

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

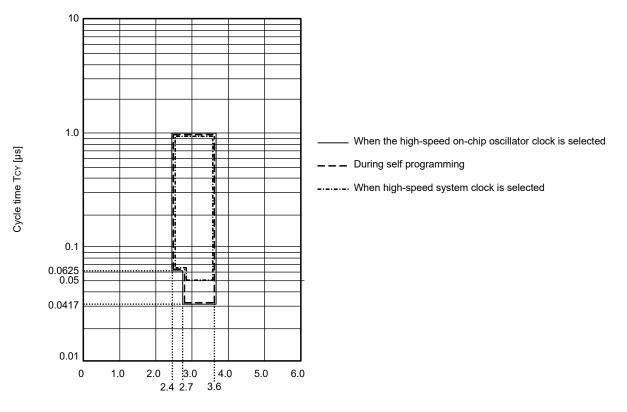
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 11x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f111mgafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Absolute Max	ximum Rat	ings (TA = 25°C)			(2/3)
Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	VLI1	VL1 input voltage	Note 1	-0.3 to +2.8	V
	VLI2	VL2 input voltage	Note 1	-0.3 to +6.5	V
	VLI3	VL3 input voltage	Note 1	-0.3 to +6.5	V
	VLI4	VL4 input voltage ^I	Note 1	-0.3 to +6.5	V
	VLI5	CAPL, CAPH inpu	it voltage ^{Note 1}	-0.3 to +6.5	V
	VLO1	VL1 output voltage	•	-0.3 to +2.8	V
	VLO2	VL2 output voltage)	-0.3 to +6.5	V
	VLO3	VL3 output voltage)	-0.3 to +6.5	V
	VLO4	VL4 output voltage)	-0.3 to +6.5	V
	VLO5	CAPL, CAPH outp	out voltage	-0.3 to +6.5	V
	VLO6	COM0 to COM7	External resistance division method	-0.3 to VDD + 0.3 Note 2	V
		SEG0 to SEG55	Capacitor split method	-0.3 to VDD + 0.3 Note 2	V
		output voltage	Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V

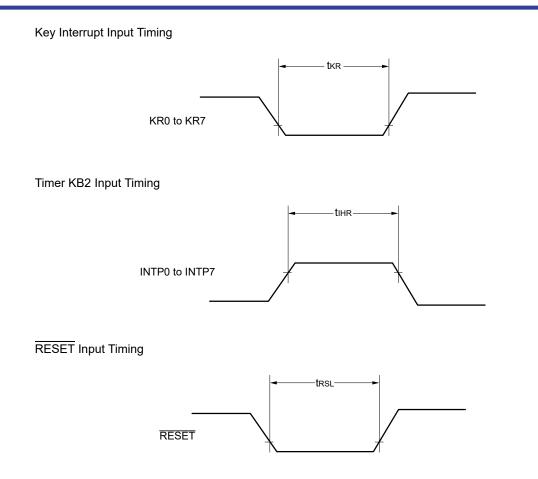
Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 ± 30%) and connect a capacitor (0.47 ± 30%) between the CAPL and CAPH pins.


Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)

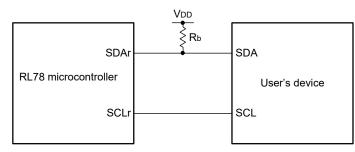


Supply voltage VDD [V]

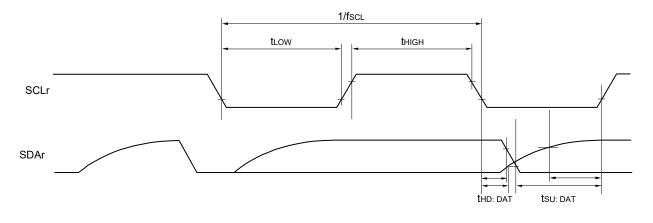
AC Timing Test Points Vih/Voh Vін/Vон Test points VIL/VOL VIL/VOL External System Clock Timing 1/fex 1/fexs texl tехн **t**EXLS **t**EXHS EXCLK/EXCLKS TI/TO Timing t⊤ı∟ ttiH-TI00 to TI07, TI10 to TI17 1/fто TO00 to TO07, TO10 to TO17, TKBO00, TKBO01, TKBO10, TKBO11, TKBO20, TKBO21 Interrupt Request Input Timing tintl tinth-INTP0 to INTP7

(5) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions	HS (high-spee Mode		LS (low-spee Mode	-	LV (low-voltag Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCLr clock frequency	fSCL	2.7 V ≤ VDD ≤ 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ		1000 Note 1		400 Note 1		400 Note 1	kHz
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 3 \text{ k}\Omega$		400 Note 1		400 Note 1		400 Note 1	kHz
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V},$ Cb = 100 pF, Rb = 5 kΩ		300 Note 1		300 Note 1		300 Note 1	kHz
		1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ		-				250	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \ V \leq VDD \leq 3.6 \ V, \\ Cb = 50 \ pF, \ Rb = 2.7 \ k\Omega \end{array}$	475		1150		1150		ns
		$1.8 V \le V_{DD} \le 3.6 V$, Cb = 100 pF, Rb = 3 kΩ	1150		1150		1150		ns
		1.8 V ≤ VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1550		1550		1550		ns
		1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	_		_		1850		ns
Hold time thigh when SCLr = "H"	thigh	$2.7 V \le V_{DD} \le 3.6 V$, Cb = 50 pF, Rb = 2.7 kΩ	475		1150		1150		ns
		1.8 V ≤ VDD ≤ 3.6 V, Cb = 100 pF, Rb = 3 kΩ	1150		1150		1150		ns
		1.8 V ≤ VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1550		1550		1550		ns
		1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	_		_		1850		ns
Data setup time (reception)	tsu: DAT	2.7 V ≤ VDD ≤ 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	1/fмск + 85 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$1.8 V \le VDD \le 3.6 V$, Cb = 100 pF, Rb = 3 kΩ	1/fмск + 145 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$1.8 V \le VDD < 2.7 V,$ Cb = 100 pF, Rb = 5 kΩ	1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fмск + 230 Note 2		ns
		1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	—		_		1/fмск + 290 Note 2		ns
Data hold time (transmission)	thd: dat	2.7 V ≤ VDD ≤ 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	0	305	0	305	0	305	ns
		1.8 V ≤ VDD ≤ 3.6 V, Cb = 100 pF, Rb = 3 kΩ	0	355	0	355	0	355	ns
		1.8 V ≤ VDD < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	0	405	0	405	0	405	ns
		1.6 V ≤ VDD < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	_		-	L	0	405	ns


$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. The value must be equal to or less than fMCK/4.


Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remark 1.** $Rb[\Omega]$: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance **Remark 2.** r: IIC number (r = 00, 10, 20, 30), g: PIM number (g = 0 to 3),
- h: POM number (h = 0 to 3)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(6) Communication at different potential (1.8 V, 2.5V) (UART mode)

(TA = -40	to +85°	C, 1.8 ≤ VDI	o ≤ 3.6 V, Vss = 0 V)							(2/2)
Parameter Symbol			Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note 2}			2.7 V \leq V _{DD} \leq 3.6 V, Note 1 2.3 V \leq V _b \leq 2.7 V	Note 1 Note 1 Note 1	Note 1 Note 1	Note 1	bps			
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 2		1.2 Note 2		1.2 Note 2	Mbps
			$1.8 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Notes 3, 4		Notes 3, 4		Notes 3, 4	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 5		0.43 Note 5		0.43 Note 5	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C} + 1.8 \le \text{V}_{DD} \le 3.6 \text{ V} \text{ V}_{SS} = 0.\text{V})$

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq VDD < 3.6 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =

[bps]
$$\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3$$

1

Baud rate error (theoretical value) =
$$\frac{1}{\frac{1}{\text{Transfer rate} \times 2}} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}$$

$$(\frac{1}{\frac{1}{\text{Transfer rate}}}) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

1

Note 3. Use it with $VDD \ge Vb$.

Note 4. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 1.8 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =

$$\frac{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})}{3} \times 3$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate } \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq Caution pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(3) BC option standard

(TA = -40 to +85°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6 V, VSS = 0 V, HS (High-speed main) mode only)

Para	meter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDP/UDM input reference	VDSELi [3: 0]	0000	VDDET0		27	32	37	%UVBUS
voltage	(i = 0, 1)	0001	VDDET1		29	34	39	%UVBUS
(UVBUS divider ratio)		0010	VDDET2		32	37	42	%UVBUS
(Function)		0011	VDDET3		35	40	45	%UVBUS
		0100	VDDET4		38	43	48	%UVBUS
		0101	VDDET5		41	46	51	%UVBUS
		0110	VDDET6		44	49	54	%UVBUS
		0111	VDDET7		47	52	57	%UVBUS
		1000	VDDET8		51	56	61	%UVBUS
		1001	VDDET9		55	60	65	%UVBUS
		1010	VDDET10		59	64	69	%UVBUS
		1011	VDDET11		63	68	73	%UVBUS
		1100	VDDET12		67	72	73	%UVBUS
		1101	VDDET13		71	76	81	%UVBUS
		1110	VDDET14		75	80	85	%UVBUS
		1111	VDDET15		79	84	89	%UVBUS

(3) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		12	bit
			1.8 V ≤ AVDD ≤ 3.6 V	8		10 Note 1	
			1.6 V ≤ AVDD ≤ 3.6 V		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±7.5	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.0	
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AVDD} \leq 3.6 \text{ V}$	3.375			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	1.8 V ≤ AVDD ≤ 3.6 V	6.75			
		ADTYP = 0, 8-bit resolution ^{Note 2}	1.6 V ≤ AVDD ≤ 3.6 V	13.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	2.5625			
		8-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V	5.125			
			1.6 V ≤ AVDD ≤ 3.6 V	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Analog input voltage	VAIN	ANI0 to ANI6	1	0		AVdd	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.6 LVD circuit characteristics

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD2	Power supply rise time	3.07	3.13	3.19	V
voltage			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pul	se width	tLW		300			μs
Detection de	lav time					300	μs

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range. HS (high-speed main) mode: VDD = 2.7 to 3.6 V at 1 MHz to 24 MHz

 $V_{DD} = 2.4$ to 3.6 V at 1 MHz to 16 MHz

LS (low-speed main) mode: VDD = 1.8 to 3.6 V at 1 MHz to 8 MHz

LV (low-voltage main) mode: VDD = 1.6 to 3.6 V at 1 MHz to 4 MHz

LVD Detection Voltage of Interrupt & Reset Mode
$(TA = -40 \text{ to } +85^{\circ}C, VPDR \le VDD \le 3.6 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol		Con	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC0	, VPOC1, VPOC2 = 0, 0, 0,	falling reset voltage: 1.6 V	1.60	1.63	1.66	V
mode	VLVDA1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC0	, VPOC1, VPOC2 = 0, 0, 1,	falling reset voltage: 1.8 V	1.80	1.84	1.87	V
	VLVDB1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC0	VPOC1, VPOC2 = 0, 1, 0,	falling reset voltage: 2.4 V	2.40	2.45	2.50	V
	VLVDC1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDD0	VPOC0	, VPOC1, VPOC2 = 0, 1, 1,	falling reset voltage: 2.7 V	2.70	2.75	2.81	V
	VLVDD1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V

2.7 Power supply voltage rising slope characteristics

(TA = -40 to +85°C, Vss = 0 V)

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD			54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

2.8.2 Internal voltage boosting method

(1) 1/3 bias method

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 µF	2 V _{L1} - 0.1	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 ^{Note 1} =	0.47 µF	3 VL1 - 0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	t∨WAIT1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C4 ^{Note 1} =	0.47µF	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 µF±30%

Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

3.2.2 On-chip oscillator characteristics

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fносо		1		24	MHz
High-speed on-chip oscillator		-20 to +85°C	-1.0		+1.0	%
clock frequency accuracy		-40 to -20°C	-1.5		+1.5	%
		+85 to +105°C	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fiL			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.2.3 PLL oscillator characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note	fpllin	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	fpll			48.00		MHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AV}_{DD} = \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

<R>

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, IOH1 high ^{Note 1}		Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143				-3.0 Note 2	mA
		Total of P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143 (When duty ≤ 70% ^{Note 3})	$2.7 V \le VDD \le 3.6 V$ $2.4 V \le VDD \le 2.7 V$			-15.0 -7.0	mA mA
	Іон2	Per pin for P150 to P156				-0.1 Note 2	mA
		Total of all pins	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			-0.7	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

Note 2. However, do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = (-10.0 × 0.7)/(80 × 0.01) ≈ -8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

<R>

(5) Communication at different potential (1.8 V, 2.5V) (UART mode) $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \le VDD \le 3.6 \text{ V}, \text{ Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol		Conditions	HS (high-	Unit	
Falametei	Symbol		Conditions	MIN.	MAX.	Onit
Transfer rate Note 2		Transmission	$V \le V_{DD} \le 3.6 V$, $V \le V_b \le 2.7 V$		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 2	Mbps
			$V \le V_{DD} < 3.3 V,$ $V \le V_b \le 2.0 V$		Notes 3, 4	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 kΩ, V_b = 1.6 V		0.43 Note 5	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq VDD < 3.6 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

1

Baud rate error

$$\frac{1}{\text{Transfer rate } \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- Note 3. Use it with $VDD \ge Vb$.
- Note 4. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer ra

ate =
$$\frac{1.5}{(-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})) \times 3}$$

1

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate } \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol		Conditions	HS (high-spee	Unit	
Falameter	Symbol		Conditions	MIN.	MAX.	Onic
SCKp cycle time	tKCY1	tkCY1 ≥ fCLK/4	Cb = 30 pF, Rb = 2.7 kΩ			ns
			$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, 1.6 \; V \leq V_{b} \leq 1.8 \; V, \\ C_{b} = 30 \; pF, R_{b} = 5.5 \; k\Omega \end{array}$	2300 Note		ns
SCKp high-level width	tкн1		2.7 V ≤ VDD ≤ 3.6 V, 2.3 V ≤ Vb ≤ 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ			ns
		2.4 V ≤ VDD < 3 Cb = 30 pF, Rb	8.3 V, 1.6 V ≤ Vb ≤ 2.0 V, = 5.5 kΩ	tkcy1/2 - 916		ns
SCKp low-level width	tKL1		2.7 V \leq VDD \leq 3.6 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 30 pF, Rb = 2.7 k Ω			ns
		2.4 V ≤ VDD < 3 Cb = 30 pF, Rb	3.3 V, 1.6 V ≤ Vb ≤ 2.0 V, = 5.5 kΩ	tkcy1/2 - 100		ns

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Use it with $VDD \ge Vb$. Note

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(1/2)

(5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6, ANI16 to ANI21

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, 2.4 V \leq VDD, 2.4 V \leq AVDD = VDD, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V, HS (high-speed main) mode)

• • • •		• • • • • •				, ,
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16.0			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AVREF(+)	= Internal reference voltage (VBGR)	1.38	1.45	1.5	V
Analog input voltage	VAIN		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

3.6.2 Temperature sensor, internal reference voltage output characteristics

•						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	F VTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs

(TA = -40 to +105°C, 2.4 V ≤ VDD ≤ 3.6 V, VSS = 0 V (HS (high-speed main) mode))

3.6.3 D/A converter characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Со	nditions	MIN.	TYP.	MAX.	Unit
Resolution	Res				8	bit	
Overall error	AINL	Rload = 4 MΩ	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
		Rload = 8 MΩ	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
Settling time	tSET	Cload = 20 pF	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			3	μs
			$2.4 \text{ V} \leq \text{VDD} \leq 2.7 \text{ V}$			6	μs

3.8 LCD Characteristics

3.8.1 Resistance division method

(1) Static display mode

$(TA = -40 \text{ to } +105^{\circ}C, VL4 \text{ (MIN.)} \le VDD \le 3.6 \text{ V}, VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

$(TA = -40 \text{ to } +105^{\circ}C, VL4 \text{ (MIN.)} \le VDD \le 3.6 \text{ V}, VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

(TA = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

3.8.2 Internal voltage boosting method

(1) 1/3 bias method

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 µF	2 VL1 - 0.1	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 ^{Note 1} = 0.47 µF		3 VL1 - 0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C4 ^{Note 1} =	0.47µF	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 µF±30%

Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

Rev.	Date	Description	
		Page	Summary
2.00	Feb 21, 2014	4	Modification of Figure 1 - 1 Part Number, Memory Size, and Package of RL78/L1C
		69	Modification of (1) Electrical specifications in 2.5.3 USB
		82	Modification of note 1 in (1) 1/3 bias method in 2.8.2 Internal voltage boosting method
		130	Modification of (1) Electrical specifications in 3.5.3 USB
		142	Modification of note 1 in (1) 1/3 bias method in 3.8.2 Internal voltage boosting method
2.10	Aug 12, 2016	5	Addition of product name (RL78/L1C) and description (Top View) in 1.3.1 80-pin products (with USB)
		6	Addition of product name (RL78/L1C) and description (Top View) in 1.3.2 80-pin products (without USB)
		9	Addition of product name (RL78/L1C) and description (Top View) in 1.3.5 100-pin products (with USB)
		10	Addition of product name (RL78/L1C) and description (Top View) in 1.3.6 100-pin products (without USB)
		17, 19	Modification of 1.6 Outline of Functions
		23	Modification of description in Absolute Maximum Ratings (TA = 25°C)
		26, 27	Modification of description in 2.3.1 Pin characteristics
		39, 40	Modification of the graph for Minimum Instruction Execution Time during Main System Clock Operation
		72	Modification of conditions in (1) of 2.6.1 A/D converter characteristics
		85	Modification of the title and note in 2.9 RAM Data Retention Characteristics
		85	Modification of conditions in 2.10 Flash Memory Programming Characteristics
		87	Modification of description in 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105 °C)
		88, 90	Modification of description in Absolute Maximum Ratings (TA = 25°C)
		93, 94, 96	Modification of description in 3.3.1 Pin characteristics
		106	Modification of the graph for Minimum Instruction Execution Time during Main System Clock Operation
		144	Modification of the title and note in 3.9 RAM Data Retention Characteristics
		145	Modification of conditions and addition of note 4 in 3.10 Flash Memory Programming Characteristics
2.20	Dec 28, 2017	13	Modification of figure in 1.5.2 80/85-pin products (without USB)
		17, 19	Modification of tables in 1.6 Outline of Functions
		26, 27	Modification of table and note 3 in 2.3.1 Pin characteristics
		85	Modification of figure in 2.12 Timing of Entry to Flash Memory Programming Modes
		89	Modification of table in 3.1 Absolute Maximum Ratings
		92, 93	Modification of table and note 3 in 3.3.1 Pin characteristics
		144	Modification of figure in 3.12 Timing of Entry to Flash Memory Programming Modes