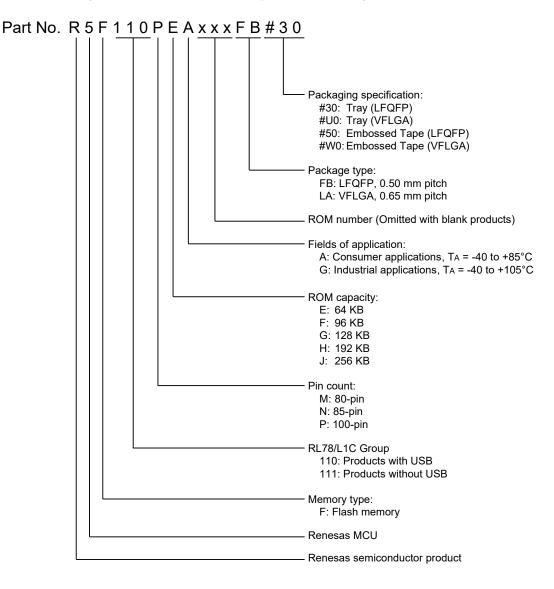


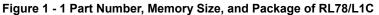
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


E·XFl

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 11x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f111mjafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Caution Orderable part numbers are current as of when this manual was published. Please make sure to refer to the relevant product page on the Renesas website for the latest part numbers.

(1/2)

		80/85-pin	100-pin			
	Item	R5F111Mx/R5F111Nx (x = E to H, J)	R5F111Px (x = E to H, J)			
Code flash memory	и (КВ)	64 to 256	64 to 256			
Data flash memory (KB) 8 8						
RAM (KB)		8 to 16 Note 1	8 to 16 Note 1			
Memory space		1 MB				
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main sys 1 to 20 MHz: VDD = 2.7 to 3.6 V, 1 to 8 MHz: VD				
	High-speed on-chip oscillator clock	HS (high-speed main) operation mode: 1 to 24 Mi HS (high-speed main) operation mode: 1 to 16 Mi LS (low-speed main) operation mode: 1 to 8 MHz LV (low-voltage main) operation mode: 1 to 4 MHz	Hz (VDD = 2.4 to 3.6 V, (VDD = 1.8 to 3.6 V),			
Subsystem clock		XT1 (crystal) oscillation, external subsystem clock 32.768 kHz (TYP.): VDD = 1.6 to 3.6 V	r input (EXCLKS)			
Low-speed on-chip	oscillator clock	15 kHz (TYP.): VDD = 1.6 to 3.6 V				
General-purpose re	gister	8 bits × 32 registers (8 bits × 8 registers × 4 banks)				
Minimum instruction execution time		0.04167 μ s (High-speed on-chip oscillator clock: fHoco = fiH = 24 MHz operation)				
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)				
		30.5 μs (Subsystem clock: fsue = 32.768 kHz ope	eration)			
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits Multiplication (8 bits × 8 bits, 16 bits × 16 bits), I Multiplication and Accumulation (16 bits × 16 bit Rotate, barrel shift, and bit manipulation (Set, re 	Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) is + 32 bits)			
I/O port	Total	63	81			
	CMOS I/O	55	73			
	CMOS input	5	5			
	CMOS output	1	1			
	N-ch open-drain I/O (6 V tolerance)	2	2			
Timer	16-bit timer TAU	8 channels (with 1 channel remote control output 1	function) (Timer outputs: 8, PWM outputs: 7 Note 2)			
	16-bit timer KB2	3 channels (PWM outputs: 6)				
	Watchdog timer	1 channel				
	12-bit interval timer	1 channel				
	Real-time clock 2	1 channel				
	RTC output	1 1 Hz (subsystem clock: fs∪в = 32.768 kHz)				

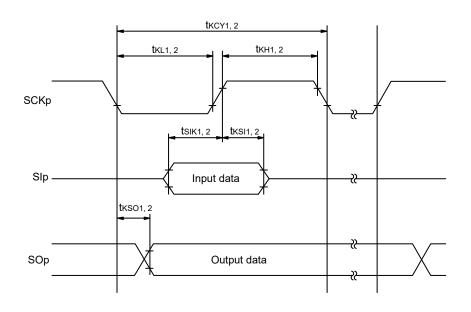
Note 1. In the case of the 16 KB, this is about 15 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/L1C User's Manual).

Note 2. The number of outputs varies, depending on the setting of channels in use and the number of the master.

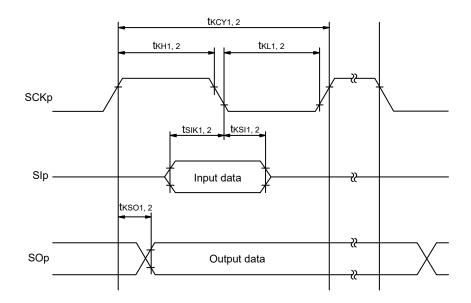
- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 Note 3. When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}_{@}1 \text{ MHz}$ to 24 MHz
	2.4 V ≤ VDD ≤ 3.6 V@1 MHz to 16 MHz
LS (low-speed main) mode:	1.8 V ≤ VDD ≤ 3.6 V@1 MHz to 8 MHz
LV (low-voltage main) mode	1.6 V ≤ VDD ≤ 3.6 V@1 MHz to 4 MHz

- **Remark 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- **Remark 2.** fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fill: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C



- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- **Note 3.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}_{@}1 \text{ MHz}$ to 24 MHz
 - 2.4 V ≤ VDD ≤ 3.6 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V} @1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode 1.6 V ≤ VDD ≤ 3.6 V@1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- **Remark 2.** fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- **Remark 3.** file: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- **Remark 4.** fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C


AC Timing Test Points Vin/Von Vін/Vон Test points VIL/VOL VIL/VOL External System Clock Timing 1/fex 1/fexs **t**EXL tехн **t**EXLS **t**EXHS EXCLK/EXCLKS TI/TO Timing t⊤ı∟ ttiH-TI00 to TI07, TI10 to TI17 1/fто TO00 to TO07, TO10 to TO17, TKBO00, TKBO01, TKBO10, TKBO11, TKBO20, TKBO21 Interrupt Request Input Timing tintl tinth-INTP0 to INTP7

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 10, 20, 30) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(3) BC option standard

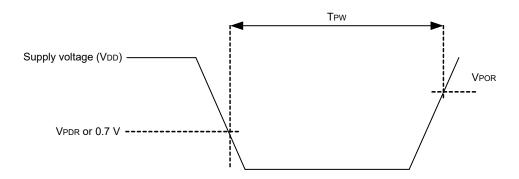
(TA = -40 to +85°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6 V, VSS = 0 V, HS (High-speed main) mode only)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit			
UDP/UDM input reference	VDSELi [3: 0]	0000	VDDET0		27	32	37	%UVBUS		
voltage	(i = 0, 1)	0001	VDDET1		29	34	39	%UVBUS		
(UVBUS divider ratio)		0010	VDDET2		32	37	42	%UVBUS		
(Function)		0011	VDDET3		35	40	45	%UVBUS		
				0100	VDDET4		38	43	48	%UVBUS
		0101	VDDET5		41	46	51	%UVBUS		
		0110	VDDET6		44	49	54	%UVBUS		
		0111	VDDET7		47	52	57	%UVBUS		
		1000	VDDET8		51	56	61	%UVBUS		
		1001	VDDET9		55	60	65	%UVBUS		
				1010	VDDET10		59	64	69	%UVBUS
			1011	VDDET11		63	68	73	%UVBUS	
		1100	VDDET12		67	72	73	%UVBUS		
		1101	VDDET13		71	76	81	%UVBUS		
		1110	VDDET14		75	80	85	%UVBUS		
		1111	VDDET15		79	84	89	%UVBUS		

2.6.4 Comparator

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	lvref			0		Vdd - 1.4	V
	lvcmp			-0.3		VDD + 0.3	V
Output delay	elay td VDD = 3.0 V Input slew rate > 50 mV/µs		High-speed comparator mode, standard mode			1.2	μs
			High-speed comparator mode, window mode			2.0	μs
			Low-speed comparator mode, standard mode		3	5.0	μs
High-electric-potential judgment voltage	VTW+	High-speed comparator mod	de, window mode		0.76 Vdd		V
Low-electric-potential judgment voltage	VTW-	High-speed comparator mod	de, window mode		0.24 Vdd		V
Operation stabilization wait time	tCMP			100			μs
Internal reference voltage ^{Note}	Vbgr			1.38	1.45	1.50	V

$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$


Note Not usable in LS (low-speed main) mode, LV (low-voltage main) mode, sub-clock operation, or STOP mode.

2.6.5 POR circuit characteristics

(TA = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time ^{Note}	1.46	1.50	1.54	V
Minimum pulse width	TPW		300			μs

Note Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

(2) 1/4 bias method

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C4 Note 1 =	0.47 μF	2 VL1 - 0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 Note 1 =	= 0.47 μF	3 VL1 - 0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 Note 1 =	= 0.47 μF	4 VL1 - 0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C5 Note 1 =	= 0.47μF	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL3 and GND

C5: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 µF±30%

Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

2.8.3 Capacitor split method

(1) 1/3 bias method

(TA = -40 to +85°C, 2.2 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 µF Note 2		Vdd		V
VL2 voltage	VL2	C1 to C4 = 0.47 µF Note 2	2/3 VL4 - 0.1	2/3 VL4	2/3 VL4 + 0.1	V
VL1 voltage	VL1	C1 to C4 = 0.47 µF Note 2	1/3 Vl4 - 0.1	1/3 VL4	1/3 VL4 + 0.1	V
Capacitor split wait time Note 1	t∨wait		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

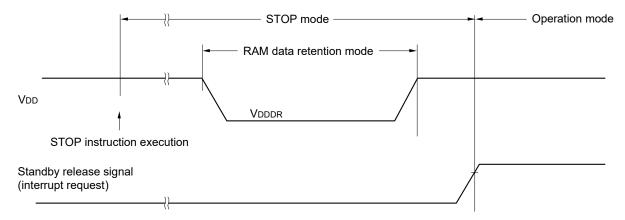
C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND

 $C1 = C2 = C3 = C4 = 0.47 \ \mu F \pm 30\%$



2.9 **RAM Data Retention Characteristics**

F	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit		
Data reter voltage	ntion supply	Vdddr		1.46 ^{Note}		3.6	V		
Note	°								

(TA = -40 to +85°C, Vss = 0 V)

level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

Flash Memory Programming Characteristics 2.10

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	f CLK	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000	000	
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

When using flash memory programmer and Renesas Electronics self programming library Note 2.

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.11 **Dedicated Flash Memory Programmer Communication (UART)**

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

<R>

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	IOL1	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143				8.5 Note 2	mA
		Per pin for P60 and P61				15.0 Note 2	mA
		Total of P40 to P46, P130 (When duty ≤ 70% ^{Note 3})	2.7 V ≤ VDD ≤ 3.6 V			15.0	mA
			2.4 V ≤ VDD < 2.7 V			9.0	mA
		Total of P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P140 to P143 (When duty \leq 70% ^{Note 3})	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			35.0	mA
			2.4 V ≤ VDD < 2.7 V			20.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				50.0	mA
	IOL2	Per pin for P150 to P156				0.4 Note 2	mA
		Total of all pins	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			2.8	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

Note 2. However, do not exceed the total current value.

<R>

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression

(when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOL \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IOL = 10.0 mA

Total output current of pins = (10.0 × 0.7)/(80 × 0.01) ≈ 8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	VI = VDD				1	μΑ
	ILIH2	P20, P21, P140 to P143	VI = VDD				1	μA
	Ілнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	ILIH4	P150 to P156	VI = AVDI			1	μA	
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	VI = VSS				-1	μA
	ILIL2	P20, P21, P140 to P143	VI = Vss			-1	μA	
	Ilil3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
	ILIL4	P150 to P156	VI = AVss				-1	μA
On-chip pull-up resistance	Ru1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P140 to P143, P125 to P127	VI = VSS	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	10	20	100	kΩ
	RU2	P40 to P46, P80 to P83	VI = VSS		10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.4 AC Characteristics

3.4.1 Basic operation

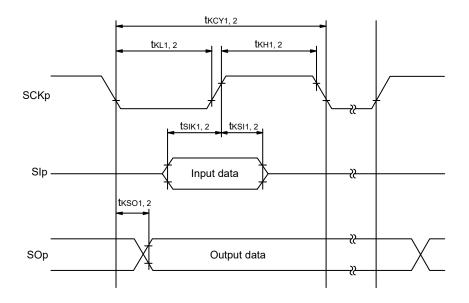
$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Symbol Conditions MIN. TYP. MAX. Unit Items Тсү HS (high-speed main) 0.0417 Instruction cycle Main system $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 1 μs (minimum instruction clock (fMAIN) mode $2.4 \text{ V} \le \text{VDD} < 2.7 \text{ V}$ 0.0625 1 μs execution time) operation Subsystem clock (fSUB) operation $2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 28.5 30.5 31.3 μs In the self-HS (high-speed main) $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 0.0417 1 μs programming mode 0.0625 2.4 V ≤ VDD < 2.7 V 1 μs mode External main system fEX 2.7 V ≤ VDD ≤ 3.6 V 1.0 20.0 MHz clock frequency 2.4 V ≤ Vpp < 2.7 V 1.0 16.0 MHz fext 32 35 kHz External main system texн, $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 24 ns clock input high-level tEXL 2.4 V ≤ VDD < 2.7 V 30 ns width, low-level width texns, 13.7 μs **t**EXLS TI00 to TI07 input 1/fмск + tтıн. ns high-level width, t⊤ı∟ 10 low-level width

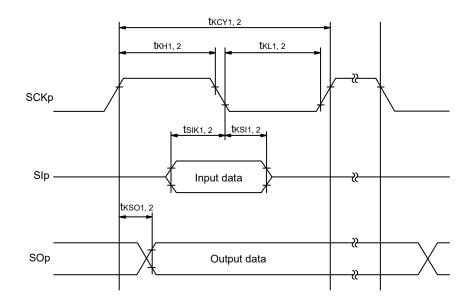
Remark fMCK: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 7))

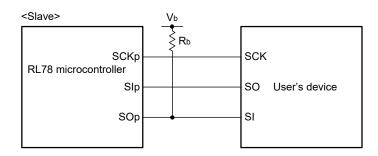
(1/2)


(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

(2/2)


,		, ,				-	()
Items	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
TO00 to TO07, TKBO00,	fто	HS (high-speed main) mode	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			8	MHz
TKBO01, TKBO10, TKBO11, TKBO20, TKBO21 output frequency			$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			8	MHz
PCLBUZ0, PCLBUZ1 output	fPCL	HS (high-speed main) mode	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			8	MHz
frequency			$2.4 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$			8	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INTP7	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	1			μs
Key interrupt input low-level width	tkr	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		250			ns
TMKB2 forced output stop input	tihr	INTP0 to INTP7	fclk > 16 MHz	125			ns
high-level width			fclk ≤ 16 MHz	2			fclk
RESET low-level width	trsl		•	10			μs

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)


CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 10, 20, 30) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

CSI mode connection diagram (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

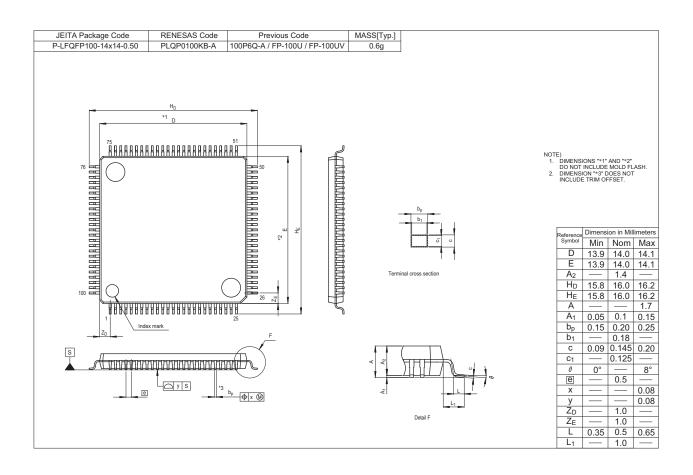
Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10, 12))

(4) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V}, \text{AVss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AVDD}, \text{Reference voltage (-)} = \text{AVss} = 0)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
Overall error Note 1	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AVDD} \leq 3.6 \text{ V}$			±8.5	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V	4.125			μs
Zero-scale error Note 1	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±8.0	LSB
Full-scale error Note 1	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AVDD} \leq 3.6 \text{ V}$			±8.0	LSB
Integral linearity error Note 1	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±3.5	LSB
Differential linearity error Note 1	DLE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±2.5	LSB
Analog input voltage	VAIN		l	0		AVdd	V
		Internal reference voltage (2.4 V \leq VDD \leq 3.6 V, HS	e (high-speed main) mode)	١	/BGR Note	2	
		Temperature sensor output voltage (2.4 V \leq VDD \leq 3.6 V, HS (high-speed main) mode)		VTMP25 Note 2			

Note 1. Excludes quantization error (±1/2 LSB).


Note 2. Refer to 3.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

4.3 100-pin products

R5F110PEAFB, R5F110PFAFB, R5F110PGAFB, R5F110PHAFB, R5F110PJAFB R5F111PEAFB, R5F111PFAFB, R5F111PGAFB, R5F111PHAFB, R5F111PJAFB R5F110PEGFB, R5F110PFGFB, R5F110PGGFB, R5F110PHGFB, R5F110PJGFB R5F111PEGFB, R5F111PFGFB, R5F111PGGFB, R5F111PHGFB, R5F111PJGFB

REVISION HISTORY

RL78/L1C Datasheet

Day	Dete		Description		
Rev.	Date	Page	Summary		
0.01	Oct 15, 2012	_	First Edition issued		
1.00 Nov 18, 2013		1, 2	Modification of 1.1 Features		
		3, 4	Modification of 1.2 Ordering Information		
		5 to 8	Modification of package type in 1.3 Pin Configuration (Top View)		
		14 to 17	Modification of vectored interrupt sources in 1.6 Outline of Functions		
		14 to 17	Modification of operating ambient temperature in 1.6 Outline of Functions		
		19 to 21	Modification of description in tables in 2.1 Absolute Maximum Ratings		
		22, 23	Modification of description in 2.2 Oscillator Characteristics		
		25 Modification of low-level output current in 2.3.1 Pin character			
		26	Modification of error of high-level input voltage conditions in 2.3.1 Pin characteristics		
		26	Modification of error of low-level input voltage conditions in 2.3.1 Pin characteristics		
		27	Modification of low-level output voltage in 2.3.1 Pin characteristics		
		28	Modification of error of internal pull-up resistor conditions in 2.3.1 Pin characteristics		
		29 to 34	Modification of 2.3.2 Supply current characteristics		
		35, 36	Modification of 2.4 AC Characteristics		
		37, 38	Addition of minimum instruction execution time during main system clock operation		
		41 to 63	Addition of LS mode and LV mode characteristics in 2.5.1 Serial array unit		
		64 to 66	Addition of LS mode and LV mode characteristics in 2.5.2 Serial interface IICA		
		67, 68	Modification of conditions in 2.5.3 USB		
		69	Addition of (3) BC option standard in 2.5.3 USB		
		70 to 75	Addition of characteristics about conversion of internal reference voltage and temperature sensor in 2.6.1 A/D converter characteristics		
		76	Addition of characteristic in 2.6.4 Comparator		
		76	Deletion of detection delay in 2.6.5 POR circuit characteristics		
		78	Modification of 2.7 Power supply voltage rising slope characteristics		
		79 to 82	Modification of 2.8 LCD Characteristics		
		83	Modification of 2.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics		
		83	Modification of 2.10 Flash Memory Programming Characteristics		
		84	Addition of 2.12 Timing Specs for Switching Modes		
		85 to 144	Addition of 3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)		
2.00	Feb 21, 2014	All	Addition of 85-pin product information		
		All	Modification from 80-pin to 80/85-pin		
		All	Modification from x = M, P to x = M, N, P		
		All	Modification from high-accuracy real-time clock to real-time clock 2		
		All	Modification from RTC to RTC2		
		1	Modification of 1.1 Features		
		3	Modification of 1.2 Ordering Information		