

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART, USB
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	96КВ (96К х 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 13x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f110pfafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

\bigcirc ROM, RAM capacities

Products with USB

Flash ROM	Data Elash	DAM	RL78/L1C			
Flash KOW	Data Flash	RAM 80 pins 16 KB Note R5F110MJ 16 KB Note R5F110MH 12 KB R5F110MG 10 KB R5F110MF 8 KB R5F110ME	80 pins	85 pins	100 pins	
256 KB	8 KB	16 KB Note	R5F110MJ	R5F110NJ	R5F110PJ	
192 KB	8 KB	16 KB Note	R5F110MH	R5F110NH	R5F110PH	
128 KB	8 KB	12 KB	R5F110MG	R5F110NG	R5F110PG	
96 KB	8 KB	10 KB	R5F110MF	R5F110NF	R5F110PF	
64 KB	8 KB	8 KB	R5F110ME	R5F110NE	R5F110PE	

Products without USB

Flash ROM	Data Elash	RAM	RL78/L1C				
TIASITINOW	Data Hash	RAM 80 pins 16 KB Note R5F111MJ 16 KB Note R5F111MH 16 KB Note R5F111MH 12 KB R5F111MG 10 KB R5F111MF 8 KB R5F111ME	80 pins	85 pins	100 pins		
256 KB	8 KB	16 KB Note	R5F111MJ	R5F111NJ	R5F111PJ		
192 KB	8 KB	16 KB Note	R5F111MH	R5F111NH	R5F111PH		
128 KB	8 KB	12 KB	R5F111MG	R5F111NG	R5F111PG		
96 KB	8 KB	10 KB	R5F111MF	R5F111NF	R5F111PF		
64 KB	8 KB	8 KB	R5F111ME	R5F111NE	R5F111PE		

Note

This is about 15 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/L1C User's Manual).

Caution Orderable part numbers are current as of when this manual was published. Please make sure to refer to the relevant product page on the Renesas website for the latest part numbers.

1.3.5 100-pin products (with USB)

• 100-pin plastic LFQFP (fine pitch) (14 × 14 mm, 0.5 mm pitch)

Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F). Caution 2. Connect the UREGC pin to Vss pin via a capacitor (0.33 μ F).

- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Absolute Max	kimum Rat	ings (TA = 25°C)			(2/3)
Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	VLI1	VL1 input voltage ^I	Note 1	-0.3 to +2.8	V
	VLI2	VL2 input voltage ¹	Note 1	-0.3 to +6.5	V
	VLI3	VL3 input voltage ^I	Note 1	-0.3 to +6.5	V
	VLI4	VL4 input voltage ^I	Note 1	-0.3 to +6.5	V
	VLI5	CAPL, CAPH inpu	it voltage ^{Note 1}	-0.3 to +6.5	V
	VL01	VL1 output voltage	•	-0.3 to +2.8	V
	VLO2	VL2 output voltage	,	-0.3 to +6.5	V
	VLO3	VL3 output voltage		-0.3 to +6.5	V
	VLO4	VL4 output voltage		-0.3 to +6.5	V
	VLO5	CAPL, CAPH outp	out voltage	-0.3 to +6.5	V
	VLO6	COM0 to COM7	External resistance division method	-0.3 to VDD + 0.3 Note 2	V
		SEG0 to SEG55	Capacitor split method	-0.3 to VDD + 0.3 Note 2	V
		ouipui voliage	Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V

Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 ± 30%) and connect a capacitor (0.47 ± 30%) between the CAPL and CAPH pins.

Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

AC Timing Test Points Vin/Von Vін/Vон Test points VIL/VOL VIL/VOL External System Clock Timing 1/fex 1/fexs **t**EXL tехн **t**EXLS **t**EXHS EXCLK/EXCLKS TI/TO Timing t⊤ı∟ ttiH-TI00 to TI07, TI10 to TI17 1/fто TO00 to TO07, TO10 to TO17, TKBO00, TKBO01, TKBO10, TKBO11, TKBO20, TKBO21 Interrupt Request Input Timing tintl tinth-INTP0 to INTP7

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

- Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)
- Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbol	Cond	litions	HS (high-s main) M	speed ode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
		MIN. MAX. MIN. MAX.		MAX.	MIN.	MAX.				
SCKp cycle	tKCY2	$2.7 \text{ V} \leq \text{VDD} < 3.6 \text{ V}$	fмск > 16 MHz	8/fмск		—		_		ns
time Note 5			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		2.4 V ≤ VDD < 3.6 V		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ VDD < 3.6 V		_		6/fмск and 750		6/fмск and 750		ns
		1.6 V ≤ VDD < 3.6 V		_		—		6/fмск and 1500		ns
SCKp high-/	tkh2, tkl2	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		tkcy2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns
low-level width		$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		_		tксү2/2 - 18		tkcy2/2 - 18		ns
	1.6 V ≤ VDD ≤ 3.6 V			_		—		tkcy1/2 - 66		ns
SIp setup time	tsik2	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) Note 1		$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		1.8 V ≤ VDD < 3.6 V		—		1/fмск + 30		1/fмск + 30		ns
		$1.6 \text{ V} \le \text{VDD} < 3.6 \text{ V}$		_		—		1/fмск + 40		ns
Slp hold time	tKSI2	$2.4 \text{ V} \leq \text{VDD} < 3.6 \text{ V}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		1.8 V ≤ VDD < 3.6 V		—		1/fмск + 31		1/fмск + 31		ns
1002		1.6 V ≤ VDD < 3.6 V		_		—		1/fмск + 250		ns
Delay time from SCKp↓ to	tKSO2	C = 30 pF Note 4	2.7 V ≤ VDD ≤ 3.6 V		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
SOp output Note 3			2.4 V ≤ VDD < 3.6 V		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			1.8 V ≤ VDD < 3.6 V		_		2/fмск + 110		2/fмск + 110	ns
			1.6 V ≤ VDD < 3.6 V		_		_		2/fмск + 220	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, Vss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

CSI mode connection diagram (during communication at same potential)

Remark 1. p: CSI number (p = 00, 10, 20, 30)

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

RL78/L1C

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	LS (low- main)	-speed Mode	LV (low-v main) I	voltage Node	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Slp setup time (to SCKp↑) ^{Note 1}	tsiĸ1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V\!\!\!, \; 2.3 \; V \leq V_{b} \leq 2.7 \; V\!\!, \\ C_{b} = 30 \; pF\!\!\!, \; R_{b} = 2.7 \; k\Omega \end{array}$	177		479		479		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tKSI1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from tKSO1 SCKp↓ to SOp		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		195		195		195	ns
output Note 1		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$		483	483 483		ns		
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	44		110		110		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tKSI1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↑ to SOp	tKSO1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		25		25		25	ns
output Note 2		$\begin{array}{l} 1.8 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_{b} \leq 2.0 \; V \; \mbox{Note 3}, \\ C_{b} = 30 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$		25		25		25	ns

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10, 12))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark
 p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1),

 n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 10, 20, 30), g: PIM, POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 02, 10, 12)

2.5.3 USB

(1) Electrical specifications

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V, HS (High-speed main) mode only)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Uregc	UREGC output voltage characteristic	Uregc	UVBUS = 4.0 to 5.5 V, PXXCON = VDDUSBE = 1	3.0	3.3	3.6	V
UVBUS	UVBUS input voltage characteristic	UVBUS	Function	4.35 (4.02 ^{Note})	5.00	5.25	V

Note Value of instantaneous voltage

(TA = -40 to +85°C, 4.35 V ≤ UVBUS ≤ 5.25 V, 2.4 V ≤ VDD ≤ 3.6 V, VSS = 0 V, HS (High-speed main) mode only)

	Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Input voltaç	je	Vih		2.0			V
characteristic			VIL				0.8	V
(FS/LS receiver)	Difference input sensitivity		Vdi	UDP voltage - UDM voltage	0.2			V
	Difference common mode range		Vсм		0.8		2.5	V
Output	Output volt	age	Vон	Іон = -200 μА	2.8		3.6	V
characteristic (FS driver)			Vol	IOL = 2 mA	0		0.3	V
	Transition	Rising	tFR	Rising: From 10% to 90% of amplitude,	4		20	ns
	time	Falling	tFF	Falling: From 90% to 10% of amplitude,			20	ns
	Matching (TFR/TFF)		VFRFM	CL = 50 pF	90		111.1	%
	Crossover	Crossover voltage					2.0	V
	Output Impedance		Zdrv		28		44	Ω
Output	Output voltage		Vон		2.8		3.6	V
characteristic			Vol		0		0.3	V
(LS driver)	Transition	Rising	tLR	Rising: From 10% to 90% of amplitude,	75		300	ns
	time	Falling	t∟F	Falling: From 90% to 10% of amplitude,	75		300	ns
	Matching (TFR/TFF)	VLTFM	CL = 250 pF to 750 pF	80		125	%
	Crossover	voltage ^{Note}	VLCRS	down via 15 k Ω	1.3		2.0	V
Pull-up,	Pull-down i	resistor	Rpd		14.25		24.80	kΩ
Pull-down	Pull-up	Idle	Rpui		0.9		1.575	kΩ
	resistor	Reception	Rpua		1.425		3.09	kΩ
UVBUS	UVBUS pull resistor	-down	Rvbus	UVBUS voltage = 5.5 V		1000		kΩ
	UVBUS inpu	ut voltage	VIH		3.20			V
			VIL				0.8	V

Note Excludes the first signal transition from the idle state.

(5) Communication at different potential (1.8 V, 2.5 V) (UART mode)

(TA = -40) to +105°C	. 2.4 V ≤ V	$DD \leq 3.6 V$	Vss = 0 V	
			·, =· · · = · ·			

(1/2)

Paramatar	Symbol		Conditions		HS (high-	Linit	
Faiametei				Conditions	MIN.	MAX.	Unit
Transfer rate Notes 1, 2		Reception	2.7 2.3	$V \le V_{DD} \le 3.6 V$, $V \le V_{b} \le 2.7 V$		fMCK/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 4$		2.0	Mbps
		1	$1.8 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_{b} \le 2.0 V$			fMCK/12 Notes 1, 2, 3	bps
				Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		1.3	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

Note 2. Use it with $VDD \ge Vb$.

Note 3.The following conditions are required for low voltage interface. $2.4 V \le V \text{DD} < 2.7 V$:MAX. 2.6 Mbps

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are: HS (high-speed main) mode: 24 MHz ($2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$)

16 MHz (2.4 V ≤ VDD ≤ 3.6 V)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(6) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions	HS (high-s Mo	Unit	
			MIN.	MAX.	
Slp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	354		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	958		ns
SIp hold time (from SCKp↑) Note 1	tKSI1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V , \; 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 3}, \\ C_b = 30 \; pF , \; R_b = 5.5 \; k\Omega \end{array}$	38		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tKSO1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		390	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$		966	ns
SIp setup time (to SCKp↓) ^{Note 2}	tSIK1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	88		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	220		ns
SIp hold time (from SCKp↓) ^{Note 2}	tKSI1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	38		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tKSO1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$		50	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$		50	ns

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(2/2)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. Use it with $VDD \ge Vb$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10, 12))

Timing of UDP and UDM

(2) BC standard

(TA = -40 to +105°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6 V, VSS = 0 V)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB	UDP sink current	IDP_SINK		25	100	175	μΑ
standard	UDM sink current	IDM_SINK		25	100	175	μΑ
BC1.2	DCD source current	IDP_SRC		7	10	13	μΑ
	Data detection voltage	VDAT_REF		0.25	0.325	0.4	V
	UDP source voltage	VDP_SRC	Output current 250 µA	0.5	0.6	0.7	V
	UDM source voltage	VDM_SRC	Output current 250 µA	0.5	0.6	0.7	V

(4) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V}, \text{AVss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AVDD}, \text{Reference voltage (-)} = \text{AVss} = 0)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
Overall error Note 1	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AVDD} \leq 3.6 \text{ V}$			±8.5	LSB
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$	4.125			μs
Zero-scale error Note 1	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±8.0	LSB
Full-scale error Note 1	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±8.0	LSB
Integral linearity error Note 1	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±3.5	LSB
Differential linearity error Note 1	DLE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±2.5	LSB
Analog input voltage	VAIN		·	0		AVDD	V
		Internal reference voltage (2.4 V ≤ VDD ≤ 3.6 V, HS	e (high-speed main) mode)	١	BGR Note	2	
		Temperature sensor output voltage (2.4 V ≤ VDD ≤ 3.6 V, HS (high-speed main) mode)		V	TMP25 Note	2	

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. Refer to 3.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

(5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6, ANI16 to ANI21

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, 2.4 V \leq VDD, 2.4 V \leq AVDD = VDD, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16.0			μs
Zero-scale error Note Ezs 8-bit resolution		8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note DLE		8-bit resolution			±2.5	LSB
Reference voltage (+)	AVREF(+)	= Internal reference voltage (VBGR)	1.38	1.45	1.5	V
Analog input voltage	e VAIN		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

3.6.2 Temperature sensor, internal reference voltage output characteristics

		_				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage VTMPS25		Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage VBGR		Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient FvT		Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time tAMP			10			us

(TA = -40 to +105°C, 2.4 V ≤ VDD ≤ 3.6 V, Vss = 0 V (HS (high-speed main) mode))

3.6.3 D/A converter characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res					8	bit
Overall error	AINL	Rload = 4 M Ω	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
		Rload = 8 MΩ	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
Settling time	t SET	Cload = 20 pF	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			3	μs
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			6	μs

Dav	Dete		Description
Rev.	Date	Page	Summary
2.00	Feb 21, 2014	4	Modification of Figure 1 - 1 Part Number, Memory Size, and Package of RL78/L1C
		69	Modification of (1) Electrical specifications in 2.5.3 USB
		82	Modification of note 1 in (1) 1/3 bias method in 2.8.2 Internal voltage boosting method
		130	Modification of (1) Electrical specifications in 3.5.3 USB
		142	Modification of note 1 in (1) 1/3 bias method in 3.8.2 Internal voltage boosting method
2.10	Aug 12, 2016	5	Addition of product name (RL78/L1C) and description (Top View) in 1.3.1 80-pin products (with USB)
		6	Addition of product name (RL78/L1C) and description (Top View) in 1.3.2 80-pin products (without USB)
		9	Addition of product name (RL78/L1C) and description (Top View) in 1.3.5 100-pin products (with USB)
		10	Addition of product name (RL78/L1C) and description (Top View) in 1.3.6 100-pin products (without USB)
		17, 19	Modification of 1.6 Outline of Functions
		23	Modification of description in Absolute Maximum Ratings (TA = 25°C)
		26, 27	Modification of description in 2.3.1 Pin characteristics
		39, 40	Modification of the graph for Minimum Instruction Execution Time during Main System Clock Operation
		72	Modification of conditions in (1) of 2.6.1 A/D converter characteristics
		85	Modification of the title and note in 2.9 RAM Data Retention Characteristics
		85	Modification of conditions in 2.10 Flash Memory Programming Characteristics
		87	Modification of description in 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105 °C)
		88, 90	Modification of description in Absolute Maximum Ratings $(T_A = 25^{\circ}C)$
		93, 94, 96	Modification of description in 3.3.1 Pin characteristics
		106	Modification of the graph for Minimum Instruction Execution Time during Main System Clock Operation
		144	Modification of the title and note in 3.9 RAM Data Retention Characteristics
		145	Modification of conditions and addition of note 4 in 3.10 Flash Memory Programming Characteristics
2.20	Dec 28, 2017	13	Modification of figure in 1.5.2 80/85-pin products (without USB)
		17, 19	Modification of tables in 1.6 Outline of Functions
		26, 27	Modification of table and note 3 in 2.3.1 Pin characteristics
		85	Modification of figure in 2.12 Timing of Entry to Flash Memory Programming Modes
		89	Modification of table in 3.1 Absolute Maximum Ratings
		92, 93	Modification of table and note 3 in 3.3.1 Pin characteristics
		144	Modification of figure in 3.12 Timing of Entry to Flash Memory Programming Modes