

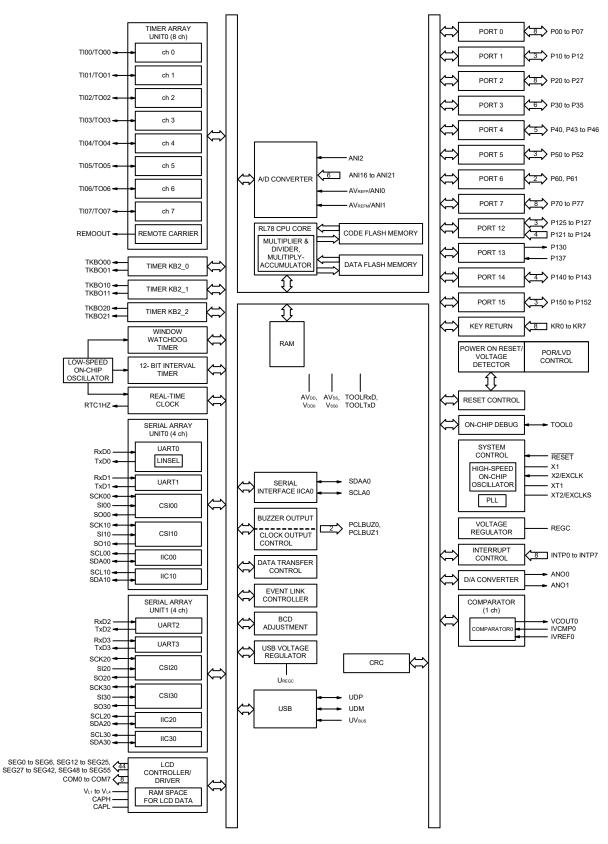
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


2 0 0 0 0 0	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART, USB
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 13x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f110phafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5 Block Diagram

1.5.1 80/85-pin products (with USB)

Absolute Max	solute Maximum Ratings (TA = 25°C)					
Parameter	Symbols		Conditions	Ratings	Unit	
LCD voltage	VLI1	VL1 input voltage	Note 1	-0.3 to +2.8	V	
	VLI2	VL2 input voltage	Note 1	-0.3 to +6.5	V	
	VLI3	VL3 input voltage	Note 1	-0.3 to +6.5	V	
VLI4	VLI4	VL4 input voltage ^I	Note 1	-0.3 to +6.5	V	
	VLI5	CAPL, CAPH inpu	it voltage ^{Note 1}	-0.3 to +6.5	V	
	VLO1	VL1 output voltage	•	-0.3 to +2.8	V	
	VLO2	VL2 output voltage)	-0.3 to +6.5	V	
	VLO3	VL3 output voltage)	-0.3 to +6.5	V	
	VLO4	VL4 output voltage)	-0.3 to +6.5	V	
	VLO5	CAPL, CAPH outp	out voltage	-0.3 to +6.5	V	
	VLO6	COM0 to COM7	External resistance division method	-0.3 to VDD + 0.3 Note 2	V	
		SEG0 to SEG55	Capacitor split method	-0.3 to VDD + 0.3 Note 2	V	
		output voltage	Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V	

Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 ± 30%) and connect a capacitor (0.47 ± 30%) between the CAPL and CAPH pins.

Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- **Note 3.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}_{@}1 \text{ MHz}$ to 24 MHz
 - 2.4 V ≤ VDD ≤ 3.6 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V} @1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode 1.6 V ≤ VDD ≤ 3.6 V@1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- **Remark 2.** fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- **Remark 3.** file: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- **Remark 4.** fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Note 1.	Current flowing to VDD.
Note 2.	When high speed on-chip oscillator and high-speed system clock are stopped.
Note 3.	Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the
	XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC,
	when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected,
	IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
Note 4.	Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and

- illator and N the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode.
- Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing to the AVDD.
- Note 8. Current flowing from the reference voltage source of A/D converter.
- Note 9. Operation current flowing to the internal reference voltage.
- Note 10 Current flowing to the AVREFP.
- Current flowing only to the D/A converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and Note 11. IDA when the D/A converter operates in an operation mode or the HALT mode.
- Note 12. Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates in the Operating, HALT or STOP mode.
- Note 13. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- Note 14. Current flowing only during self-programming.
- Note 15. Current flowing only during data flash rewrite.
- For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/L1C User's Manual. Note 16.
- Note 17. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.
- Note 18. Not including the current that flows through the external divider resistor divider resistor.
- Note 19. Current flowing to the UVBUS.
- Note 20. Including the operating current when fPLL = 48 MHz.
- Note 21. Including the current supplied from the pull-up resistor of the UDP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fCLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Symbol Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MAX. MIN. MAX. MIN. MAX.				
SCKp cycle time	tKCY1	tĸcy1 ≥ fcLĸ/2	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 3.6~\textrm{V}$	167		250		500		ns
SCKp high-/ low-level width	tKL1	$2.7 V \leq V_{DD} \leq 3.6 V$		tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		ns
Slp setup time (to SCKp↑) ^{Note 1}	tsik1	2.7 V ≤ V _{DD} ≤	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			110		110		ns
SIp hold time (from SCKp↑) ^{Note 2}	tKSI1	2.7 V ≤ V _{DD} ≤	$2.7 V \le V_{DD} \le 3.6 V$			10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tKSO1	C = 20 pF Note 4	C = 20 pF Note 4		10		10		10	ns

$(T_A = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 2)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

RL	_78/L	_1C

Parameter	Sym bol	С	onditions	HS (high-spee Mode	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
b				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	SCKp cycle time tKCY1 tKCY1	tĸcy1 ≥ fclk/4	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	167		500		1000		ns
			$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	250		500		1000		ns
			1.8 V ≤ VDD ≤ 3.6 V	-		500		1000		ns
			1.6 V ≤ VDD ≤ 3.6 V	-		—		1000		ns
SCKp high-/	tĸнı,	2.7 V ≤ VDD ≤ 3	3.6 V	tксү1/2 - 18		tkcy1/2 - 50		tkcy1/2 - 50		ns
low-level width	tĸ∟1	2.4 V ≤ VDD ≤ 3	3.6 V	tксү1/2 - 38		tkcy1/2 - 50		tkcy1/2 - 50		ns
		1.8 V ≤ VDD ≤ 3	-		tkcy1/2 - 50		tkcy1/2 - 50		ns	
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		-		—		tkcy1/2 - 100		ns
SIp setup time	tsik1	2.7 V ≤ VDD ≤ 3	44		110		110		ns	
(to SCKp↑) ^{Note 1}		2.4 V ≤ VDD ≤ 3	75		110		110		ns	
		1.8 V ≤ VDD ≤	3.6 V	_		110		110		ns
		1.6 V ≤ VDD ≤ 3	3.6 V	_		—		220		ns
SIp hold time	tKSI1	$2.4 \text{ V} \leq \text{VDD} \leq 3$	3.6 V	19		19		19		ns
(from SCKp↑) ^{Note 2}		1.8 V ≤ VDD ≤ 3	.8 V ≤ VDD ≤ 3.6 V			19		19		ns
		1.6 V ≤ VDD ≤ 3	3.6 V	—		—		19		ns
Delay time from	tKSO1		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		25		50		50	ns
SCKp↓ to SOp output Note 3		Note 4	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		25		50		50	ns
			1.8 V ≤ VDD ≤ 3.6 V		—		50		50	ns
			1.6 V ≤ VDD ≤ 3.6 V		_		_		50	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, Vss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(3) BC option standard

(TA = -40 to +85°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6 V, VSS = 0 V, HS (High-speed main) mode only)

Para	meter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit					
UDP/UDM input reference	VDSELi [3: 0]	0000	VDDET0		27	32	37	%UVBUS					
voltage	(i = 0, 1)	0001	VDDET1		29	34	39	%UVBUS					
(UVBUS divider ratio)			0010	VDDET2		32	37	42	%UVBUS				
(Function)		0011	VDDET3		35	40	45	%UVBUS					
		0100	VDDET4		38	43	48	%UVBUS					
		0101	VDDET5		41	46	51	%UVBUS					
		0110	VDDET6		44	49	54	%UVBUS					
		0111	VDDET7		47	52	57	%UVBUS					
			1		1000	VDDET8		51	56	61	%UVBUS		
		1001	VDDET9		55	60	65	%UVBUS					
			1010	VDDET10		59	64	69	%UVBUS				
			1011	VDDET11		63	68	73	%UVBUS				
							1100	VDDET12		67	72	73	%UVBUS
									1101	VDDET13		71	76
					1110	VDDET14		75	80	85	%UVBUS		
		1111	VDDET15		79	84	89	%UVBUS					

(3) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit	
Resolution	Res		$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		12	bit	
			1.8 V ≤ AVDD ≤ 3.6 V	8		10 Note 1		
			1.6 V ≤ AVDD ≤ 3.6 V		8 Note 2			
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±7.5	LSB	
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.5		
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.0		
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AVDD} \leq 3.6 \text{ V}$	3.375			μs	
		ADTYP = 0, 10-bit resolution ^{Note 1}	1.8 V ≤ AVDD ≤ 3.6 V	6.75				
		ADTYP = 0, 8-bit resolution ^{Note 2}	1.6 V ≤ AVDD ≤ 3.6 V	13.5				
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	2.5625				
		8-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V	5.125				
			1.6 V ≤ AVDD ≤ 3.6 V	10.25				
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB	
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0		
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5		
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB	
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0		
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5		
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	LSB	
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.0		
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5		
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB	
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.0		
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5		
Analog input voltage	VAIN	ANI0 to ANI6	1	0		AVdd	V	

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(6) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6, ANI16 to ANI21

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 3.6 V, 1.6 V \leq VDD, 1.6 V \leq AVDD = VDD, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions MIN. TYP. MAX.		MAX.	Unit		
Resolution	Res			8			
Conversion time	tCONV	8-bit resolution	16			μs	
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB	
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB	
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB	
Reference voltage (+)	AVREF(+)	= Internal reference voltage (VBGR)	1.38	1.45	1.5	V	
Analog input voltage	VAIN		0		Vbgr	V	

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.2 Temperature sensor, internal reference voltage output characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	F VTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs

2.6.3 D/A converter characteristics

$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	Res					8	bit
Overall error	AINL	Rload = 4 MΩ	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
		Rload = 8 MΩ	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
Settling time	t SET	Cload = 20 pF	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			3	μs
			$1.6 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$			6	μs

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- **Note 3.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- Note 7.
 Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

 HS (high-speed main) mode:
 2.7 V ≤ VDD ≤ 3.6 V@1 MHz to 24 MHz
 - $2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}@1 \text{ MHz}$ to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fill: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol		Conditio	ons		MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	FIL Note 1						0.20		μA
RTC2 operating current	IRTC Notes 1, 3								μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 4						0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fi∟ = 15 kHz					0.22		μA
A/D converter operating current	IADC Notes 6, 7	AVDD = 3.0 V, whe	n conversion at maximu	ım speed			422	720	μA
AVREF (+) current	IAVREF Note 8	AVDD = 3.0 V, ADR	NDD = 3.0 V, ADREFP1 = 0, ADREFP0 = 0 Note 7				14.0	25.0	μA
		AVREFP = 3.0 V, AI ADREFP1 = 1, AD	DREFP1 = 0, ADREFP0) = 1 Note 10			14.0 14.0	25.0 25.0	
A/D converter reference voltage current	IADREF Notes 1, 9	VDD = 3.0 V					75.0		μA
Temperature sensor operating current	ITMPS Note 1						78		μA
D/A converter operating current	IDAC Notes 1, 11	Per D/A converter	Per D/A converter channel				0.53	1.5	mA
Comparator		VDD = 3.6 V,	Window mode				12.5		μA
operating current	Notes 1, 12	Regulator output voltage = 2.1 V	Comparator high-spee				4.5		μA
			Comparator low-speed	d mode			1.2		μA
LVD operating current	ILVD Notes 1, 13						0.06		μA
Self-programming operating current	IFSP Notes 1, 14						2.50	12.20	mA
BGO operating current	IBGO Notes 1, 15						1.68	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performe	d Note 16			0.34	1.10	mA
operating current			The A/D conversion of mode, AVREFP = VDD		erformed, Low voltage		0.53	2.04	
		CSI/UART operation	on				0.70	1.54	mA
LCD operating current	ILCD1 Notes 17, 18	External resistance division method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.6 V, LV4 = 3.6 V		0.14		μA
	ILCD2 Note 17	Internal voltage boosting method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, LV4 = 3.0 V (VLCD = 04H)		0.61		μA
	ILCD3 Note 17	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, Lv4 = 3.0 V		0.12		μA
1100	IUSB Note 20	Operating current of	u during USB communica	tion	1		4.88		mA
USB current Note 19	1036	1 0							

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(Notes and Remarks are listed on the next page.)

3.4 AC Characteristics

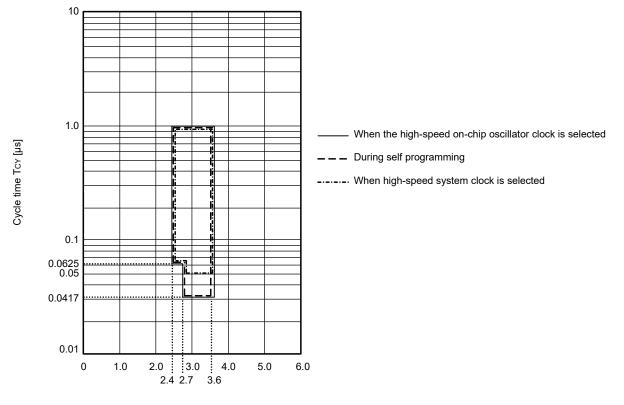
3.4.1 Basic operation

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Symbol Conditions MIN. TYP. MAX. Unit Items Тсү HS (high-speed main) 0.0417 Instruction cycle Main system $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 1 μs (minimum instruction clock (fMAIN) mode $2.4 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$ 0.0625 1 μs execution time) operation Subsystem clock (fSUB) operation $2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 28.5 30.5 31.3 μs In the self-HS (high-speed main) $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 0.0417 1 μs programming mode 0.0625 2.4 V ≤ VDD < 2.7 V 1 μs mode External main system fEX 2.7 V ≤ VDD ≤ 3.6 V 1.0 20.0 MHz clock frequency 2.4 V ≤ Vpp < 2.7 V 1.0 16.0 MHz fext 32 35 kHz External main system texн, $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 24 ns clock input high-level tEXL 2.4 V ≤ VDD < 2.7 V 30 ns width, low-level width texns, 13.7 μs **t**EXLS TI00 to TI07 input 1/fмск + tтıн. ns high-level width, t⊤ı∟ 10 low-level width

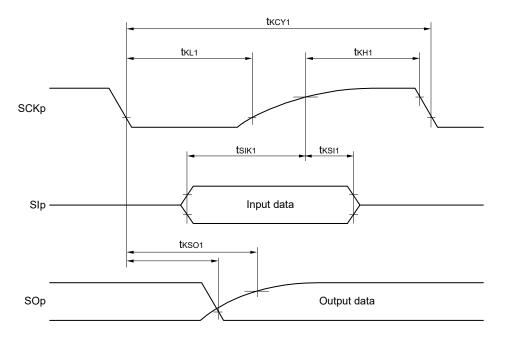
Remark fMCK: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 7))

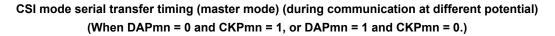


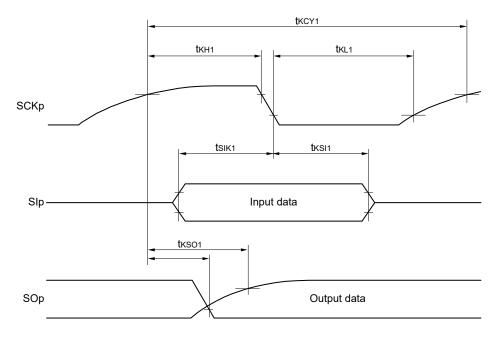
(1/2)

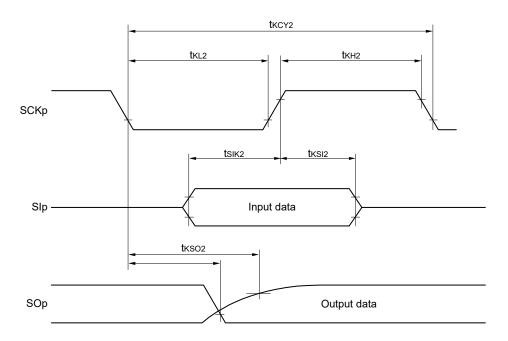
RL78/L1C


Minimum Instruction Execution Time during Main System Clock Operation

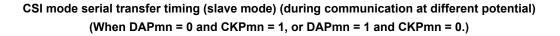
TCY vs VDD (HS (high-speed main) mode)

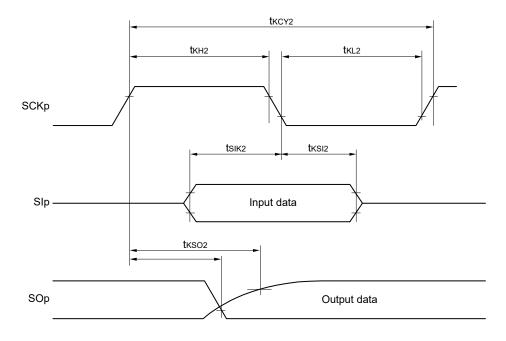



Supply voltage VDD [V]



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)





Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark
 p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1),

 n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

(2) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES		$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		12	bit
Overall error Note	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±7.5	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
Full-scale error Note	EFS	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	LSB
Analog input voltage	VAIN		•	0		AVdd	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6, ANI16 to ANI21

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, 2.4 V \leq VDD, 2.4 V \leq AVDD = VDD, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V, HS (high-speed main) mode)

• • • •		• • • • • •				, ,
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16.0			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AVREF(+)	= Internal reference voltage (VBGR)	1.38	1.45	1.5	V
Analog input voltage	VAIN		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

3.6.2 Temperature sensor, internal reference voltage output characteristics

•						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	F VTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs

(TA = -40 to +105°C, 2.4 V ≤ VDD ≤ 3.6 V, VSS = 0 V (HS (high-speed main) mode))

3.6.3 D/A converter characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res					8	bit
Overall error	AINL	Rload = 4 MΩ	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
		Rload = 8 MΩ	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
Settling time	tSET	Cload = 20 pF	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			3	μs
			$2.4 \text{ V} \leq \text{VDD} \leq 2.7 \text{ V}$			6	μs

3.8.3 Capacitor split method

(1) 1/3 bias method

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V∟4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		Vdd		V
VL2 voltage	VL2	C1 to C4 = 0.47 µF Note 2	2/3 VL4 - 0.07	2/3 VL4	2/3 VL4 + 0.07	V
VL1 voltage	VL1	C1 to C4 = 0.47 µF Note 2	1/3 VL4 - 0.08	1/3 VL4	1/3 VL4 + 0.08	V
Capacitor split wait time Note 1	t∨wait		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

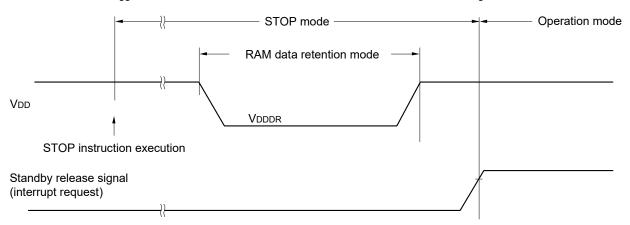
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND


C1 = C2 = C3 = C4 = 0.47 µF±30%

3.9 RAM Data Retention Characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.44 ^{Note}		3.6	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.10 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	f CLK	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C ^{Note 4}	100,000			
		Retained for 20 years TA = 85°C ^{Note 4}	10,000			

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

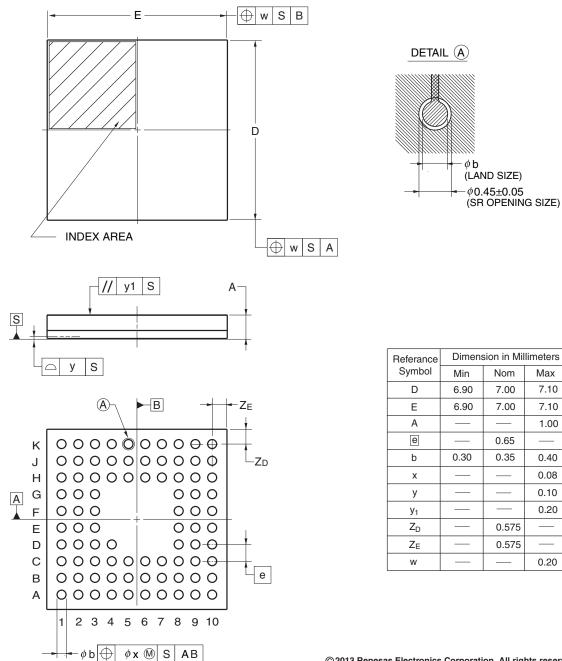
Note 2. When using flash memory programmer and Renesas Electronics self programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

Note 4. This temperature is the average value at which data are retained.

3.11 Dedicated Flash Memory Programmer Communication (UART)

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

4.2 85-pin products

R5F110NEALA, R5F110NFALA, R5F110NGALA, R5F110NHALA, R5F110NJALA R5F111NEALA, R5F111NFALA, R5F111NGALA, R5F111NHALA, R5F111NJALA R5F110NEGLA, R5F110NFGLA, R5F110NGGLA, R5F110NHGLA, R5F110NJGLA R5F111NEGLA, R5F111NFGLA, R5F111NGGLA, R5F111NHGLA, R5F111NJGLA

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-VFLGA85-7x7-0.65	PVLG0085JA-A	P85FC-65-BN4	0.1

©2013 Renesas Electronics Corporation. All rights reserved.

