

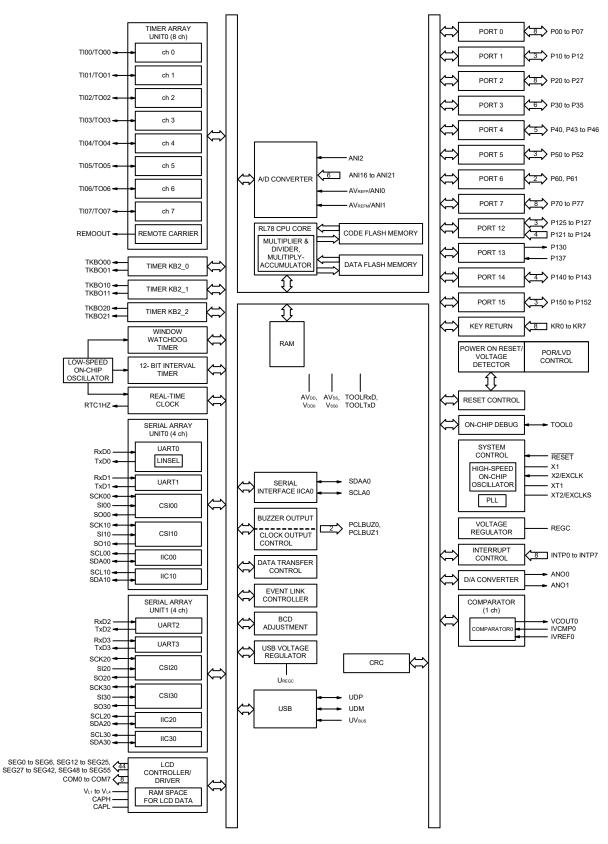
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

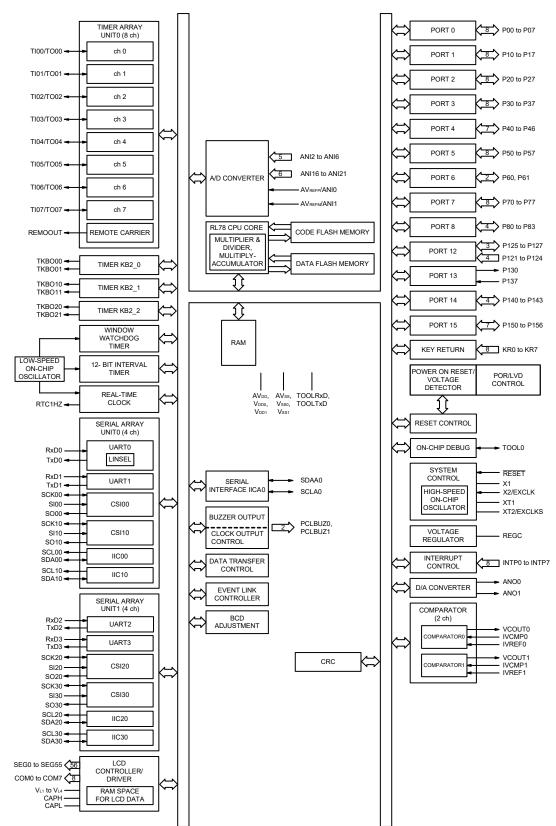
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART, USB
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 13x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f110peafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


1.5 Block Diagram

1.5.1 80/85-pin products (with USB)

Absolute Max	ximum Rat	ings (TA = 25°C)			(2/3)
Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	VLI1	VL1 input voltage	Note 1	-0.3 to +2.8	V
	VLI2	VL2 input voltage	Note 1	-0.3 to +6.5	V
	VLI3	VL3 input voltage	Note 1	-0.3 to +6.5	V
	VLI4	VL4 input voltage ^I	Note 1	-0.3 to +6.5	V
	VLI5	CAPL, CAPH inpu	it voltage ^{Note 1}	-0.3 to +6.5	V
	VLO1	VL1 output voltage	•	-0.3 to +2.8	V
	VLO2	VL2 output voltage)	-0.3 to +6.5	V
	VLO3	VL3 output voltage)	-0.3 to +6.5	V
	VLO4	VL4 output voltage)	-0.3 to +6.5	V
	VLO5	CAPL, CAPH outp	out voltage	-0.3 to +6.5	V
	VLO6	COM0 to COM7	External resistance division method	-0.3 to VDD + 0.3 Note 2	V
			Capacitor split method	-0.3 to VDD + 0.3 Note 2	V
	output voltage		Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V

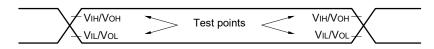
Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 ± 30%) and connect a capacitor (0.47 ± 30%) between the CAPL and CAPH pins.

Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	Normal input buffer	0.8 Vdd		Vdd	V
	VIH2	P00, P01, P10, P11, P24, P25, P33, P34, P43, P44	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	2.0		Vdd	V
			TTL input buffer 1.6 V ≤ VDD < 3.3 V	1.50		VDD	V
	VIH3	P150 to P156	0.7 AVDD		AVDD	V	
	VIH4	P60, P61	0.7 Vdd		6.0	V	
	Vih5	P121 to P124, P137, EXCLK, EXCLKS,	0.8 Vdd		Vdd	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	Normal input buffer	0		0.2 VDD	V
	VIL2	P00, P01, P10, P11, P24, P25, P33, P34, P43, P44	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	0		0.5	V
			TTL input buffer 1.6 V ≤ VDD < 3.3 V	0		0.32	V
	VIL3	P150 to P156		0		0.3 AVDD	V
	VIL4	P60, P61		0		0.3 Vdd	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS,	RESET	0		0.2 Vdd	V

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)


Caution The maximum value of VIH of pins P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 is VDD, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.5 **Peripheral Functions Characteristics**

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

Parameter	Symbol	Conditions		n-speed main) Mode	LS (low-speed main) Mode		-	ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer		2.7 V ≤ VDD ≤ 3.6 V		fMCK/6 Note 2		fмск/6		fмск/6	bps
rate ^{Note 1}		Theoretical value of the maximum transfer rate fMCK = fCLK ^{Note 3}		4.0		1.3		0.6	Mbps
		2.4 V ≤ VDD ≤ 3.6 V		fмск/6 Note 2		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		2.6		1.3		0.6	Mbps
		1.8 V ≤ VDD ≤ 3.6 V		_		fMCK/6 Note 2		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK ^{Note 3}		_		1.3		0.6	Mbps
		1.6 V ≤ VDD ≤ 3.6 V		_				fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK ^{Note 3}		_		_		0.6	Mbps

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2. The following conditions are required for low voltage interface.

2.4 V ≤ VDD < 2.7 V: MAX. 2.6 Mbps 1.8 V ≤ VDD < 2.4 V: MAX. 1.3 Mbps

 $1.6 V \le VDD < 1.8 V: MAX. 0.6 Mbps$

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:

HS (high-speed main) mode: 24 MHz ($2.7 V \le VDD \le 3.6 V$) 16 MHz ($2.4 V \le VDD \le 3.6 V$)

	$16 \text{ MHZ} (2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V})$
LS (low-speed main) mode:	8 MHz (1.8 V \leq VDD \leq 3.6 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 3.6 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(5) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions	HS (high-spee Mode		LS (low-spee Mode	-	LV (low-voltag Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCLr clock frequency	fSCL	2.7 V ≤ VDD ≤ 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ		1000 Note 1		400 Note 1		400 Note 1	kHz
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 3 \text{ k}\Omega$		400 Note 1		400 Note 1		400 Note 1	kHz
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V},$ Cb = 100 pF, Rb = 5 kΩ		300 Note 1		300 Note 1		300 Note 1	kHz
		1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ		-				250	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \ V \leq VDD \leq 3.6 \ V, \\ Cb = 50 \ pF, \ Rb = 2.7 \ k\Omega \end{array}$	475		1150		1150		ns
		$1.8 V \le V_{DD} \le 3.6 V$, Cb = 100 pF, Rb = 3 kΩ	1150		1150		1150		ns
		1.8 V ≤ VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1550		1550		1550		ns
		1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	_		_		1850		ns
Hold time when SCLr = "H"	thigh	$2.7 V \le V_{DD} \le 3.6 V$, Cb = 50 pF, Rb = 2.7 kΩ	475		1150		1150		ns
		1.8 V ≤ VDD ≤ 3.6 V, Cb = 100 pF, Rb = 3 kΩ	1150		1150		1150		ns
		1.8 V ≤ VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1550		1550		1550		ns
		1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	_		_		1850		ns
Data setup time (reception)	tsu: DAT	2.7 V ≤ VDD ≤ 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	1/fмск + 85 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$1.8 V \le VDD \le 3.6 V$, Cb = 100 pF, Rb = 3 kΩ	1/fмск + 145 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$1.8 V \le VDD < 2.7 V,$ Cb = 100 pF, Rb = 5 kΩ	1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fмск + 230 Note 2		ns
		1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	—		_		1/fмск + 290 Note 2		ns
Data hold time (transmission)	thd: dat	2.7 V ≤ VDD ≤ 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	0	305	0	305	0	305	ns
		1.8 V ≤ VDD ≤ 3.6 V, Cb = 100 pF, Rb = 3 kΩ	0	355	0	355	0	355	ns
		1.8 V ≤ VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	0	405	0	405	0	405	ns
		1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	_		-	L	0	405	ns

$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. The value must be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

RL78/L1C

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

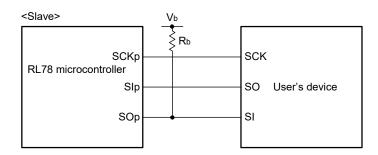
Parameter	Symbol	Conditions		h-speed Mode	LS (low main)	•	LV (low- main)	•	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	177		479		479		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tKSI1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↓ to SOp	tKSO1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, \text{R}_{b} = 2.7 \text{ k}\Omega$		195		195		195	ns
output ^{Note 1}		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note } 3, \\ C_b = 30 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{array}$		483		483		483	ns
SIp setup time (to SCKp↓) ^{Note 2}	tSIK1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	44		110		110		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tKSI1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 kΩ	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ \mbox{Note 3}, \\ C_{b} = 30 \ p\mbox{F}, \ R_{b} = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↑ to SOp	tKSO1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		25		25		25	ns
output ^{Note 2}		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		25		25		25	ns

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Note 3. Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10, 12))

(3) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		12	bit
			1.8 V ≤ AVDD ≤ 3.6 V	8		10 Note 1	
			1.6 V ≤ AVDD ≤ 3.6 V		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±7.5	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.0	
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AVDD} \leq 3.6 \text{ V}$	3.375			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	1.8 V ≤ AVDD ≤ 3.6 V	6.75			
		ADTYP = 0, 8-bit resolution ^{Note 2}	1.6 V ≤ AVDD ≤ 3.6 V	13.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	2.5625			
		8-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V	5.125			
			1.6 V ≤ AVDD ≤ 3.6 V	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Analog input voltage	VAIN	ANI0 to ANI6	1	0		AVdd	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(4) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, VSS = 0 V, AVSS = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit	
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit	
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1		
			$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$		8 Note 2	2		
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±7.0	LSB	
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.5		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0		
Conversion time	tCONV	ADTYP = 0,	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs	
		12-bit resolution						
		ADTYP = 0,	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	9.5				
		10-bit resolution Note 1						
		ADTYP = 0,	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	57.5				
		8-bit resolution Note 2						
		ADTYP = 1,	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.3125				
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	7.875				
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	54.25				
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB	
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0		
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5		
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB	
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0		
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5		
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	LSB	
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5		
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB	
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5		
Analog input voltage	VAIN			0		AVREFP	V	
		Internal reference voltage (2.4 V \leq VDD \leq 3.6 V, HS (high-speed main) mode)			VBGR Note 4			
		Temperature sensor out (2.4 V \leq VDD \leq 3.6 V, H	itput voltage IS (high-speed main) mode)	V	TMP25 No	ote 4		

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

(2) 1/4 bias method

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C4 Note 1 =	0.47 μF	2 VL1 - 0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 Note 1 =	= 0.47 μF	3 VL1 - 0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 ^{Note 1} = 0.47 µF		4 VL1 - 0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C5 Note 1 =	= 0.47μF	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL3 and GND

C5: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 µF±30%

Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	VOH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57,	2.7 V ≤ VDD ≤ 3.6 V, IOH1 = -2.0 mA	Vdd - 0.6			V
Output voltage low		P130, P140 to P143	2.4 V ≤ VDD ≤ 3.6 V, IOH1 = -1.5 mA	Vdd - 0.5			V
	Voh2	P150 to P156	2.4 V ≤ VDD ≤ 3.6 V, IOH2 = -100 μA	AVDD - 0.5			V
Output voltage, low	VoL1 P00 to P07, P10 to P17, P20 to P27 P30 to P37, P40 to P46, P50 to P57		$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 3.0 mA			0.6	V
		P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 1.5 mA			0.4	V
			$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 0.6 mA			0.4	V
	Vol2	P150 to P156	$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL2 = 400 μ A			0.4	V
	Vol3	P60, P61	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL3 = 3.0 mA			0.4	V
			$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL3 = 2.0 mA			0.4	V

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- Note 5.
 Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

 HS (high-speed main) mode:
 2.7 V ≤ VDD ≤ 3.6 V@1 MHz to 24 MHz

 Quark
 2.4 V(1) V(0) ≤ 3.6 V@1 MHz to 24 MHz
 - $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}_{@}1 \text{ MHz}$ to 16 MHz
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fill: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Suppy Note 1 IMAL mode No.2 HAL Ford Marken 2 HAL Ford Marken 2 HAL Ford Marken 2 Marken 2 </th <th>Parameter</th> <th>Symbol</th> <th>Conditions</th> <th></th> <th></th> <th></th> <th>MIN.</th> <th>TYP.</th> <th>MAX.</th> <th>Unit</th>	Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Note 1 Note 1 Note 2 Note 1 Note 3 V 0.07 3.4 Note 1 Note 3 V 0.55 2.7 Note 2 Note 3 V 0.55 2.7 Note 3 V 0.55 2.7 Note 3 V 0.048 1.9 Note 3 V 0.048 1.9 Note 3 V 0.05 2.01 0.44 1.00 Note 7 Note 3 Square wave input 0.33 2.10 Note 3 Note 1 Note 7 Note 3 Square wave input 0.30 1.20 Note 3 Square wave input 0.30 1.20 Note 3 Note	Supply		HALT mode		fHOCO = 48 MHz Note 4,	VDD = 3.6 V		0.77	3.4	mA
$ \left \begin{tabular}{ c c c c c c c c } & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Note 2		mode Note 7	fiH = 24 MHz Note 4	VDD = 3.0 V		0.77	3.4	
Image: here of the high speed main mode Nae 7 Image:	Note				fHOCO = 24 MHz Note 4,	VDD = 3.6 V		0.55	2.7	
$ \left \begin{array}{ c c c c } & $					fiH = 24 MHz Note 4	VDD = 3.0 V		0.55	2.7	
HS (high-speed main) mode Note 7 htt = 20 MHz Nete 3 Von 3.6 V Square wave input 0.03 2.10 Note 3 mA Von 3.6 V Resonator connection 0.61 2.20 htt = 20 MHz Nete 3, Von 3.0 V Square wave input 0.34 2.10 Note 3 MA Yon 3.6 V Resonator connection 0.051 2.20 htt = 16 MHz Nete 3, Von 3.0 V Square wave input 0.30 1.25 Note 3 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.30 1.25 Note 3 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.22 1.10 Note 3 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.22 1.10 Note 3 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.22 1.10 Note 3 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.22 1.10 Note 3 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.22 1.10 Note 3 HS fick = 10 MHz Nete 3, fick = 24 MHz, Note 3, Von 3.0 V Square wave input 0.22 1.00 Note 3 Note 4 2.30 MGe fick = 44 MHz, fick = 12 MHz Note 3, fick = 6 MHz Nete 3 Von 3.0 V 0.88 2.55 Note 4 Note 4 0.30 Note 3					fHOCO = 16 MHz Note 4,	VDD = 3.6 V		0.48	1.9	
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $					fiн = 16 MHz ^{Note 4}	VDD = 3.0 V		0.47	1.9	
Image: here is a serie of the seri					fMX = 20 MHz Note 3,	Square wave input		0.35	2.10	mA
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				mode Note 7	VDD = 3.6 V	Resonator connection		0.51	2.20	
Index 6 Note 3 Vibe 3.6 V O.30 1.25 Index 6 Max 16 Max 16 Max 10 0.45 1.41 Index 16 Max 16 Max 10 Square wave input 0.29 1.23 Vab 3.0 V Resonator connection 0.45 1.41 Index 10 Max 10 Max 10 Max 10 Max 10 Max 10 Max 10 1.20 1.23 Vab 3.0 V Resonator connection 0.43 1.10 0.30 1.20 fmx 10 MHz Note 3, Vab 3.0 V Square wave input 0.22 1.10 fmx = 10 MHz Note 3, Vab 3.0 V Resonator connection 0.30 1.20 fmx = 48 MHz, Vab 3 Quare wave input 0.22 1.10 (High-speed main) mode (PLL operation) fmx = 48 MHz, Vab 3 Vab 3.6 V 0.99 2.93 fmx = 48 MHZ, Vab 3 Vab 3.0 V 0.84 2.90 Incx 4.8 MA Vab 3.0 V 0.84 2.90 full sets State MHZ, Vab 3 Quare wave input </td <td></td> <td></td> <td></td> <td></td> <td>fMX = 20 MHz Note 3,</td> <td>Square wave input</td> <td></td> <td>0.34</td> <td>2.10</td> <td></td>					fMX = 20 MHz Note 3,	Square wave input		0.34	2.10	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					VDD = 3.0 V	Resonator connection		0.51	2.20	
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $					fMX = 16 MHz Note 3,	Square wave input		0.30	1.25	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					VDD = 3.6 V	Resonator connection		0.45	1.41	
$ \left \begin{array}{c c c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					fMX = 16 MHz Note 3,	Square wave input		0.29	1.23	
$ \left \text{NDD} = 3.6 \text{ V} \\ \hline \text{Resonator connection} \\ \hline \text$					VDD = 3.0 V	Resonator connection		0.45	1.41	
$ \frac{1}{1000} = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ MHZ \ Note 3 \ Note 4.0 \ MHZ \ MOD = 3.0 \ MD \ M$					fMX = 10 MHz Note 3,	Square wave input		0.23	1.10	
$ \begin{tabular}{ c c c c c c c } \hline Vode 3.0 V & Resonator connection & 0.30 & 1.20 \\ \hline HS (High-speed main) mode (PLL operation) \\ \hline MX = 48 MHz, \\ (PLL operation) & fcLx = 24 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 6 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 6 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 6 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fsUB = 32.768 kHz Nole 3 \\ \hline Ta = -40^{\circ}C \\ \hline Ta = -40^{\circ}C \\ \hline Ta = +25^{\circ}C \\ \hline Ta = +50^{\circ}C \\ \hline Ta = +50^{\circ}C \\ \hline Ta = +85^{\circ}C \\ \hline Ta = +85^{\circ}C \\ \hline Ta = +25^{\circ}C \\ \hline Ta = $					VDD = 3.6 V	Resonator connection		0.30	1.20	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					fMx = 10 MHz ^{Note 3} ,	Square wave input		0.22	1.10	
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $					VDD = 3.0 V	Resonator connection		0.30	1.20	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				HS	factor Od Mala Nieto 2	VDD = 3.6 V		0.99	2.93	mA
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $				mode		VDD = 3.0 V		0.99	2.92	
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $,	VDD = 3.6 V		0.89	2.51	
$ \left \begin{array}{c c c c c c c c c } & \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				(*		VDD = 3.0 V		0.89	2.50	
$\frac{1}{100} = 32.768 \text{ kHz Note 5} \\ \frac{1}{100} = 32.768 \text{ kHz Note 5} \\ \frac{1}{10} = 32.768 \text{ kHz Note 5} \\ \frac{1}{10} = 32.768 \text{ kHz Note 5} \\ \frac{1}{10} = 32.768 kHz Note $						VDD = 3.6 V		0.84	2.30	
$\begin{tabular}{ c c c c c c c } \hline TA = -40^\circ C & \hline Resonator connection & 0.51 & 0.80 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +25^\circ C & \hline Resonator connection & 0.62 & 0.91 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +50^\circ C & \hline Resonator connection & 0.75 & 2.49 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +70^\circ C & \hline Resonator connection & 1.08 & 4.22 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +85^\circ C & \hline Resonator connection & 1.08 & 4.22 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +85^\circ C & \hline Resonator connection & 1.08 & 4.22 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +85^\circ C & \hline Resonator connection & 1.08 & 4.22 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +85^\circ C & \hline Resonator connection & 1.62 & 8.23 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +85^\circ C & \hline Resonator connection & 1.62 & 8.23 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +105^\circ C & \hline Resonator connection & 1.62 & 8.23 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +25^\circ C & \hline 0.18 & 0.52 \\ \hline TA = +25^\circ C & \hline 0.34 & 2.21 \\ \hline TA = +50^\circ C & \hline TA = +25^\circ C & \hline 0.34 & 2.21 \\ \hline TA = +70^\circ C & \hline 0.64 & 3.94 \\ \hline TA = +85^\circ C & \hline 1.18 & 7.95 \\ \hline \end{tabular}$						VDD = 3.0 V		0.84	2.29	
$\frac{1}{1003} = \frac{1}{1000} + 1$				Subsystem clock	m clock fsuB = 32.768 kHz Note 5	Square wave input		0.32	0.61	μA
$ \begin{array}{ c c c c c c } \hline IDD3 \\ Note 6 \\ \hline IDD3 \\ IDD3 \\ IDD3 \\ IDD3 \\ ID12 \\ IID12 \\ IIID12 \\ IIIID12 \\ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$				operation	TA = -40°C	Resonator connection		0.51	0.80	
$\frac{1}{1003} = \frac{1}{1003} = \frac{1}{100} = $					fsub = 32.768 kHz Note 5	Square wave input		0.41	0.74	
$ \begin{array}{ c c c c c c c c } \hline IA = +50^{\circ}C & \hline Resonator connection & 0.75 & 2.49 \\ \hline fSUB = 32.768 \ \text{kHz} \ \text{Note 5} \\ \hline IA = +70^{\circ}C & \hline Resonator connection & 1.08 & 4.22 \\ \hline fSUB = 32.768 \ \text{kHz} \ \text{Note 5} \\ \hline IA = +85^{\circ}C & \hline Resonator connection & 1.08 & 4.22 \\ \hline fSUB = 32.768 \ \text{kHz} \ \text{Note 5} \\ \hline IA = +85^{\circ}C & \hline Resonator connection & 1.62 & 8.23 \\ \hline fSUB = 32.768 \ \text{kHz} \ \text{Note 5} \\ \hline IA = +105^{\circ}C & \hline Square \ \text{wave input} & 3.29 & 41.00 \\ \hline Resonator \ \text{connection} & 3.63 & 41.00 \\ \hline \end{array} \\ \hline \begin{array}{c} \text{IDD3} \\ \text{Note 6} & \hline \\ \text{Note 8} & \hline \\ \hline IA = +25^{\circ}C & \hline \\ IA = +25^{\circ}C & \hline \\ \hline IA = +25^{\circ}C & \hline \\ \hline IA = +50^{\circ}C & \hline \\ \hline IA = +70^{\circ}C & \hline \\ \hline IA = +70^{\circ}C & \hline \\ \hline IA = +70^{\circ}C & \hline \\ \hline IA = +85^{\circ}C & \hline \\ \hline \hline IA = +85^{\circ}C & \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \mu A \\ \hline A = +85^{\circ}C & \hline \\ \hline IA = +85^{\circ}C & \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \mu A \\ \hline \end{array} \\ \hline $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \\ \hline \end{array}					TA = +25°C	Resonator connection		0.62	0.91	
$\frac{1}{1003} = \frac{1}{100} + 1$					fsub = 32.768 kHz Note 5	Square wave input		0.52	2.30	
$ \begin{array}{ c c c c c c } \hline TA = +70^{\circ} C & \hline Resonator connection & 1.08 & 4.22 \\ \hline fSUB = 32.768 \ \mbox{kHz Note 5} \\ TA = +85^{\circ} C & \hline Square wave input & 1.38 & 8.04 \\ \hline Resonator connection & 1.62 & 8.23 \\ \hline fSUB = 32.768 \ \mbox{kHz Note 5} \\ TA = +105^{\circ} C & \hline Resonator connection & 3.63 & 41.00 \\ \hline \hline Resonator connection & 3.63 & 41.00 \\ \hline \hline Resonator connection & 3.63 & 41.00 \\ \hline \hline Resonator connection & 0.18 & 0.52 \\ \hline TA = +25^{\circ} C & 0.34 & 2.21 \\ \hline TA = +70^{\circ} C & 0.64 & 3.94 \\ \hline TA = +85^{\circ} C & 0.64 & 3.94 \\ \hline \hline TA = +85^{\circ} C & 0.64 & 3.94 \\ \hline \hline TA = +85^{\circ} C & 0.64 & 3.94 \\ \hline \end{array} \right) $					TA = +50°C	Resonator connection		0.75	2.49	
$\frac{1}{100} = \frac{1}{100} + \frac{1}$					fsub = 32.768 kHz Note 5	Square wave input		0.82	4.03	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					TA = +70°C	Resonator connection		1.08	4.22	
$\frac{1}{1000} = \frac{1}{100} + 1$						Square wave input		1.38	8.04	
$ \begin{array}{ c c c c c c c } \hline \mbox{TA} & = +105^{\circ}\mbox{C} & \hline \mbox{Resonator connection} & 3.63 & 41.00 \\ \hline \mbox{IDD3} \\ \mbox{Note 6} & $ \begin{tabular}{c c c c c c c } \hline \mbox{TA} & = -40^{\circ}\mbox{C} & & & & & & & & & & & & & & & & & & &$					TA = +85°C	Resonator connection		1.62	8.23	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Square wave input		3.29	41.00	
Note 6 Note 8 TA = $+25^{\circ}$ C 0.25 0.52 TA = $+50^{\circ}$ C 0.34 2.21 TA = $+70^{\circ}$ C 0.64 3.94 TA = $+85^{\circ}$ C 1.18 7.95		Note 6 Note 8		TA = +105°C	Resonator connection		3.63	41.00		
$T_A = +25^{\circ}C$ 0.25 0.52 $T_A = +50^{\circ}C$ 0.34 2.21 $T_A = +70^{\circ}C$ 0.64 3.94 $T_A = +85^{\circ}C$ 1.18 7.95						0.18	0.52	μA		
TA = +70°C 0.64 3.94 TA = +85°C 1.18 7.95			Note 8	TA = +25°C				0.25	0.52	
T _A = +85°C 1.18 7.95				T _A = +50°C				0.34	2.21	
				T _A = +70°C			0.64	3.94		
				T _A = +85°C			1.18	7.95		
				T _A = +105°C			<u> </u>	2.92	40.00	

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)

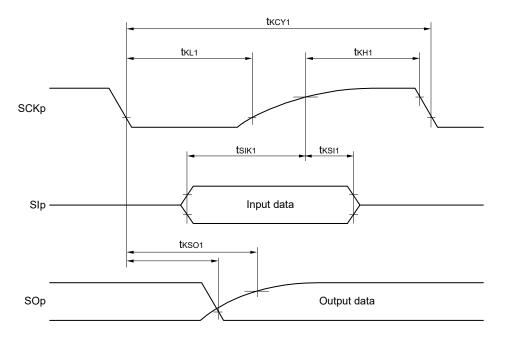
(Notes and Remarks are listed on the next page.)

(2/2)

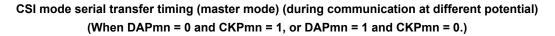
3.4 AC Characteristics

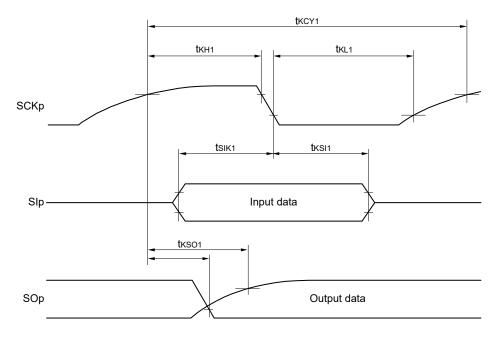
3.4.1 Basic operation

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

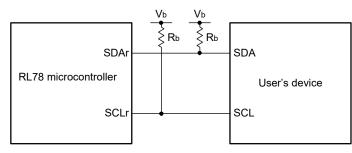

Symbol Conditions MIN. TYP. MAX. Unit Items Тсү HS (high-speed main) 0.0417 Instruction cycle Main system $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 1 μs (minimum instruction clock (fMAIN) mode $2.4 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$ 0.0625 1 μs execution time) operation Subsystem clock (fSUB) operation $2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 28.5 30.5 31.3 μs In the self-HS (high-speed main) $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 0.0417 1 μs programming mode 0.0625 2.4 V ≤ VDD < 2.7 V 1 μs mode External main system fEX 2.7 V ≤ VDD ≤ 3.6 V 1.0 20.0 MHz clock frequency 2.4 V ≤ Vpp < 2.7 V 1.0 16.0 MHz fext 32 35 kHz External main system texн, $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 24 ns clock input high-level tEXL 2.4 V ≤ VDD < 2.7 V 30 ns width, low-level width texns, 13.7 μs **t**EXLS TI00 to TI07 input 1/fмск + tтıн. ns high-level width, t⊤ı∟ 10 low-level width

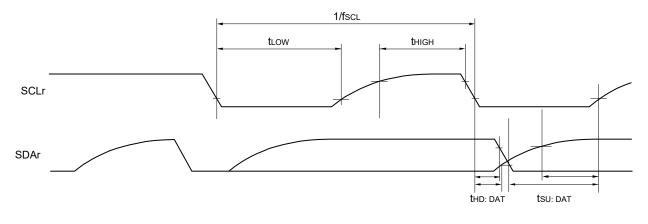
Remark fMCK: Timer array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 7))



(1/2)


CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 10, 20, 30), g: PIM, POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00, 02, 10, 12)

3.6.6 LVD circuit characteristics

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.71	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width		tlw		300			μs
Detection delay time						300	μs

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range. HS (high-speed main) mode: VDD = 2.7 to 3.6 V at 1 MHz to 24 MHz

VDD = 2.4 to 3.6 V at 1 MHz to 16 MHz

3.8.3 Capacitor split method

(1) 1/3 bias method

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V∟4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		Vdd		V
VL2 voltage	VL2	C1 to C4 = 0.47 µF Note 2	2/3 VL4 - 0.07	2/3 VL4	2/3 VL4 + 0.07	V
VL1 voltage	VL1	C1 to C4 = 0.47 µF Note 2	1/3 VL4 - 0.08	1/3 VL4	1/3 VL4 + 0.08	V
Capacitor split wait time Note 1	t∨wait		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

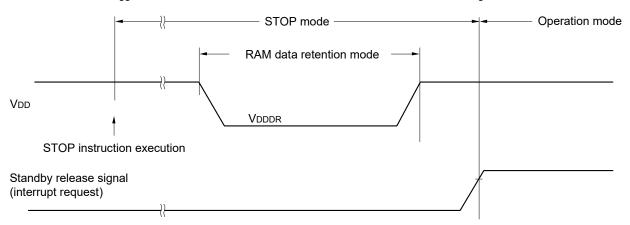
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND


C1 = C2 = C3 = C4 = 0.47 µF±30%

3.9 RAM Data Retention Characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.44 ^{Note}		3.6	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.