

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	10K × 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 11x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	85-VFLGA
Supplier Device Package	85-VFLGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f111nfala-u0

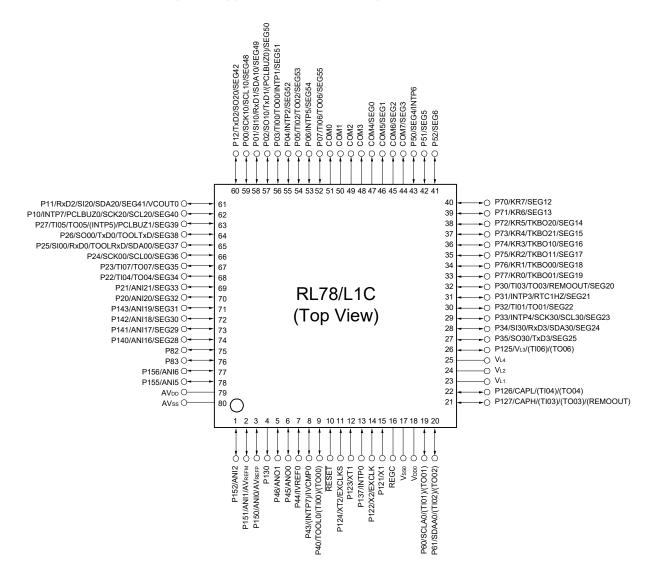
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Ordering Information

Products with USB

Pin Count	Package	Fields of Application	Orderable Part Number
80 pins	80-pin plastic LFQFP	A	R5F110MEAFB#30, R5F110MFAFB#30, R5F110MGAFB#30, R5F110MHAFB#30, R5F110MJAFB#30 R5F110MEAFB#50, R5F110MFAFB#50, R5F110MGAFB#50, R5F110MHAFB#50, R5F110MJAFB#50
	(12 × 12 mm, 0.5 mm pitch)	G	R5F110MEGFB#30, R5F110MFGFB#30, R5F110MGGFB#30, R5F110MHGFB#30, R5F110MJGFB#30 R5F110MEGFB#50, R5F110MFGFB#50, R5F110MGGFB#50, R5F110MHGFB#50, R5F110MJGFB#50
85 pins	85-pin plastic VFLGA	A	R5F110NEALA#U0, R5F110NFALA#U0, R5F110NGALA#U0, R5F110NHALA#U0, R5F110NJALA#U0 R5F110NEALA#W0, R5F110NFALA#W0, R5F110NGALA#W0, R5F110NHALA#W0, R5F110NJALA#W0
	(7 × 7 mm, 0.65 mm pitch)	G	R5F110NEGLA#U0, R5F110NFGLA#U0, R5F110NGGLA#U0, R5F110NHGLA#U0, R5F110NJGLA#U0 R5F110NEGLA#W0, R5F110NFGLA#W0, R5F110NGGLA#W0, R5F110NHGLA#W0, R5F110NJGLA#W0
100 pins	100-pin plastic LFQFP	A	R5F110PEAFB#30, R5F110PFAFB#30, R5F110PGAFB#30, R5F110PHAFB#30, R5F110PJAFB#30 R5F110PEAFB#50, R5F110PFAFB#50, R5F110PGAFB#50, R5F110PHAFB#50, R5F110PJAFB#50
	(14 × 14 mm, 0.5 mm pitch)	G	R5F110PEGFB#30, R5F110PFGFB#30, R5F110PGGFB#30, R5F110PHGFB#30, R5F110PJGFB#30 R5F110PEGFB#50, R5F110PFGFB#50, R5F110PGGFB#50, R5F110PHGFB#50, R5F110PJGFB#50


Products without USB

Pin Count	Package	Fields of Application	Orderable Part Number
80 pins	80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	A G	R5F111MEAFB#30, R5F111MFAFB#30, R5F111MGAFB#30, R5F111MHAFB#30, R5F111MJAFB#30 R5F111MEAFB#50, R5F111MFAFB#50, R5F111MGAFB#50, R5F111MHAFB#50, R5F111MJAFB#50 R5F111MEGFB#30, R5F111MFGFB#30, R5F111MGGFB#30, R5F111MHGFB#30, R5F111MJGFB#30 R5F111MEGFB#50, R5F111MFGFB#50, R5F111MGGFB#50, R5F111MHGFB#50, R5F111MJGFB#50
85 pins	85-pin plastic VFLGA (7 × 7 mm, 0.65 mm pitch)	A G	R5F111NEALA#U0, R5F111NFALA#U0, R5F111NGALA#U0, R5F111NHALA#U0, R5F111NJALA#U0 R5F111NEALA#W0, R5F111NFALA#W0, R5F111NGALA#W0, R5F111NHALA#W0, R5F111NJALA#W0 R5F111NEGLA#U0, R5F111NFGLA#U0, R5F111NGGLA#U0, R5F111NHGLA#U0, R5F111NJGLA#U0 R5F111NEGLA#W0, R5F111NFGLA#W0, R5F111NGGLA#W0, R5F111NHGLA#W0, R5F111NJGLA#W0
100 pins	100-pin plastic LFQFP (14 × 14 mm, 0.5 mm pitch)	A G	R5F111PEAFB#30, R5F111PFAFB#30, R5F111PGAFB#30, R5F111PHAFB#30, R5F111PJAFB#30 R5F111PEAFB#50, R5F111PFAFB#50, R5F111PGAFB#50, R5F111PHAFB#50, R5F111PJAFB#50 R5F111PEGFB#30, R5F111PFGFB#30, R5F111PGGFB#30, R5F111PHGFB#30, R5F111PJGFB#30 R5F111PEGFB#50, R5F111PFGFB#50, R5F111PGGFB#50, R5F111PHGFB#50, R5F111PJGFB#50

1.3.2 80-pin products (without USB)

• 80-pin plastic LFQFP (fine pitch) (12 × 12 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 µF).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

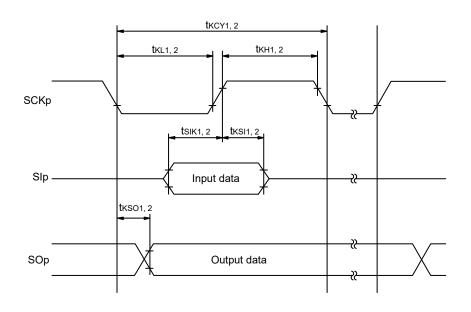
(2/2)

			,				
	Item	80/85-pin	100-pin				
	item	R5F111Mx/R5F111Nx (x = E to H, J)	R5F111Px (x = E to H, J)				
Clock output/buzzer	output	2	2				
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 M (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 k (Subsystem clock: fSUB = 32.768 kHz operation) 	Hz, 8.192 kHz, 16.384 kHz, 32.768 kHz				
8/12-bit resolution A/D converter		11 channels	13 channels				
D/A converter		2 channels	2 channels				
Comparator		1 channel	2 channels				
Serial interface		CSI: 1 channel/UART (UART supporting LIN-bi CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C:	1 channel 1 channel				
	I ² C bus	1 channel	1 channel				
LCD controller/driver		Internal voltage boosting method, capacitor split are switchable.	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.				
Segment	signal output	44 (40) ^{Note 1}	56 (52) ^{Note 1}				
Common	signal output	4 (8)	4 (8) Note 1				
Data transfer contro	ller (DTC)	30 sources	31 sources				
Event link controller	(ELC)	Event input: 30, Event trigger output: 22	Event input: 31, Event trigger output: 22				
Vectored interrupt	Internal	32	33				
sources	External	9	9				
Key interrupt		8	8				
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{No} Internal reset by RAM parity error Internal reset by illegal-memory access 	 Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note 2} Internal reset by RAM parity error 				
Power-on-reset circ	uit	Power-on-reset: 1.51 ± 0.03 V Power-down-reset: 1.50 ± 0.03 V					
Voltage detector		 Rising edge: 1.67 V to 3.13 V (12 stages) Falling edge: 1.63 V to 3.06 V (12 stages) 					
On-chip debug funct	lion	Provided					
Power supply voltag	е	VDD = 1.6 to 3.6 V (TA = -40 to +85°C) VDD = 2.4 to 3.6 V (TA = -40 to +105°C)					
Operating ambient t	emperature	TA = -40 to +85°C (A: Consumer applications), TA	A = -40 to +105°C (G: Industrial applications)				

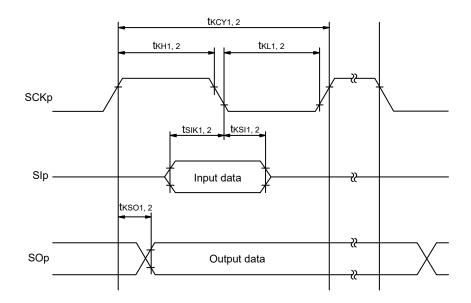
Note 1. The number in parentheses indicates the number of signal outputs when 8 coms are used.

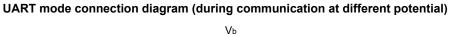
Note 2. The illegal instruction is generated when instruction code FFH is executed.

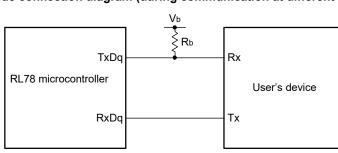
Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

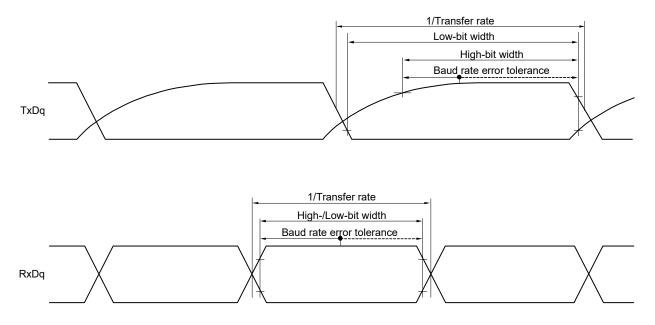

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- **Note 3.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}_{@}1 \text{ MHz}$ to 24 MHz
 - 2.4 V ≤ VDD ≤ 3.6 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V} @1 \text{ MHz}$ to 8 MHz
 - LV (low-voltage main) mode 1.6 V ≤ VDD ≤ 3.6 V@1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- **Remark 2.** fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- **Remark 3.** file: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- **Remark 4.** fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Note 1.	Current flowing to VDD.
Note 2.	When high speed on-chip oscillator and high-speed system clock are stopped.
Note 3.	Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the
	XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC,
	when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected,
	IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
Note 4.	Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and


- illator and N the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode.
- Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing to the AVDD.
- Note 8. Current flowing from the reference voltage source of A/D converter.
- Note 9. Operation current flowing to the internal reference voltage.
- Note 10 Current flowing to the AVREFP.
- Current flowing only to the D/A converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and Note 11. IDA when the D/A converter operates in an operation mode or the HALT mode.
- Note 12. Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates in the Operating, HALT or STOP mode.
- Note 13. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- Note 14. Current flowing only during self-programming.
- Note 15. Current flowing only during data flash rewrite.
- For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/L1C User's Manual. Note 16.
- Note 17. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.
- Note 18. Not including the current that flows through the external divider resistor divider resistor.
- Note 19. Current flowing to the UVBUS.
- Note 20. Including the operating current when fPLL = 48 MHz.
- Note 21. Including the current supplied from the pull-up resistor of the UDP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fCLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C


CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)


CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)


Remark 1. p: CSI number (p = 00, 10, 20, 30) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

UART mode bit width (during communication at different potential) (reference)

- Remark 1. $Rb[\Omega]$: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

RL78/L1C

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 kΩ	177		479		479		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tKSI1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↓ to SOp	tKSO1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, \text{R}_{b} = 2.7 \text{ k}\Omega$		195		195		195	ns
output ^{Note 1}		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note } 3, \\ C_b = 30 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{array}$		483		483		483	ns
SIp setup time (to SCKp↓) ^{Note 2}	tSIK1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, \text{R}_{b} = 2.7 \text{ k}\Omega$	44		110		110		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tKSI1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 kΩ	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ \mbox{Note 3}, \\ C_{b} = 30 \ p\mbox{F}, \ R_{b} = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↑ to SOp	tKSO1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		25		25		25	ns
output ^{Note 2}		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$		25		25		25	ns

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI6

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			12	bit
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1	
			$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$		8 Note 2	2	
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±2.5	
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le 3.6 \text{ V}$	3.375			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	6.75			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le 3.6 \text{ V}$	13.5			
		ADTYP = 1, 8-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	2.5625			
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	5.125			
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	±4.5		±4.5	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±1.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±1.0	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±1.5	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±1.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±1.0	
Analog input voltage	VAIN		•	0		AVREFP	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

(3) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	MIN.	TYP.	MAX.	Unit	
Resolution	Res		$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		12	bit
			1.8 V ≤ AVDD ≤ 3.6 V	8		10 Note 1	
			1.6 V ≤ AVDD ≤ 3.6 V		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±7.5	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.0	
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AVDD} \leq 3.6 \text{ V}$	3.375			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	1.8 V ≤ AVDD ≤ 3.6 V	6.75			
		ADTYP = 0, 8-bit resolution ^{Note 2}	1.6 V ≤ AVDD ≤ 3.6 V	13.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	2.5625			
		8-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V	5.125			
			1.6 V ≤ AVDD ≤ 3.6 V	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Analog input voltage	VAIN	ANI0 to ANI6	1	0		AVdd	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Absolute Maximum Ratings (TA = 25°C)

(3/3)

		,			(3/
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	ЮН1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-40	mA
		Total of all	P40 to P46	-70	mA
		pins -170 mA	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-100	mA
	Іон2	Per pin	P150 to P156	-0.1	mA
		Total of all pins		-0.7	mA
	Юнз	Per pin	UDP, UDM	-3	mA
Output current, low	IOL1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	40	mA
		Total of all	P40 to P46	70	mA
		pins 170 mA	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	100	mA
	IOL2	Per pin	P150 to P156	0.4	mA
		Total of all pins		2.8	mA
	IOL3	Per pin	UDP, UDM	3	mA
Operating ambient	ТА	In normal o	pperation mode	-40 to +105	°C
temperature		In flash me	mory programming mode	-40 to +105	
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Output voltage, high	VOH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57,	2.7 V ≤ VDD ≤ 3.6 V, IOH1 = -2.0 mA	Vdd - 0.6			V
		P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	2.4 V ≤ VDD ≤ 3.6 V, IOH1 = -1.5 mA	Vdd - 0.5			V
	Voh2	P150 to P156	2.4 V ≤ VDD ≤ 3.6 V, IOH2 = -100 μA	AVDD - 0.5			V
Output voltage, low	Vol1 P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127 P130, P140 to P143	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 3.0 mA			0.6	V	
			$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 1.5 mA			0.4	V
			$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 0.6 mA			0.4	V
	Vol2	P150 to P156	$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL2 = 400 μ A			0.4	V
	Vol3 P60, P61	P60, P61	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL3 = 3.0 mA			0.4	V
			$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL3 = 2.0 mA			0.4	V

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- **Note 3.** When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the real-time clock 2 is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- Note 7.
 Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

 HS (high-speed main) mode:
 2.7 V ≤ VDD ≤ 3.6 V@1 MHz to 24 MHz
 - $2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}@1 \text{ MHz}$ to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fill: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +105°C, 2.4 V ≤ VDD ≤ 3.6 V, VSS = 0 V)

Parameter	Symbol	Conditions		HS (high-spee	Unit	
Farameter	Symbol		Conditions		MAX.	Unit
SCKp cycle time	tKCY1	tĸcy1 ≥ fclĸ/4	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	250		ns
			$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	500		ns
SCKp high-/low-level width	tĸн1, tĸ∟1	2.7 V ≤ VDD ≤ 3.6 V		tkcy1/2 - 36		ns
		$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		tkcy1/2 - 76		ns
SIp setup time (to SCKp↑) ^{Note 1}	tSIK1	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		66		ns
		$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		133		ns
SIp hold time (from SCKp↑) Note 2	tKSI1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tKSO1	C = 30 pF Note 4			50	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)

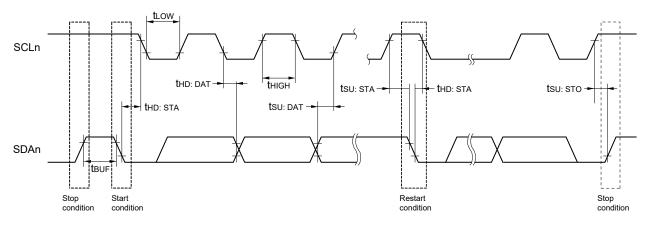
Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

3.5.2 Serial interface IICA

TA = -40 to +105°C, $2.4 V \le VDD \le 3.6 V$, Vss = 0 V)	
--	--

			H	S (high-spee	ed main) Mo	de	
Parameter	Symbol	Conditions Standard		rd mode	Fast mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fSCL	Fast mode: fCLK ≥ 3.5 MHz	—	—	0	400	kHz
		Standard mode: fc∟ĸ ≥ 1 MHz	0	100	—	—	kHz
Setup time of restart condition	tsu: sta		4.7		0.6		μs
Hold time Note 1	thd: STA		4.0		0.6		μs
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	thigh		4.0		0.6		μs
Data setup time (reception)	tsu: dat		250		100		ns
Data hold time (transmission) Note 2	thd: dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu: sto		4.0		0.6		μs
Bus-free time	tBUF		4.7		1.3		μs


Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & \mbox{Cb} = 400 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & \mbox{Cb} = 320 \mbox{ pF}, \mbox{ Rb} = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input Channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = AV _{DD} Reference voltage (-) = AV _{SS}	Reference voltage (+) = Internal reference voltage Reference voltage (-) = AVss
High-accuracy channel; ANI0 to ANI6 (input buffer power supply: AVDD)	Refer to 3.6.1 (1) .	Refer to 3.6.1 (2) .	Refer to 3.6.1 (5) .
Standard channel; ANI16 to ANI21 (input buffer power supply: VDD)	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .	
Internal reference voltage, Temperature sensor output voltage	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .	_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI6

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, VSS = 0 V, AVSS = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
Overall error Note	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	LSB
Full-scale error Note	EFS	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le 3.6 \text{ V}$			±1.5	LSB
Analog input voltage	VAIN			0		AVREFP	V

Note Excludes quantization error (±1/2 LSB).

(2) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	C	Conditions		TYP.	MAX.	Unit
Resolution	RES		$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		12	bit
Overall error Note	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±7.5	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
Full-scale error Note	EFS	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	LSB
Analog input voltage	VAIN		•	0		AVdd	V

Note Excludes quantization error (±1/2 LSB).

(5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6, ANI16 to ANI21

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, 2.4 V \leq VDD, 2.4 V \leq AVDD = VDD, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V, HS (high-speed main) mode)

• • • •		• • • • • •				, ,
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16.0			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AVREF(+)	= Internal reference voltage (VBGR)	1.38	1.45	1.5	V
Analog input voltage	VAIN		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

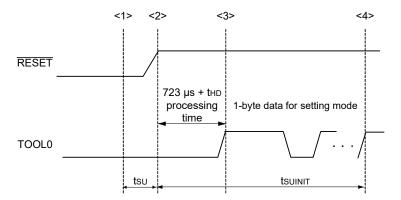
Caution Always use AVDD pin with the same potential as the VDD pin.

3.6.2 Temperature sensor, internal reference voltage output characteristics

•						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	F VTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs

(TA = -40 to +105°C, 2.4 V ≤ VDD ≤ 3.6 V, VSS = 0 V (HS (high-speed main) mode))

3.6.3 D/A converter characteristics


$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Со	MIN.	TYP.	MAX.	Unit	
Resolution	Res					8	bit
Overall error	AINL	Rload = 4 MΩ	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
		Rload = 8 MΩ	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			±2.5	LSB
Settling time	tSET	Cload = 20 pF	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			3	μs
			$2.4 \text{ V} \leq \text{VDD} \leq 2.7 \text{ V}$			6	μs

3.12 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
Time to hold the TOOL0 pin at the low level after an external reset is released (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<R>

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends.).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

- **Remark** tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - tsu: How long from when the TOOL0 pin is placed at the low level until a external reset ends
 - tHD: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (except soft processing time)

REVISION HISTORY

RL78/L1C Datasheet

Dav	Dete		Description
Rev.	Date	Page	Summary
0.01	Oct 15, 2012	_	First Edition issued
1.00	Nov 18, 2013	1, 2	Modification of 1.1 Features
		3, 4	Modification of 1.2 Ordering Information
		5 to 8	Modification of package type in 1.3 Pin Configuration (Top View)
		14 to 17	Modification of vectored interrupt sources in 1.6 Outline of Functions
		14 to 17	Modification of operating ambient temperature in 1.6 Outline of Functions
		19 to 21	Modification of description in tables in 2.1 Absolute Maximum Ratings
		22, 23	Modification of description in 2.2 Oscillator Characteristics
		25	Modification of low-level output current in 2.3.1 Pin characteristics
		26	Modification of error of high-level input voltage conditions in 2.3.1 Pin characteristics
		26	Modification of error of low-level input voltage conditions in 2.3.1 Pin characteristics
		27	Modification of low-level output voltage in 2.3.1 Pin characteristics
		28	Modification of error of internal pull-up resistor conditions in 2.3.1 Pin characteristics
		29 to 34	Modification of 2.3.2 Supply current characteristics
		35, 36	Modification of 2.4 AC Characteristics
		37, 38	Addition of minimum instruction execution time during main system clock operation
		41 to 63	Addition of LS mode and LV mode characteristics in 2.5.1 Serial array unit
		64 to 66	Addition of LS mode and LV mode characteristics in 2.5.2 Serial interface IICA
		67, 68	Modification of conditions in 2.5.3 USB
		69	Addition of (3) BC option standard in 2.5.3 USB
		70 to 75	Addition of characteristics about conversion of internal reference voltage and temperature sensor in 2.6.1 A/D converter characteristics
		76	Addition of characteristic in 2.6.4 Comparator
		76	Deletion of detection delay in 2.6.5 POR circuit characteristics
		78	Modification of 2.7 Power supply voltage rising slope characteristics
		79 to 82	Modification of 2.8 LCD Characteristics
		83	Modification of 2.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics
		83	Modification of 2.10 Flash Memory Programming Characteristics
		84	Addition of 2.12 Timing Specs for Switching Modes
		85 to 144	Addition of 3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)
2.00	Feb 21, 2014	All	Addition of 85-pin product information
		All	Modification from 80-pin to 80/85-pin
		All	Modification from $x = M, P$ to $x = M, N, P$
		All	Modification from high-accuracy real-time clock to real-time clock 2
		All	Modification from RTC to RTC2
		1	Modification of 1.1 Features
		3	Modification of 1.2 Ordering Information