

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART, USB
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 13x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f110pgafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voн1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	$2.7 V \le VDD \le 3.6 V$, IOH1 = -2.0 mA $1.8 V \le VDD \le 3.6 V$, IOH1 = -1.5 mA $1.6 V \le VDD \le 3.6 V$, IOH1 = -1.0 mA	VDD - 0.6 VDD - 0.5 VDD - 0.5			V V V
	Voh2	P150 to P156	1.6 V ≤ VDD ≤ 3.6 V, IOH2 = -100 μA	AVDD - 0.5			V
Output voltage, low	VOL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57,	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 3.0 mA			0.6	V
	P70 to P77, P80 to P83, P125 to P12 P130, P140 to P143	P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ IOL1 = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 0.6 mA			0.4	V
			$1.6 \text{ V} \le \text{VDD} < 1.8 \text{ V},$ IOL1 = 0.3 mA			0.4	V
	Vol2	P150 to P156	$1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL2 = 400 μ A			0.4	V
	Vol3	P60, P61	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ IOL3 = 3.0 mA			0.4	V
			$1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL3 = 2.0 mA			0.4	V
		1.6 V ≤ VDD ≤ 1.8 V, IOL3 = 1.0 mA			0.4	V	

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- **Note 3.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}_{@}1 \text{ MHz}$ to 24 MHz
 - 2.4 V ≤ VDD ≤ 3.6 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V} @1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode 1.6 V ≤ VDD ≤ 3.6 V@1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- **Remark 2.** fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- **Remark 3.** file: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- **Remark 4.** fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remark 1.** $Rb[\Omega]$: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance **Remark 2.** r: IIC number (r = 00, 10, 20, 30), g: PIM number (g = 0 to 3),
- h: POM number (h = 0 to 3)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

14/2)

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode)

$T_{A} = -40$ to $+85^{\circ}C_{-}$	$1.8 V \le V D D \le 3.6 V. V S S = 0 V$	
$IA = -40 10 \cdot 00 0$	$1.0 \cdot 2 \cdot 0.0 = 0.0 \cdot 0.0 = 0 \cdot 0.0$	

(1A40 10)	το <u></u> 5 C,	$1.0 V \ge V$	$\mathbf{U}\mathbf{D}\mathbf{D}\mathbf{S}\mathbf{S}\mathbf{I}\mathbf{V}, \mathbf{V}\mathbf{S}\mathbf{S}\mathbf{I}\mathbf{I}\mathbf{V}$							(1/2)
Parameter Symb			Conditions		HS (high-speed main) LS (Mode		_S (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Notes 1, 2		reception	$2.7 V \le VDD \le 3.6 V$, $2.3 V \le Vb \le 2.7 V$		fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		4.0		1.3		0.6	Mbps
			$1.8 V \le VDD < 3.3 V,$ $1.6 V \le Vb \le 2.0 V$		fMCK/6 Notes 1, 2, 3		fмск/6 Notes 1, 2, 3		fмск/6 Notes 1, 2, 3	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		4.0		1.3		0.6	Mbps
Note 1. T	ransfer ra	ate in the S	SNOOZE mode is 4,800 bp	s only.						

Use it with $VDD \ge Vb$. Note 2.

Note 3. The following conditions are required for low voltage interface. 2.4 V ≤ VDD < 2.7 V: MAX. 2.6 Mbps $1.8 V \le VDD < 2.4 V$: MAX. 1.3 Mbps 1.6 V ≤ VDD < 1.8 V: MAX. 0.6 Mbps Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are: HS (high-speed main) mode: 24 MHz ($2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$) 16 MHz (2.4 V \leq VDD \leq 3.6 V) LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V})$ LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$

Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq Caution pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

$T_{\Delta} = -40$ to $+85^{\circ}C_{\odot}$	$1.8 V \le V \square S \le 3.6 V$, VSS = 0 V)	

Parameter	Symbol	Conditions	HS (high-speed main) LS (low-speed main) LV (low-voltage main) nditions Mode Mode Unit		Unit				
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fSCL	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_{b} < 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} < 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, \text{R}_{b} = 2.7 \text{ k}_{\Omega}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{array}{l} 1.8 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; ^{Note \; 2}, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		400 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr	tLOW	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} < 2.7 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	475		1550		1550		ns
= "L"		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < \!\!2.7 \; V, \\ \mathrm{C}_{b} = 100 \; pF, \; R_{b} = 2.7 \; k_{\Omega} \end{array}$	1150		1550		1550		ns
		$\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V} \ ^{\text{Note 2}}, \\ \text{Cb} = 100 \ \text{pF}, \ \text{Rb} = 5.5 \ \text{k}\Omega \end{array}$	1550		1550		1550		ns
Hold time when SCLr	thigh	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ \mathrm{C}_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	200		610		610		ns
= "H"		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ \mathrm{C}_{b} = 100 \; pF, \; R_{b} = 2.7 \; k_{\Omega} \end{array}$	600		610		610		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	610		610		610		ns
Data setup time	tsu:dat	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_{b} < 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	1/fмск + 135 ^{Note 3}		1/fмск + 190 ^{Note 3}		1/fмск + 190 ^{Note 3}		ns
(reception)		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ \mathrm{Cb} = 100 \; pF, \; Rb = 2.7 \; k\Omega \end{array}$	1/fмск + 190 ^{Note 3}		1/fмск + 190 ^{Note 3}		1/fмск + 190 ^{Note 3}		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1/fмск + 190 ^{Note 3}		1/fмск + 190 ^{Note 3}		1/fмск + 190 ^{Note 3}		ns
Data hold time	thd:dat	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ \mathrm{C}_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
(transmission)		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} < 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 kΩ	0	355	0	355	0	355	ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0	405	0	405	0	405	ns

Note 1. The value must be equal to or less than fMCK/4.

Note 2. Use it with $VDD \ge Vb$.

Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Parameter	Symbol	Co	nditions	HS (high-s Mo	HS (high-speed main) LS (lov Mode		eed main) de	ed main) LV (low-voltage main) e Mode (Unit							
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.								
SCLA0 clock frequency	fscl	Fast mode plus: fc∟κ ≥ 10 MHz	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0	1000	_	-	-	-	kHz							
Setup time of restart condition	tsu: sta	TA 2.7 V \leq VDD \leq 3.6 V 0.26		$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		V ≤ VDD ≤ 3.6 V 0.26 —		_		_		-		—		_	μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	3 V	0.26		-	-	-	_	μs							
Hold time when SCLA0 = "L"	tlow	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		0.5		-		-		μs							
Hold time when SCLA0 = "H"	thigh	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	3 V	0.26		-	_	-	_	μs							
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	3 V	50		-		-	_	ns							
Data hold time (transmission) ^{Note 2}	thd: dat	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	3 V	0	0.45	-	-	-	_	μs							
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	3 V	0.26		-	_	-	_	μs							
Bus-free time	tBUF	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	i V	0.5		-	_	-	_	μs							

(3) I²C fast mode plus

 $(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: Cb = 120 pF, Rb = 1.1 k Ω

IICA serial transfer timing

2.12 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μs
Time to hold the TOOL0 pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends.).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - tsu: How long from when the TOOL0 pin is placed at the low level until a external reset ends
 - tHD: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (except soft processing time)

RL78/L1C

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	VOH1 P00 to P07, P10 to P17, P20 to P27, 2. P30 to P37, P40 to P46, P50 to P57, Ic		2.7 V ≤ VDD ≤ 3.6 V, IOH1 = -2.0 mA	Vdd - 0.6			V
		P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	2.4 V ≤ VDD ≤ 3.6 V, Іон1 = -1.5 mA	Vdd - 0.5			V
	Voh2	P150 to P156	2.4 V ≤ VDD ≤ 3.6 V, IOH2 = -100 μA	AVDD - 0.5			V
Output voltage, low	VoL1 P00 to P30 to P70 to P130, F	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 3.0 mA			0.6	V
			$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ IOL1 = 1.5 mA			0.4	V
			$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 0.6 mA			0.4	V
	Vol2	P150 to P156	$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL2 = 400 μ A			0.4	V
	Vol3	P60, P61	$2.7 V \le VDD \le 3.6 V$, IOL3 = 3.0 mA			0.4	V
			$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ IOL3 = 2.0 mA			0.4	V

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

AC Timing Test Points

External System Clock Timing

TI/TO Timing

Interrupt Request Input Timing

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +105°C, 2.4 V ≤ VDD ≤ 3.6 V, VSS = 0 V)

Beremeter	Symbol	Conditions		HS (high-spee	Unit	
Falameter	Symbol		onditions	MIN.	MAX.	Offic
SCKp cycle time	tKCY1	tĸcy1 ≥ fcLĸ/4	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	250		ns
			$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	500		ns
SCKp high-/low-level width	tĸнı, tĸ∟ı	2.7 V ≤ VDD ≤ 3.6 V		tkcy1/2 - 36		ns
		$2.4 \text{ V} \leq \text{VDD} \leq 3.6$	6 V	tkcy1/2 - 76		ns
SIp setup time (to SCKp↑) Note 1	tsik1	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	6 V	66		ns
	$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$		6 V	133		ns
SIp hold time (from SCKp↑) Note 2	tKSI1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tKSO1	C = 30 pF Note 4			50	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +105°C, 2.4 V ≤ VDD ≤ 3.6 V, VSS = 0 V)

Peromotor	Symbol	Cond	itiona	HS (high-speed	Unit		
Falanielei	Symbol	Cond	litons	MIN.	MAX.	Cim	
SCKp cycle time Note 5	tKCY2	$2.7 \text{ V} \leq \text{VDD} < 3.6 \text{ V}$	fмск > 16 MHz	16/fмск		ns	
			fмск ≤ 16 MHz	12/fмск		ns	
		$2.4 \text{ V} \leq \text{VDD} < 3.6 \text{ V}$		12/fмск and 1000		ns	
SCKp high-/low-level width	tkh2, tkl2	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		tkcy2/2 - 16		ns	
		$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		tkcy2/2 - 36		ns	
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		1/fмск + 40		ns	
		$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		1/fмск + 60		ns	
SIp hold time (from SCKp \uparrow) Note 2	tKSI2			1/fмск + 62		ns	
Delay time from SCKp↓ to SOp output ^{Note 3}	tKSO2	C = 30 pF Note 4	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		2/fмск + 66	ns	
			$2.4 \text{ V} \leq \text{VDD} < 3.6 \text{ V}$		2/fмск + 113	ns	

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remark 1.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)
- Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (simplified I²C mode)

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Demension	Our make at	Conditions	HS (high-spee	l Init		
Parameter	Symbol	Conditions	MIN.	MAX.		
SCLr clock frequency	fscl	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ		400 Note 1	kHz	
		2.4 V ≤ VDD ≤ 3.6 V, Cb = 100 pF, Rb = 3 kΩ		100 ^{Note} 1	kHz	
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	1200		ns	
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ Cb = 100 pF, Rb = 3 k Ω	4600		ns	
Hold time when SCLr = "H"	tнigн	$2.7 V \le V_{DD} \le 3.6 V$, Cb = 50 pF, Rb = 2.7 k Ω	1200		ns	
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ Cb = 100 pF, Rb = 3 k Ω	4600		ns	
Data setup time (reception)	tsu: dat	$2.7 V \le V_{DD} \le 3.6 V$, Cb = 50 pF, Rb = 2.7 k Ω	1/fMCK + 200 Note 2		ns	
		2.4 V ≤ VDD ≤ 3.6 V, Cb = 100 pF, Rb = 3 kΩ	1/fMCK + 580 Note 2		ns	
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	0	770	ns	
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	0	1420	ns	

Note 1. The value must be equal to or less than $f_{MCK}/4$.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

(7) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		HS (high-spec	ed main) Mode	Linit
Falameter	Symbol	Conc	Conditions		MAX.	Unit
SCKp cycle time Note 1	tKCY2	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$	20 MHz < fмск ≤ 24 MHz	32/fмск		ns
		2.3 V ≤ Vb ≤ 2.7 V	16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \leq \text{VDD} < 3.3 \text{ V},$	20 MHz < fмск ≤ 24 MHz	72/fмск		ns
		$1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$ Note 2	16 MHz < fмск ≤ 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			4 MHz < fмск ≤ 8 MHz	32/fмск	ĺ	ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tKH2, tKL2	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}, 2.3 \text{ V}$	√ ≤ Vb ≤ 2.7 V	tkcy2/2 - 36		ns
		2.4 V ≤ VDD < 3.3 V, 1.6 V	√ ≤ Vb ≤ 2.0 V Note 2	tксү2/2 - 100		ns
SIp setup time (to SCKp↑) Note 3	tsik2	2.7 V ≤ VDD ≤ 3.6 V		1/fмск + 40		ns
		2.4 V ≤ VDD < 3.3 V		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 4	tKSI2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 5}	tKSO2	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V}$ Cb = 30 pF, Rb = 2.7 kΩ	/ ≤ Vb ≤ 2.7 V		2/fмск + 428	ns
		2.4 V ≤ VDD < 3.3 V, 1.6 V Cb = 30 pF, Rb = 5.5 kΩ	$V \le V_b \le 2.0 V$ Note 2		2/fмск + 1146	ns

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Note 2. Use it with $VDD \ge Vb$.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

Deremeter	Cumphal	Conditions	HS (high-speed	L In:it	
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fSCL	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} < 2.7 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$		100 Note 1	kHz
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_{b} \leq 2.0 \; V \; ^{Note \; 2}, \\ C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	1200		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} < 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 kΩ	4600		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_{b} \leq 2.0 \; V \; ^{Note \; 2}, \\ C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	thigh	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{\text{b}} < 2.7 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	500		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} < 2.7 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	2400		ns
		$ \begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_{b} \leq 2.0 \; V \; ^{Note \; 2}, \\ C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array} $	1830		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} < 2.7 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	1/fMCK + 340 Note 3		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} < 2.7 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	1/fMCK + 760 Note 3		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_{b} \leq 2.0 \; V \; ^{Note \; 2}, \\ C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$	1/fMCK + 570 Note 3		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} < 2.7 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} < 2.7 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	0	1420	ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_{b} \leq 2.0 \; V \; ^{Note \; 2}, \\ C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$	0	1215	ns

Note 1. The value must be equal to or less than fMCK/4.

Note 2. Use it with $V_{DD} \ge V_b$.

Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

3.5.3 USB

(1) Electrical specifications

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter			Conditions	MIN.	TYP.	MAX.	Unit
Uregc	UREGC output voltage characteristic	Uregc	UVBUS = 4.0 to 5.5 V, PXXCON = VDDUSBE = 1	3.0	3.3	3.6	V
UVBUS	UVBUS input voltage characteristic	UVBUS	Function	4.35 (4.02 ^{Note})	5.00	5.25	V

Note Value of instantaneous voltage

$(TA = -40 \text{ to } +105^{\circ}C, 4.35 \text{ V} \le UVBUS \le 5.25 \text{ V}, 2.4 \text{ V} \le VDD \le 3.6 \text{ V}, \text{VSS} = 0 \text{ V})$

Parameter			Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Input voltage		Vih		2.0			V
characteristic			VIL				0.8	V
receiver)	Difference sensitivity	input	Vdi	UDP voltage - UDM voltage	0.2			V
	Difference mode range	common e	Vсм		0.8		2.5	V
Output	Output volt	age	Vон	Іон = -200 μА	2.8		3.6	V
characteristic			Vol	IOL = 2 mA	0		0.3	V
(FS driver)	Transition	Rising	tFR	Rising: From 10% to 90% of amplitude,	4		20	ns
	time	Falling	tFF	Falling: From 90% to 10% of amplitude,	4		20	ns
	Matching (TFR/TFF)	VFRFM	CL = 50 pF			111.1	%
	Crossover voltage		VFCRS	1			2.0	V
	Output Impedance		Zdrv		28		44	Ω
Output	Output voltage		Vон		2.8		3.6	V
characteristic					0		0.3	V
(LS driver)	Transition	Rising	tLR	Rising: From 10% to 90% of amplitude,	75		300	ns
	time	Falling	tLF	Falling: From 90% to 10% of amplitude,	75		300	ns
	Matching (TFR/TFF)	VLTFM	CL = 250 pF to 750 pF	80		125	%
	Note			The UDP and UDM pins are individually pulled				
	Crossover	voltage ^{Note}	VLCRS	down via 15 kΩ	1.3		2.0	V
Pull-up,	Pull-down i	resistor	RPD		14.25		24.80	kΩ
Pull-down	Pull-up	Idle	Rpui		0.9		1.575	kΩ
	resistor	Reception	Rpua		1.425		3.09	kΩ
UVBUS	UVBUS pull resistor	-down	Rvbus	UVBUS voltage = 5.5 V		1000		kΩ
	UVBUS inpu	ut voltage	Viн		3.20			V
			VIL				0.8	V

Note Excludes the first signal transition from the idle state.

(5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6, ANI16 to ANI21

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, 2.4 V \leq VDD, 2.4 V \leq AVDD = VDD, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16.0			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AVREF(+)	= Internal reference voltage (VBGR)	1.38	1.45	1.5	V
Analog input voltage	VAIN		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

3.6.2 Temperature sensor, internal reference voltage output characteristics

		_				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			us

(TA = -40 to +105°C, 2.4 V ≤ VDD ≤ 3.6 V, Vss = 0 V (HS (high-speed main) mode))

3.6.3 D/A converter characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Con	MIN.	TYP.	MAX.	Unit	
Resolution	Res					8	bit
Overall error	AINL	Rload = 4 M Ω	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
		Rload = 8 MΩ	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
Settling time	tSET	Cload = 20 pF	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			3	μs
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			6	μs

3.10 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C ^{Note 4}	100,000			
		Retained for 20 years TA = 85°C ^{Note 4}	10,000			

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

Note 4. This temperature is the average value at which data are retained.

3.11 Dedicated Flash Memory Programmer Communication (UART)

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

4. PACKAGE DRAWINGS

4.1 80-pin products

R5F110MEAFB, R5F110MFAFB, R5F110MGAFB, R5F110MHAFB, R5F110MJAFB R5F111MEAFB, R5F111MFAFB, R5F111MGAFB, R5F111MHAFB, R5F111MJAFB R5F110MEGFB, R5F110MFGFB, R5F110MGGFB, R5F110MHGFB, R5F110MJGFB R5F111MEGFB, R5F111MFGFB, R5F111MGGFB, R5F111MHGFB, R5F111MJGFB

REVISION HISTORY

RL78/L1C Datasheet

Boy	Dete		Description
Rev.	Date	Page	Summary
0.01	Oct 15, 2012	_	First Edition issued
1.00	Nov 18, 2013	1, 2	Modification of 1.1 Features
		3, 4	Modification of 1.2 Ordering Information
		5 to 8	Modification of package type in 1.3 Pin Configuration (Top View)
		14 to 17	Modification of vectored interrupt sources in 1.6 Outline of Functions
		14 to 17	Modification of operating ambient temperature in 1.6 Outline of Functions
		19 to 21	Modification of description in tables in 2.1 Absolute Maximum Ratings
		22, 23	Modification of description in 2.2 Oscillator Characteristics
		25	Modification of low-level output current in 2.3.1 Pin characteristics
		26	Modification of error of high-level input voltage conditions in 2.3.1 Pin characteristics
		26	Modification of error of low-level input voltage conditions in 2.3.1 Pin characteristics
		27	Modification of low-level output voltage in 2.3.1 Pin characteristics
		28	Modification of error of internal pull-up resistor conditions in 2.3.1 Pin characteristics
		29 to 34	Modification of 2.3.2 Supply current characteristics
		35, 36	Modification of 2.4 AC Characteristics
		37, 38	Addition of minimum instruction execution time during main system clock operation
		41 to 63	Addition of LS mode and LV mode characteristics in 2.5.1 Serial array unit
		64 to 66	Addition of LS mode and LV mode characteristics in 2.5.2 Serial interface IICA
		67, 68	Modification of conditions in 2.5.3 USB
		69	Addition of (3) BC option standard in 2.5.3 USB
		70 to 75	Addition of characteristics about conversion of internal reference voltage and temperature sensor in 2.6.1 A/D converter characteristics
		76	Addition of characteristic in 2.6.4 Comparator
		76	Deletion of detection delay in 2.6.5 POR circuit characteristics
		78	Modification of 2.7 Power supply voltage rising slope characteristics
		79 to 82	Modification of 2.8 LCD Characteristics
		83	Modification of 2.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics
		83	Modification of 2.10 Flash Memory Programming Characteristics
		84	Addition of 2.12 Timing Specs for Switching Modes
		85 to 144	Addition of 3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)
2.00	Feb 21, 2014	All	Addition of 85-pin product information
		All	Modification from 80-pin to 80/85-pin
		All	Modification from $x = M$, P to $x = M$, N, P
		All	Modification from high-accuracy real-time clock to real-time clock 2
		All	Modification from RTC to RTC2
		1	Modification of 1.1 Features
		3	Modification of 1.2 Ordering Information