

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I²C, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 11x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	85-VFLGA
Supplier Device Package	85-VFLGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f111ngala-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6 Outline of Functions

[80/85-pin,	100-pin	products	(with	USB)1
Lee. ee p,		p	·····	/1

(1/2)

Item	80/85-pin	100-pin					
	nem	R5F110Mx/R5F110Nx (x = E to H, J)	R5F110Px (x = E to H, J)				
Code flash memory	(КВ)	64 to 256	64 to 256				
Data flash memory (KB)	8	8				
RAM (KB)		8 to 16 ^{Note 1}	8 to 16 ^{Note 1}				
Memory space		1 MB					
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main sys 1 to 20 MHz: VDD = 2.7 to 3.6 V, 1 to 8 MHz: VD	tem clock input (EXCLK) ד = 1.8 to 2.7 V, 1 to 4 MHz: VDD = 1.6 to 1.8 V				
	High-speed on-chip oscillator clock	HS (high-speed main) operation mode: 1 to 24 MI HS (high-speed main) operation mode: 1 to 16 MI LS (low-speed main) operation mode: 1 to 8 MHz LV (low-voltage main) operation mode: 1 to 4 MHz	Hz (VDD = 2.7 to 3.6 V), Hz (VDD = 2.4 to 3.6 V), (VDD = 1.8 to 3.6 V), z (VDD = 1.6 to 3.6 V)				
	PLL clock	6, 12, 24 MHz ^{Note 2} : VDD = 2.4 to 3.6 V					
Subsystem clock		XT1 (crystal) oscillation, external subsystem clock 32.768 kHz (TYP.): VDD = 1.6 to 3.6 V	< input (EXCLKS)				
Low-speed on-chip oscillator clock		15 kHz (TYP.): VDD = 1.6 to 3.6 V					
General-purpose reg	jister	8 bits × 32 registers (8 bits × 8 registers × 4 banks	s)				
Minimum instruction execution time		0.04167 µs (High-speed on-chip oscillator clock: f	носо = fiн = 24 MHz operation)				
		0.04167 µs (PLL clock: fPLL = 48 MHz/fiH = 24 MH	Iz Note 2 operation)				
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)					
		30.5 μs (Subsystem clock: fsuв = 32.768 kHz operation)					
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 					
I/O port	Total	59	77				
	CMOS I/O	51	69				
	CMOS input	5	5				
	CMOS output	1	1				
	N-ch open-drain I/O (6 V tolerance)	2	2				
Timer	16-bit timer TAU	8 channels (with 1 channel remote control output t	function) (Timer outputs: 8, PWM outputs: 7 ^{Note 3})				
	16-bit timer KB2	3 channels (PWM outputs: 6)					
	Watchdog timer	1 channel					
	12-bit interval timer	1 channel					
	Real-time clock 2	1 channel					
	RTC output	1 1 Hz (subsystem clock: fs∪в = 32.768 kHz)					

Note 1. In the case of the 16 KB, this is about 15 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/L1C User's Manual).

Note 2. In the PLL clock 48 MHz operation, the system clock is 2/4/8 dividing ratio.

Note 3. The number of outputs varies, depending on the setting of channels in use and the number of the master.

2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)

This chapter describes the electrical specifications for the products A: Consumer applications (TA = -40 to +85°C) and G: Industrial applications (when used in the range of TA = -40 to +85°C).

- Caution 1. The RL78 microcontroller has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L1C User's Manual.

2.2 Oscillator Characteristics

2.2.1 X1 and XT1 oscillator characteristics

$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx)	Ceramic resonator/crystal resonator	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	1.0		20.0	MHz
Note		2.4 V ≤ VDD < 2.7 V	1.0		16.0	
		1.8 V ≤ VDD < 2.4 V	1.0		8.0	
		1.6 V ≤ VDD < 1.8 V	1.0		4.0	
XT1 clock oscillation frequency	Crystal resonator		32	32.768	35	kHz
(fxT) Note						

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/L1C User's Manual.

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Юн1	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143				-10.0 Note 2	mA
		Total of P00 to P07, P10 to P17, P20 to P27,P30 to P37, P40 to P46, P50 to P57,P70 to P77, P80 to P83, P125 to P127, P130,P140 to P143(When duty \leq 70% Note 3)	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			-15.0	mA
			1.8 V ≤ VDD < 2.7 V			-7.0	mA
			1.6 V ≤ VDD < 1.8 V			-3.0	mA
	Юн2	Per pin for P150 to P156	1.6 V ≤ VDD ≤ 3.6 V			-0.1 Note 2	mA
		Total of all pins	$1.6 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			-0.7	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

Note 2. However, do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = (-10.0 × 0.7)/(80 × 0.01) ≈ -8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

<R>

<R>

Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)

Supply voltage VDD [V]

AC Timing Test Points Vin/Von Vін/Vон Test points VIL/VOL VIL/VOL External System Clock Timing 1/fex 1/fexs texl tехн **t**EXLS **t**EXHS EXCLK/EXCLKS TI/TO Timing t⊤ı∟ ttiH-TI00 to TI07, TI10 to TI17 1/fто TO00 to TO07, TO10 to TO17, TKBO00, TKBO01, TKBO10, TKBO11, TKBO20, TKBO21 Interrupt Request Input Timing tintl tinth-INTP0 to INTP7

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SCKp cycle	tKCY2	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V},$	20 MHz < fмск ≤ 24 MHz	16/fмск		—		—		ns
time Note 1		2.3 V ≤ Vb ≤ 2.7 V	16 MHz < fмск ≤ 20 MHz	14/fмск		—		—		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		—		—		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/fмск		—		ns
			fмск ≤4 MHz	6/fмск		10/fмск		10/fмск		ns
		$1.8 \text{ V} \leq \text{VDD} < 3.3 \text{ V},$	20 MHz < fмск ≤ 24 MHz	36/fмск		—		—		ns
		1.6 V ≤ Vb ≤ 2.0 V Note 2	16 MHz < fмск ≤ 20 MHz	32/fмск		—		—		ns
			8 MHz < fмск ≤ 16 MHz	26/fмск		—		-		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		16/fмск		—		ns
			fмск ≤4 MHz	10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level width	tкн2, tкL2	tkH2, $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ tkL2		tксү2/2 - 18		tксү2/2 - 50		tксү2/2 - 50		ns
		1.8 V \leq VDD $<$ 3.3 V, 1.6 V \leq Vb \leq 2.0 V $^{Note~2}$		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑)	tsik2	2.7 V ≤ VDD ≤ 3.6 V		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
Note 3		1.8 V ≤ VDD < 3.3 V		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) _{Note 4}	tKSI2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp	tKSO2	2.7 V ≤ VDD ≤ 3.6 V, 2.3 \ Cb = 30 pF, Rb = 2.7 kΩ	/ ≤ Vb ≤ 2.7 V		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
output Note 5		1.8 V ≤ VDD < 3.3 V, 1.6 V Cb = 30 pF, Rb = 5.5 kΩ		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns	

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Note 2. Use it with $VDD \ge Vb$.

- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

$T_{\Delta} = -40$ to $+85^{\circ}C_{\odot}$	$1.8 V \le V \square S \le 3.6 V$, VSS = 0 V)	

Parameter Symbol		Conditions	HS (high-speed main) Mode		LS (low-sp Mo	eed main) de	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fSCL	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_{b} < 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} < 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, \text{R}_{b} = 2.7 \text{ k}_{\Omega}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{array}{l} 1.8 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; ^{Note \; 2}, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		400 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr	tLOW	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} < 2.7 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	475		1550		1550		ns
= "L"	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < \!\!2.7 \; V, \\ \mathrm{C}_{b} = 100 \; pF, \; R_{b} = 2.7 \; k_{\Omega} \end{array}$	1150		1550		1550		ns	
		$\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V} \ ^{\text{Note 2}}, \\ \text{Cb} = 100 \ \text{pF}, \ \text{Rb} = 5.5 \ \text{k}\Omega \end{array}$	1550		1550		1550		ns
Hold time tHIGH when SCLr = "H"	thigh	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ \mathrm{C}_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	200		610		610		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ \mathrm{C}_{b} = 100 \; pF, \; R_{b} = 2.7 \; k_{\Omega} \end{array}$	600		610		610		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	610		610		610		ns
Data setup time	tsu:dat	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_{b} < 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	1/fмск + 135 ^{Note 3}		1/fмск + 190 ^{Note 3}		1/fмск + 190 ^{Note 3}		ns
(reception)		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ \mathrm{Cb} = 100 \; pF, \; Rb = 2.7 \; k\Omega \end{array}$	1/fмск + 190 ^{Note 3}		1/fмск + 190 ^{Note 3}		1/fмск + 190 ^{Note 3}		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1/fмск + 190 ^{Note 3}		1/fмск + 190 ^{Note 3}		1/fмск + 190 ^{Note 3}		ns
Data hold time	thd:dat	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ \mathrm{C}_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
(transmission)		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} < 2.7 \text{ V},$ Cb = 100 pF, Rb = 2.7 kΩ	0	355	0	355	0	355	ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0	405	0	405	0	405	ns

Note 1. The value must be equal to or less than fMCK/4.

Note 2. Use it with $VDD \ge Vb$.

Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(2) I²C fast mode

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fscl	Fast mode: 2.7 V ≤ VDD ≤ 3.6 V		0	400	0	400	0	400	kHz
frequency		fc∟k ≥ 3.5 MHz	1.8 V ≤ VDD ≤ 3.6 V	0	400	0	400	0	400	kHz
Setup time of restart	tsu: sta	$2.7 \text{ V} \leq \text{VDD} \leq 3.$	6 V	0.6		0.6		0.6		μs
condition		$1.8 \text{ V} \leq \text{VDD} \leq 3.$	6 V	0.6		0.6		0.6		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq \text{VDD} \leq 3.$	6 V	0.6		0.6		0.6		μs
		1.8 V ≤ VDD ≤ 3.6 V		0.6		0.6		0.6		μs
Hold time when	tlow	$2.7 \text{ V} \leq \text{VDD} \leq 3.$	1.3		1.3		1.3		μs	
SCLA0 = "L"		$1.8 \text{ V} \leq \text{VDD} \leq 3.$	6 V	1.3		1.3		1.3		μs
Hold time when	thigh	$2.7 \text{ V} \leq \text{VDD} \leq 3.$.7 V ≤ VDD ≤ 3.6 V			0.6		0.6		μs
SCLA0 = "H"		$1.8 \text{ V} \le \text{Vdd} \le 3.6 \text{ V}$		0.6		0.6		0.6		μs
Data setup time	tsu: DAT	2.7 V ≤ VDD ≤ 3.6 V		100		100		100		ns
(reception)		1.8 V ≤ VDD ≤ 3.6 V		100		100		100		ns
Data hold time	thd: dat	$2.7 \text{ V} \leq \text{VDD} \leq 3.$	6 V	0	0.9	0	0.9	0	0.9	μs
(transmission) Note 2		$1.8 \text{ V} \leq \text{VDD} \leq 3.$	6 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop	tsu: sto	$2.7 \text{ V} \leq \text{VDD} \leq 3.$	6 V	0.6		0.6		0.6		μs
condition		$1.8 \text{ V} \leq \text{VDD} \leq 3.$	6 V	0.6		0.6		0.6		μs
Bus-free time	tBUF	$2.7 V \leq VDD \leq 3.$	6 V	1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq \text{VDD} \leq 3.$	6 V	1.3		1.3		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: Cb = 320 pF, Rb = 1.1 k Ω

2.5.3 USB

(1) Electrical specifications

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V, HS (High-speed main) mode only)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Uregc	UREGC output voltage characteristic	Uregc	UVBUS = 4.0 to 5.5 V, PXXCON = VDDUSBE = 1	3.0	3.3	3.6	V
UVBUS	UVBUS input voltage characteristic	UVBUS	Function	4.35 (4.02 ^{Note})	5.00	5.25	V

Note Value of instantaneous voltage

(TA = -40 to +85°C, 4.35 V ≤ UVBUS ≤ 5.25 V, 2.4 V ≤ VDD ≤ 3.6 V, VSS = 0 V, HS (High-speed main) mode only)

	Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Input voltaç	je	Vih		2.0			V
characteristic			VIL				0.8	V
(FS/LS receiver)	Difference sensitivity	Difference input sensitivity		UDP voltage - UDM voltage	0.2			V
	Difference common mode range		Vсм		0.8		2.5	V
Output	Output voltage		Vон	Іон = -200 μА	2.8		3.6	V
characteristic			Vol	IOL = 2 mA	0		0.3	V
(FS driver)	Transition	Rising	tFR	Rising: From 10% to 90% of amplitude,	4		20	ns
	time	Falling	tFF	Falling: From 90% to 10% of amplitude,			20	ns
	Matching (TFR/TFF)		VFRFM	- CL = 50 pF			111.1	%
	Crossover	Crossover voltage					2.0	V
(Output Imp	Output Impedance			28		44	Ω
Output (Output voltage		Vон		2.8		3.6	V
characteristic			Vol		0		0.3	V
(LS driver)	Transition	Rising	tLR	Rising: From 10% to 90% of amplitude,	75		300	ns
	time	Falling	t∟F	Falling: From 90% to 10% of amplitude,	75		300	ns
	Matching (TFR/TFF)	VLTFM	- CL = 250 pF to 750 pF			125	%
	Crossover	voltage ^{Note}	VLCRS	down via 15 k Ω	1.3		2.0	V
Pull-up,	Pull-down i	resistor	Rpd		14.25		24.80	kΩ
Pull-down	Pull-up	Idle	Rpui		0.9		1.575	kΩ
	resistor	Reception	Rpua		1.425		3.09	kΩ
UVBUS	UVBUS pull resistor	-down	Rvbus	UVBUS voltage = 5.5 V		1000		kΩ
	UVBUS inpu	ut voltage	VIH		3.20			V
			VIL				0.8	V

Note Excludes the first signal transition from the idle state.

(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI6

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	8		12	bit
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1	
			$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$		8 Note 2	2	
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±2.5	
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le 3.6 \text{ V}$	3.375			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le 3.6 \text{ V}$	6.75			
		ADTYP = 0, 8-bit resolution Note 2	$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	13.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	2.5625			
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	5.125			
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±1.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±1.0	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±1.5	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±1.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±1.0	
Analog input voltage	VAIN		•	0		AVREFP	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(3) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AVDD} \le 3.6 \text{ V}$	8		12	bit
			1.8 V ≤ AVDD ≤ 3.6 V	8		10 Note 1	
			1.6 V ≤ AVDD ≤ 3.6 V		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±7.5	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.0	
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V	3.375			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	1.8 V ≤ AVDD ≤ 3.6 V	6.75			
		ADTYP = 0, 8-bit resolution ^{Note 2}	1.6 V ≤ AVDD ≤ 3.6 V	13.5			
		ADTYP = 1,	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$	2.5625			
		8-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V	5.125			
			1.6 V ≤ AVDD ≤ 3.6 V	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5	
Full-scale error Note 3	EFS	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AVDD} \le 3.6 \text{ V}$			±3.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AVDD} \le 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Analog input voltage	VAIN	ANI0 to ANI6	•	0		AVdd	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	VI = VDD				1	μA
	ILIH2	P20, P21, P140 to P143	VI = VDD				1	μA
	Ilih3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	ILIH4	P150 to P156	VI = AVDI)			1	μA
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	VI = VSS				-1	μΑ
	ILIL2	P20, P21, P140 to P143	VI = Vss				-1	μA
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
	ILIL4	P150 to P156	VI = AVss	5			-1	μA
On-chip pull-up resistance	RU1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P140 to P143, P125 to P127	VI = VSS	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	10	20	100	kΩ
	RU2	P40 to P46, P80 to P83	VI = Vss		10	20	100	kΩ

(TA = -40 to +105°C, 2	$2.4 V \leq AVDD = VDD \leq$	3.6 V, Vss = 0 V)
------------------------	------------------------------	-------------------

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.4 AC Characteristics

3.4.1 Basic operation

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Symbol Conditions MIN. TYP. MAX. Unit Items Тсү HS (high-speed main) 0.0417 Instruction cycle Main system $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 1 μs (minimum instruction clock (fMAIN) mode $2.4 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$ 0.0625 1 μs execution time) operation Subsystem clock (fSUB) operation $2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 28.5 30.5 31.3 μs In the self-HS (high-speed main) $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 0.0417 1 μs programming mode 0.0625 2.4 V ≤ VDD < 2.7 V 1 μs mode External main system fEX 2.7 V ≤ VDD ≤ 3.6 V 1.0 20.0 MHz clock frequency 2.4 V ≤ Vpp < 2.7 V 1.0 16.0 MHz fext 32 35 kHz External main system texн, $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ 24 ns clock input high-level **t**EXL 2.4 V ≤ VDD < 2.7 V 30 ns width, low-level width texns, 13.7 μs **t**EXLS TI00 to TI07 input 1/fмск + tтıн. ns high-level width, t⊤ı∟ 10 low-level width

Remark fMCK: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 7))

(1/2)

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

(2/2)

Items	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
TO00 to TO07, TKBO00,	fто	HS (high-speed main) mode	2.7 V ≤ VDD ≤ 3.6 V			8	MHz
TKBO01, TKBO10, TKBO11,			2.4 V ≤ VDD < 2.7 V			8	MHz
TKBO20, TKBO21							
output frequency							
PCLBUZ0, PCLBUZ1 output	fPCL	HS (high-speed main) mode	2.7 V ≤ VDD ≤ 3.6 V			8	MHz
frequency			$2.4 \text{ V} \leq \text{VDD} \leq 2.7 \text{ V}$			8	MHz
Interrupt input high-level width,	tinth,	INTP0 to INTP7	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	1			μs
low-level width	tintl						
Key interrupt input low-level	tĸĸ	2.4 V ≤ VDD ≤ 3.6 V	·	250			ns
width							
TMKB2 forced output stop input	tihr	INTP0 to INTP7	fclк > 16 MHz	125			ns
high-level width			fclk ≤ 16 MHz	2			fclk
RESET low-level width	tRSL			10			μs

(5) Communication at different potential (1.8 V, 2.5V) (UART mode) $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \le VDD \le 3.6 \text{ V}, \text{ Vss} = 0 \text{ V})$

(2/2)

Parameter S	Symbol		Conditions		HS (high-	Unit	
		Conditions	MIN.	MAX.	Onit		
Transfer rate Note 2		Transmission	2.7 2.3	$V \le V_{DD} \le 3.6 V$, $V \le V_b \le 2.7 V$		Note 1	bps
				Theoretical value of the maximum transfer rate Cb = 50 pF, Rb = 2.7 k\Omega, Vb = 2.3 V		1.2 Note 2	Mbps
			1.8 1.6	$V \le V_{DD} < 3.3 V,$ $V \le V_b \le 2.0 V$		Notes 3, 4	bps
	Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 kΩ, V_b = 1.6 V		0.43 Note 5	Mbps			

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq VDD < 3.6 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

1

Baud rate error

$$\frac{1}{\text{Transfer rate } \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- Note 3. Use it with $VDD \ge Vb$.
- Note 4. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer ra

ate =
$$\frac{1.5}{(-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})) \times 3}$$

1

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate } \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions	HS (high-s Mo	Unit	
			MIN.	MAX.	
Slp setup time (to SCKp↑) ^{Note 1}	tSIK1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	354		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_{b} \leq 2.0 \; V \; ^{Note \; 3}, \\ C_{b} = 30 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$	958		ns
SIp hold time (from SCKp↑) Note 1	tKSI1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V , \; 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 3}, \\ C_b = 30 \; pF , \; R_b = 5.5 \; k\Omega \end{array}$	38		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tKSO1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$		390	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$		966	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	88		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_{b} \leq 2.0 \; V \; ^{Note \; 3}, \\ C_{b} = 30 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$	220		ns
SIp hold time (from SCKp↓) ^{Note 2}	tKSI1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V , \; 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 3}, \\ C_b = 30 \; pF , \; R_b = 5.5 \; k\Omega \end{array}$	38		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tKSO1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$		50	ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$		50	ns

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(2/2)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

3.8 LCD Characteristics

3.8.1 Resistance division method

(1) Static display mode

$(TA = -40 \text{ to } +105^{\circ}C, VL4 \text{ (MIN.)} \le VDD \le 3.6 \text{ V}, VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

$(TA = -40 \text{ to } +105^{\circ}C, VL4 \text{ (MIN.)} \le VDD \le 3.6 \text{ V}, VSS = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

(TA = -40 to +105°C, VL4 (MIN.) \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

4.3 100-pin products

R5F110PEAFB, R5F110PFAFB, R5F110PGAFB, R5F110PHAFB, R5F110PJAFB R5F111PEAFB, R5F111PFAFB, R5F111PGAFB, R5F111PHAFB, R5F111PJAFB R5F110PEGFB, R5F110PFGFB, R5F110PGGFB, R5F110PHGFB, R5F110PJGFB R5F111PEGFB, R5F111PFGFB, R5F111PGGFB, R5F111PHGFB, R5F111PJGFB

