  |
| Analog input voltage                 | VAI1    | ANI16 to ANI21                                                                                                                                                  | -0.3 to VDD + 0.3<br>and AVREF(+) + 0.3 <sup>Notes 3, 5</sup> | V    |  |  |
|                                      | VAI2    | ANI0 to ANI6                                                                                                                                                    | -0.3 to AVDD + 0.3<br>and AVREF(+) + 0.3 Notes 3, 5           | V    |  |  |

#### Absolute Maximum Ratings (TA = 25°C)

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Connect the UREGC pin to Vss via a capacitor (0.33 µF). This value regulates the absolute maximum rating of the UREGC pin. Do not use this pin with voltage applied to it.

Note 3. Must be 6.5 V or lower.

Note 4. Must be 4.6 V or lower.

Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin. Note 5.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage



#### Absolute Maximum Ratings (TA = 25°C)

(3/3)

| Parameter            | Symbols |                      | Conditions                                                                                                                                       | Ratings     | Unit |
|----------------------|---------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|
| Output current, high | Іон1    | Per pin              | P00 to P07, P10 to P17, P20 to P27, P30 to P37,<br>P40 to P46, P50 to P57, P70 to P77, P80 to P83,<br>P125 to P127, P130, P140 to P143           | -40         | mA   |
|                      |         | Total of all         | P40 to P46                                                                                                                                       | -70         | mA   |
|                      |         | pins<br>-170 mA      | P00 to P07, P10 to P17, P20 to P27, P30 to P37,<br>P50 to P57, P70 to P77, P80 to P83,<br>P125 to P127, P130, P140 to P143                       | -100        | mA   |
|                      | Іон2    | Per pin              | P150 to P156                                                                                                                                     | -0.1        | mA   |
|                      |         | Total of all<br>pins |                                                                                                                                                  | -0.7        | mA   |
|                      | Іонз    | Per pin              | UDP, UDM                                                                                                                                         | -3          | mA   |
| Output current, low  | IOL1    | Per pin              | P00 to P07, P10 to P17, P20 to P27, P30 to P37,<br>P40 to P46, P50 to P57, P60, P61, P70 to P77,<br>P80 to P83, P125 to P127, P130, P140 to P143 | 40          | mA   |
|                      |         | Total of all         | P40 to P46                                                                                                                                       | 70          | mA   |
|                      |         | pins<br>170 mA       | P00 to P07, P10 to P17, P20 to P27, P30 to P37,<br>P50 to P57, P70 to P77, P80 to P83,<br>P125 to P127, P130, P140 to P143                       | 100         | mA   |
|                      | IOL2    | Per pin              | P150 to P156                                                                                                                                     | 0.4         | mA   |
|                      |         | Total of all<br>pins |                                                                                                                                                  | 2.8         | mA   |
|                      | IOL3    | Per pin              | UDP, UDM                                                                                                                                         | 3           | mA   |
| Operating ambient    | Та      | In normal c          | operation mode                                                                                                                                   | -40 to +85  | °C   |
| temperature          |         | In flash me          | mory programming mode                                                                                                                            |             |      |
| Storage temperature  | Tstg    |                      |                                                                                                                                                  | -65 to +150 | °C   |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



## 2.2 Oscillator Characteristics

## 2.2.1 X1 and XT1 oscillator characteristics

#### $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

| Parameter                           | Resonator                           | Conditions                                         | MIN. | TYP.   | MAX. | Unit |
|-------------------------------------|-------------------------------------|----------------------------------------------------|------|--------|------|------|
| X1 clock oscillation frequency (fx) | Ceramic resonator/crystal resonator | $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ | 1.0  |        | 20.0 | MHz  |
| Note                                |                                     | 2.4 V ≤ VDD < 2.7 V                                | 1.0  |        | 16.0 |      |
|                                     |                                     | 1.8 V ≤ VDD < 2.4 V                                | 1.0  |        | 8.0  |      |
|                                     |                                     | 1.6 V ≤ VDD < 1.8 V                                | 1.0  |        | 4.0  |      |
| XT1 clock oscillation frequency     | Crystal resonator                   |                                                    | 32   | 32.768 | 35   | kHz  |
| (fxT) Note                          |                                     |                                                    |      |        |      |      |

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/L1C User's Manual.



(1/2)

# 2.4 AC Characteristics

## 2.4.1 Basic operation

## (TA = -40 to +85°C, 1.6 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = 0 V)

| Items                                                      | Symbol          |                                                          | Conditions                    |                                                    | MIN.           | TYP. | MAX. | Unit |
|------------------------------------------------------------|-----------------|----------------------------------------------------------|-------------------------------|----------------------------------------------------|----------------|------|------|------|
| Instruction cycle                                          | Тсү             | Main system                                              | HS (high-speed main)          | $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ | 0.0417         |      | 1    | μs   |
| (minimum instruction                                       |                 | clock (fMAIN)                                            | mode                          | 2.4 V ≤ VDD < 2.7 V                                | 0.0625         |      | 1    | μs   |
| execution time)                                            |                 | operation                                                | LS (low-speed main)           | 1.8 V ≤ VDD ≤ 3.6 V                                | 0.125          |      | 1    | μs   |
|                                                            |                 |                                                          | mode                          |                                                    |                |      |      |      |
|                                                            |                 |                                                          | LV (low-voltage main)<br>mode | 1.6 V ≤ VDD ≤ 3.6 V                                | 0.25           |      | 1    | μs   |
|                                                            |                 | Subsystem clo                                            | ock (fS∪B) operation          | 1.8 V ≤ VDD ≤ 3.6 V                                | 28.5           | 30.5 | 31.3 | μs   |
|                                                            |                 | In the self-                                             | HS (high-speed main)          | $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ | 0.0417         |      | 1    | μs   |
| I                                                          |                 | programming                                              | mode                          | 2.4 V ≤ VDD < 2.7 V                                | 0.0625         |      | 1    | μs   |
|                                                            |                 | mode                                                     | LS (low-speed main)<br>mode   | 1.8 V ≤ VDD ≤ 3.6 V                                | 0.125          |      | 1    | μs   |
|                                                            |                 |                                                          | LV (low-voltage main)<br>mode | 1.8 V ≤ VDD ≤ 3.6 V                                | 0.25           |      | 1    | μs   |
| External main system                                       | fEX             | $2.7 \text{ V} \leq \text{VDD} \leq$                     | 3.6 V                         |                                                    | 1.0            |      | 20.0 | MHz  |
| clock frequency                                            |                 | $2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$ |                               |                                                    | 1.0            |      | 16.0 | MHz  |
| I                                                          |                 | 1.8 V ≤ VDD <                                            | 2.4 V                         |                                                    | 1.0            |      | 8.0  | MHz  |
| I                                                          |                 | $1.6 \text{ V} \le \text{Vdd} < 1.8 \text{ V}$           |                               |                                                    | 1.0            |      | 4.0  | MHz  |
| I                                                          | fext            |                                                          |                               |                                                    | 32             |      | 35   | kHz  |
| External main system                                       | tEXH,           | $2.7 \text{ V} \leq \text{VDD} \leq$                     | 3.6 V                         |                                                    | 24             |      |      | ns   |
| clock input high-level                                     | <b>t</b> EXL    | $2.4 \text{ V} \leq \text{VDD} <$                        | 2.7 V                         |                                                    | 30             |      |      | ns   |
| width, Iow-Ievel wiath                                     |                 | 1.8 V ≤ VDD <                                            | 2.4 V                         |                                                    | 60             |      |      | ns   |
| I                                                          |                 | 1.6 V ≤ VDD <                                            | 1.8 V                         |                                                    | 120            |      |      | ns   |
|                                                            | tEXHS,<br>tEXLS |                                                          |                               |                                                    | 13.7           |      |      | μs   |
| TI00 to TI07 input<br>high-level width,<br>low-level width | t⊤iH,<br>t⊤i∟   |                                                          |                               |                                                    | 1/fмск +<br>10 |      |      | ns   |

**Remark** fMCK: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 7))





## CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



Remark 1. p: CSI number (p = 00, 10, 20, 30) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)



## (5) During communication at same potential (simplified I<sup>2</sup>C mode)

| Parameter Symbol                 |          | ol Conditions                                                                                                                                                        | HS (high-speed main)<br>Mode |                | LS (low-speed main)<br>Mode |               | LV (low-voltage main)<br>Mode |               | Unit |
|----------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|-----------------------------|---------------|-------------------------------|---------------|------|
|                                  |          |                                                                                                                                                                      | MIN.                         | MAX.           | MIN.                        | MAX.          | MIN.                          | MAX.          |      |
| SCLr clock<br>frequency          | fscl     | $2.7 V \le V_{DD} \le 3.6 V$ ,<br>Cb = 50 pF, Rb = 2.7 k $\Omega$                                                                                                    |                              | 1000<br>Note 1 |                             | 400<br>Note 1 |                               | 400<br>Note 1 | kHz  |
|                                  |          | 1.8 V ≤ VDD ≤ 3.6 V,<br>Cb = 100 pF, Rb = 3 kΩ                                                                                                                       |                              | 400<br>Note 1  |                             | 400<br>Note 1 |                               | 400<br>Note 1 | kHz  |
|                                  |          | 1.8 V ≤ VDD < 2.7 V,<br>Cb = 100 pF, Rb = 5 kΩ                                                                                                                       |                              | 300<br>Note 1  |                             | 300<br>Note 1 |                               | 300<br>Note 1 | kHz  |
|                                  |          | 1.6 V ≤ VDD < 1.8 V,<br>Cb = 100 pF, Rb = 5 kΩ                                                                                                                       |                              | _              |                             |               |                               | 250           | kHz  |
| Hold time<br>when SCLr = "L"     | tlow     | $2.7 V \le V_{DD} \le 3.6 V$ ,<br>Cb = 50 pF, Rb = 2.7 k $\Omega$                                                                                                    | 475                          |                | 1150                        |               | 1150                          |               | ns   |
|                                  |          | $1.8 V \le V_{DD} \le 3.6 V$ ,<br>Cb = 100 pF, Rb = 3 kΩ                                                                                                             | 1150                         |                | 1150                        |               | 1150                          |               | ns   |
|                                  |          | 1.8 V ≤ VDD < 2.7 V,<br>Cb = 100 pF, Rb = 5 kΩ                                                                                                                       | 1550                         |                | 1550                        |               | 1550                          |               | ns   |
|                                  |          | 1.6 V ≤ VDD < 1.8 V,<br>Cb = 100 pF, Rb = 5 kΩ                                                                                                                       | -                            |                | _                           |               | 1850                          |               | ns   |
| Hold time<br>when SCLr = "H"     | tнigн    | $\begin{array}{l} 2.7 \ V \leq VDD \leq 3.6 \ V, \\ Cb = 50 \ pF, \ Rb = 2.7 \ k\Omega \end{array}$                                                                  | 475                          |                | 1150                        |               | 1150                          |               | ns   |
|                                  |          | $1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$                              | 1150                         |                | 1150                        |               | 1150                          |               | ns   |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}, \\ \text{Cb} = 100 \text{ pF}, \text{ Rb} = 5 \text{ k}\Omega \end{array}$ | 1550                         |                | 1550                        |               | 1550                          |               | ns   |
|                                  |          | $1.6 V \le V_{DD} < 1.8 V,$<br>Cb = 100 pF, Rb = 5 k $\Omega$                                                                                                        | _                            |                |                             |               | 1850                          |               | ns   |
| Data setup time<br>(reception)   | tsu: DAT | $\begin{array}{l} 2.7 \ V \leq VDD \leq 3.6 \ V, \\ Cb = 50 \ pF, \ Rb = 2.7 \ k\Omega \end{array}$                                                                  | 1/fмск + 85<br>Note 2        |                | 1/fмск + 145<br>Note 2      |               | 1/fмск + 145<br>Note 2        |               | ns   |
|                                  |          | 1.8 V ≤ VDD ≤ 3.6 V,<br>Cb = 100 pF, Rb = 3 kΩ                                                                                                                       | 1/fмск + 145<br>Note 2       |                | 1/fмск + 145<br>Note 2      |               | 1/fмск + 145<br>Note 2        |               | ns   |
|                                  |          | 1.8 V ≤ VDD < 2.7 V,<br>Cb = 100 pF, Rb = 5 kΩ                                                                                                                       | 1/fмск + 230<br>Note 2       |                | 1/fмск + 230<br>Note 2      |               | 1/fмск + 230<br>Note 2        |               | ns   |
|                                  |          | 1.6 V ≤ VDD < 1.8 V,<br>Cb = 100 pF, Rb = 5 kΩ                                                                                                                       | _                            |                |                             |               | 1/fмск + 290<br>Note 2        |               | ns   |
| Data hold time<br>(transmission) | thd: dat | $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$<br>Cb = 50 pF, Rb = 2.7 k $\Omega$                                                                               | 0                            | 305            | 0                           | 305           | 0                             | 305           | ns   |
|                                  |          | $1.8 V \le VDD \le 3.6 V$ ,<br>Cb = 100 pF, Rb = 3 k $\Omega$                                                                                                        | 0                            | 355            | 0                           | 355           | 0                             | 355           | ns   |
|                                  |          | 1.8 V $\leq$ VDD < 2.7 V,<br>Cb = 100 pF, Rb = 5 kΩ                                                                                                                  | 0                            | 405            | 0                           | 405           | 0                             | 405           | ns   |
|                                  |          | 1.6 V $\leq$ VDD < 1.8 V,<br>Cb = 100 pF, Rb = 5 kΩ                                                                                                                  | _                            |                | _                           |               | 0                             | 405           | ns   |

## $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

**Note 1.** The value must be equal to or less than fMCK/4.

**Note 2.** Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

#### Simplified I<sup>2</sup>C mode connection diagram (during communication at same potential)



#### Simplified I<sup>2</sup>C mode serial transfer timing (during communication at same potential)



- **Remark 1.**  $Rb[\Omega]$ : Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance **Remark 2.** r: IIC number (r = 00, 10, 20, 30), g: PIM number (g = 0 to 3),
- h: POM number (h = 0 to 3)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)







## UART mode bit width (during communication at different potential) (reference)



- Remark 1.  $Rb[\Omega]$ : Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))



#### CSI mode connection diagram (during communication at different potential)



**Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

**Remark 2.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))



# 2.6 Analog Characteristics

## 2.6.1 A/D converter characteristics

#### Classification of A/D converter characteristics

| Reference Voltage                                                        | Reference voltage (+) = AVREFP<br>Reference voltage (-) = AVREFM | Reference voltage (+) = AVDD<br>Reference voltage (-) = AVSS | Reference voltage (+) = Internal reference<br>voltage<br>Reference voltage (-) = AVss |
|--------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|
| High-accuracy channel; ANI0 to ANI6<br>(input buffer power supply: AVDD) | Refer to <b>2.6.1 (1)</b> .<br>Refer to <b>2.6.1 (2)</b> .       | Refer to <b>2.6.1 (3)</b> .                                  | Refer to <b>2.6.1 (6)</b> .                                                           |
| Standard channel; ANI16 to ANI21<br>(input buffer power supply: VDD)     | Refer to <b>2.6.1 (4)</b> .                                      | Refer to <b>2.6.1 (5)</b> .                                  |                                                                                       |
| Internal reference voltage,<br>Temperature sensor output voltage         | Refer to <b>2.6.1 (4)</b> .                                      | Refer to <b>2.6.1 (5)</b> .                                  | _                                                                                     |

# (1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target for conversion: ANI2 to ANI6

| (TA = -40 to +85°C, 2.4 V $\leq$ AVREFP $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = 0 V, AVss = 0 V, reference voltage (+) = AVREFP $\leq$ AVREFP $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = 0 V, AVss = 0 V, reference voltage (+) = AVREFP $\leq$ AVREFP $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = 0 V, AVss = 0 V, reference voltage (+) = AVREFP $\leq$ AVREFP $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = 0 V, AVss = 0 V, reference voltage (+) = AVREFP $\leq$ AVREFP $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = 0 V, AVss = 0 V, reference voltage (+) = AVREFP $\leq$ AVREFP $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = 0 V, AVss = 0 V, reference voltage (+) = AVREFP $\leq$ AVREFP | Р, |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| reference voltage (-) = AVREFM = 0 V, HALT mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |

| Parameter                                  | Symbol | Conditions                   | MIN.  | TYP. | MAX.   | Unit |
|--------------------------------------------|--------|------------------------------|-------|------|--------|------|
| Resolution                                 | Res    |                              |       |      | 12     | bit  |
| Overall error Notes 1, 2, 3                | AINL   | 12-bit resolution            |       | ±1.7 | ±3.3   | LSB  |
| Conversion time                            | tCONV  | ADTYP = 0, 12-bit resolution | 3.375 |      |        | μs   |
| Zero-scale error Notes 1, 2, 3             | Ezs    | 12-bit resolution            |       | ±1.3 | ±3.2   | LSB  |
| Full-scale error Notes 1, 2, 3             | Efs    | 12-bit resolution            |       | ±0.7 | ±2.9   | LSB  |
| Integral linearity error Notes 1, 2, 3     | ILE    | 12-bit resolution            |       | ±1.0 | ±1.4   | LSB  |
| Differential linearity error Notes 1, 2, 3 | DLE    | 12-bit resolution            |       | ±0.9 | ±1.2   | LSB  |
| Analog input voltage                       | VAIN   |                              | 0     |      | AVREFP | V    |

**Note 1.** TYP. Value is the average value at AVDD = AVREFP = 3 V and TA = 25°C. MAX. value is the average value ±3σ at normalized distribution.

Note 2. These values are the results of characteristic evaluation and are not checked for shipment.

**Note 3.** Excludes quantization error (±1/2 LSB).

Caution 1. Route the wiring so that noise will not be superimposed on each power line and ground line, and insert a capacitor to suppress noise.

In addition, separate the reference voltage line of AVREFP from the other power lines to keep it free from the influences of noise.

Caution 2. During A/D conversion, keep a pulse, such as a digital signal, that abruptly changes its level from being input to or output from the pins adjacent to the converter pins and P150 to P156.



# 2.6.6 LVD circuit characteristics

| P               | arameter             | neter Symbol Conditions MIN. TYP. MAX |                        | MAX. | Unit |      |    |
|-----------------|----------------------|---------------------------------------|------------------------|------|------|------|----|
| Detection       | Supply voltage level | VLVD2                                 | Power supply rise time | 3.07 | 3.13 | 3.19 | V  |
| voltage         |                      |                                       | Power supply fall time | 3.00 | 3.06 | 3.12 | V  |
|                 |                      | VLVD3                                 | Power supply rise time | 2.96 | 3.02 | 3.08 | V  |
|                 |                      |                                       | Power supply fall time | 2.90 | 2.96 | 3.02 | V  |
|                 |                      | VLVD4                                 | Power supply rise time | 2.86 | 2.92 | 2.97 | V  |
|                 |                      |                                       | Power supply fall time | 2.80 | 2.86 | 2.91 | V  |
|                 |                      | VLVD5                                 | Power supply rise time | 2.76 | 2.81 | 2.87 | V  |
|                 |                      |                                       | Power supply fall time | 2.70 | 2.75 | 2.81 | V  |
|                 |                      | VLVD6                                 | Power supply rise time | 2.66 | 2.71 | 2.76 | V  |
|                 |                      |                                       | Power supply fall time | 2.60 | 2.65 | 2.70 | V  |
|                 |                      | VLVD7                                 | Power supply rise time | 2.56 | 2.61 | 2.66 | V  |
|                 |                      |                                       | Power supply fall time | 2.50 | 2.55 | 2.60 | V  |
|                 |                      | VLVD8                                 | Power supply rise time | 2.45 | 2.50 | 2.55 | V  |
|                 |                      |                                       | Power supply fall time | 2.40 | 2.45 | 2.50 | V  |
|                 |                      | VLVD9                                 | Power supply rise time | 2.05 | 2.09 | 2.13 | V  |
|                 |                      |                                       | Power supply fall time | 2.00 | 2.04 | 2.08 | V  |
|                 |                      | VLVD10                                | Power supply rise time | 1.94 | 1.98 | 2.02 | V  |
|                 |                      |                                       | Power supply fall time | 1.90 | 1.94 | 1.98 | V  |
|                 |                      | VLVD11                                | Power supply rise time | 1.84 | 1.88 | 1.91 | V  |
|                 |                      |                                       | Power supply fall time | 1.80 | 1.84 | 1.87 | V  |
|                 |                      | VLVD12                                | Power supply rise time | 1.74 | 1.77 | 1.81 | V  |
|                 |                      |                                       | Power supply fall time | 1.70 | 1.73 | 1.77 | V  |
|                 |                      | VLVD13                                | Power supply rise time | 1.64 | 1.67 | 1.70 | V  |
|                 |                      |                                       | Power supply fall time | 1.60 | 1.63 | 1.66 | V  |
| Minimum pulse   | width                | tlw                                   |                        | 300  |      |      | μs |
| Detection delay | / time               |                                       |                        |      |      | 300  | μs |

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range. HS (high-speed main) mode: VDD = 2.7 to 3.6 V at 1 MHz to 24 MHz

 $V_{DD} = 2.4$  to 3.6 V at 1 MHz to 16 MHz

LS (low-speed main) mode: VDD = 1.8 to 3.6 V at 1 MHz to 8 MHz

LV (low-voltage main) mode: VDD = 1.6 to 3.6 V at 1 MHz to 4 MHz

## (2) 1/4 bias method

#### $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

| Parameter                           | Symbol  | Conc                        | litions    | MIN.         | TYP.  | MAX.  | Unit |
|-------------------------------------|---------|-----------------------------|------------|--------------|-------|-------|------|
| LCD output voltage variation range  | VL1     | C1 to C4 Note 1             | VLCD = 04H | 0.90         | 1.00  | 1.08  | V    |
|                                     |         | = 0.47 µF <sup>Note 2</sup> | VLCD = 05H | 0.95         | 1.05  | 1.13  | V    |
|                                     |         |                             | VLCD = 06H | 1.00         | 1.10  | 1.18  | V    |
|                                     |         |                             | VLCD = 07H | 1.05         | 1.15  | 1.23  | V    |
|                                     |         |                             | VLCD = 08H | 1.10         | 1.20  | 1.28  | V    |
|                                     |         |                             | VLCD = 09H | 1.15         | 1.25  | 1.33  | V    |
|                                     |         |                             | VLCD = 0AH | 1.20         | 1.30  | 1.38  | V    |
| Doubler output voltage              | VL2     | C1 to C4 Note 1 =           | = 0.47 μF  | 2 VL1 - 0.08 | 2 VL1 | 2 VL1 | V    |
| Tripler output voltage              | VL3     | C1 to C4 Note 1 =           | = 0.47 μF  | 3 VL1 - 0.12 | 3 VL1 | 3 VL1 | V    |
| Quadruply output voltage            | VL4     | C1 to C5 Note 1 =           | = 0.47 μF  | 4 VL1 - 0.16 | 4 VL1 | 4 VL1 | V    |
| Reference voltage setup time Note 2 | t∨WAIT1 |                             |            | 5            |       |       | ms   |
| Voltage boost wait time Note 3      | tvwait2 | C1 to C5 Note 1 =           | • 0.47µF   | 500          |       |       | ms   |

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL3 and GND

C5: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 µF±30%

**Note 2.** This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).



## 3.2 Oscillator Characteristics

## 3.2.1 X1 and XT1 oscillator characteristics

#### $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = 0 \text{ V})$

| Parameter                           | Resonator                           | Conditions                                         | MIN. | TYP.   | MAX. | Unit |
|-------------------------------------|-------------------------------------|----------------------------------------------------|------|--------|------|------|
| X1 clock oscillation frequency (fx) | Ceramic resonator/crystal resonator | $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ | 1.0  |        | 20.0 | MHz  |
| Note                                |                                     | 2.4 V ≤ VDD < 2.7 V                                | 1.0  |        | 16.0 |      |
| XT1 clock oscillation frequency     | Crystal resonator                   |                                                    | 32   | 32.768 | 35   | kHz  |
| (fxt) <sup>Note</sup>               |                                     |                                                    |      |        |      |      |

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/L1C User's Manual.



## (TA = -40 to +105°C, 2.4 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = 0 V)

(2/2)

| Items                             | Symbol | Condition                 | าร                                                 | MIN. | TYP. | MAX. | Unit |
|-----------------------------------|--------|---------------------------|----------------------------------------------------|------|------|------|------|
| TO00 to TO07, TKBO00,             | fто    | HS (high-speed main) mode | 2.7 V ≤ VDD ≤ 3.6 V                                |      |      | 8    | MHz  |
| TKBO01, TKBO10, TKBO11,           |        |                           | 2.4 V ≤ VDD < 2.7 V                                |      |      | 8    | MHz  |
| TKBO20, TKBO21                    |        |                           |                                                    |      |      |      |      |
| output frequency                  |        |                           |                                                    |      |      |      |      |
| PCLBUZ0, PCLBUZ1 output           | fPCL   | HS (high-speed main) mode | 2.7 V ≤ VDD ≤ 3.6 V                                |      |      | 8    | MHz  |
| frequency                         |        |                           | $2.4 \text{ V} \leq \text{VDD} \leq 2.7 \text{ V}$ |      |      | 8    | MHz  |
| Interrupt input high-level width, | tinth, | INTP0 to INTP7            | $2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ | 1    |      |      | μs   |
| low-level width                   | tintl  |                           |                                                    |      |      |      |      |
| Key interrupt input low-level     | tĸĸ    | 2.4 V ≤ VDD ≤ 3.6 V       | ·                                                  | 250  |      |      | ns   |
| width                             |        |                           |                                                    |      |      |      |      |
| TMKB2 forced output stop input    | tihr   | INTP0 to INTP7            | fclк > 16 MHz                                      | 125  |      |      | ns   |
| high-level width                  |        |                           | fclk ≤ 16 MHz                                      | 2    |      |      | fclk |
| RESET low-level width             | tRSL   |                           |                                                    | 10   |      |      | μs   |







#### (5) Communication at different potential (1.8 V, 2.5V) (UART mode) $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \le VDD \le 3.6 \text{ V}, \text{ Vss} = 0 \text{ V})$

(2/2)

| Paramotor Symbol     |                                                                                             | Conditiona   |             | HS (high-                                                                                            | Unit |            |      |
|----------------------|---------------------------------------------------------------------------------------------|--------------|-------------|------------------------------------------------------------------------------------------------------|------|------------|------|
| Farameter            | Symbol                                                                                      |              |             | Conditions                                                                                           | MIN. | MAX.       | Onit |
| Transfer rate Note 2 |                                                                                             | Transmission | 2.7<br>2.3  | $V \le V_{DD} \le 3.6 V$ ,<br>$V \le V_b \le 2.7 V$                                                  |      | Note 1     | bps  |
|                      |                                                                                             |              |             | Theoretical value of the maximum transfer rate $C_b$ = 50 pF, $R_b$ = 2.7 k $\Omega$ , $V_b$ = 2.3 V |      | 1.2 Note 2 | Mbps |
|                      |                                                                                             |              | 1.8<br>1.6  | $V \le V_{DD} < 3.3 V,$<br>$V \le V_b \le 2.0 V$                                                     |      | Notes 3, 4 | bps  |
|                      | Theoretical value of the maximum transfer rate $C_b$ = 50 pF, $R_b$ = 5.5 kΩ, $V_b$ = 1.6 V |              | 0.43 Note 5 | Mbps                                                                                                 |      |            |      |

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V  $\leq$  VDD < 3.6 V and 2.3 V  $\leq$  Vb  $\leq$  2.7 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

1

Baud rate error

$$\frac{1}{\text{Transfer rate } \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

\* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- Note 3. Use it with  $VDD \ge Vb$ .
- Note 4. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.4 V  $\leq$  VDD < 3.3 V and 1.6 V  $\leq$  Vb  $\leq$  2.0 V

Maximum transfer ra

ate = 
$$\frac{1.5}{(-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})) \times 3}$$

1

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate } \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

\* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.



#### CSI mode connection diagram (during communication at different potential)



**Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

**Remark 2.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))



## 3.6.4 Comparator

| Parameter                                     | Symbol | Cor                                                      | nditions                                                                                      | MIN. | TYP.     | MAX.      | Unit |
|-----------------------------------------------|--------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------|------|----------|-----------|------|
| Input voltage range                           | lvref  |                                                          |                                                                                               | 0    |          | Vdd - 1.4 | V    |
|                                               | lvcmp  |                                                          |                                                                                               | -0.3 |          | VDD + 0.3 | V    |
| Output delay                                  | td     | V <sub>DD</sub> = 3.0 V<br>Input slew rate > 50 mV/µs    | /DD = 3.0 V     High-speed comparator       nput slew rate > 50 mV/µs     mode, standard mode |      |          | 1.2       | μs   |
|                                               |        | High-speed comparator<br>mode, window mode               |                                                                                               |      |          | 2.0       | μs   |
|                                               |        |                                                          | Low-speed comparator mode, standard mode                                                      |      | 3        | 5.0       | μs   |
| High-electric-potential judgment voltage      | VTW+   | High-speed comparator mo                                 | de, window mode                                                                               |      | 0.76 VDD |           | V    |
| Low-electric-potential judgment voltage       | VTW-   | High-speed comparator mo                                 | de, window mode                                                                               |      | 0.24 VDD |           | V    |
| Operation stabilization wait time             | tCMP   |                                                          |                                                                                               | 100  |          |           | μs   |
| Internal reference<br>voltage <sup>Note</sup> | Vbgr   | 2.4 V $\leq$ VDD $\leq$ 3.6 V, HS (high-speed main) mode |                                                                                               |      | 1.45     | 1.50      | V    |

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$ 

**Note** Not usable in sub-clock operation or STOP mode.

## 3.6.5 POR circuit characteristics

#### (TA = -40 to +105°C, Vss = 0 V)

| Parameter           | Symbol | Conditions                             | MIN. | TYP. | MAX. | Unit |
|---------------------|--------|----------------------------------------|------|------|------|------|
| Detection voltage   | VPOR   | Power supply rise time                 | 1.45 | 1.51 | 1.57 | V    |
|                     | VPDR   | Power supply fall time <sup>Note</sup> | 1.44 | 1.50 | 1.56 | V    |
| Minimum pulse width | TPW    |                                        | 300  |      |      | μs   |

Note Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).



