

Welcome to **E-XFL.COM**

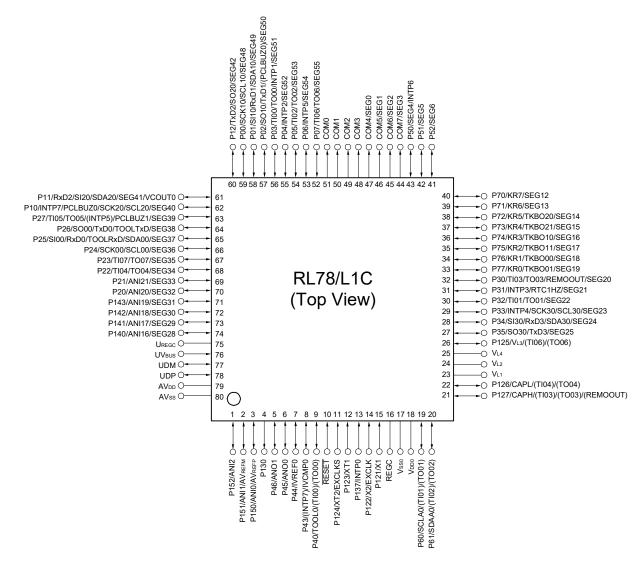
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

-	
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 11x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	85-VFLGA
Supplier Device Package	85-VFLGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f111nhala-u0

Email: info@E-XFL.COM

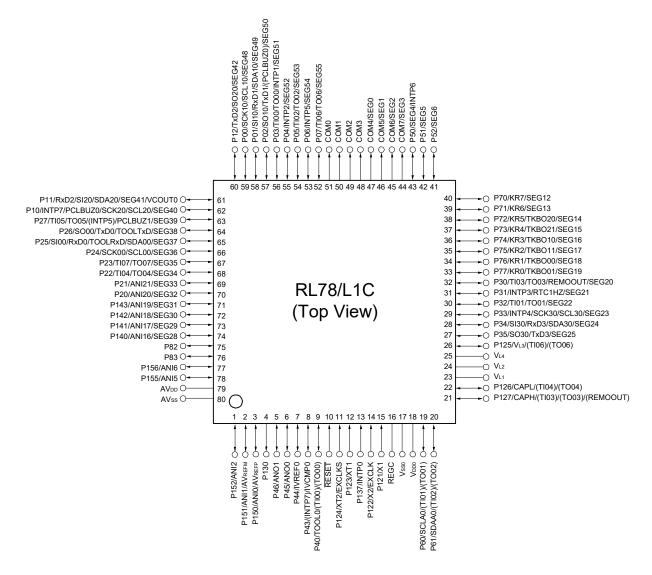

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/L1C 1. OUTLINE

1.3 Pin Configuration (Top View)

1.3.1 80-pin products (with USB)

• 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)



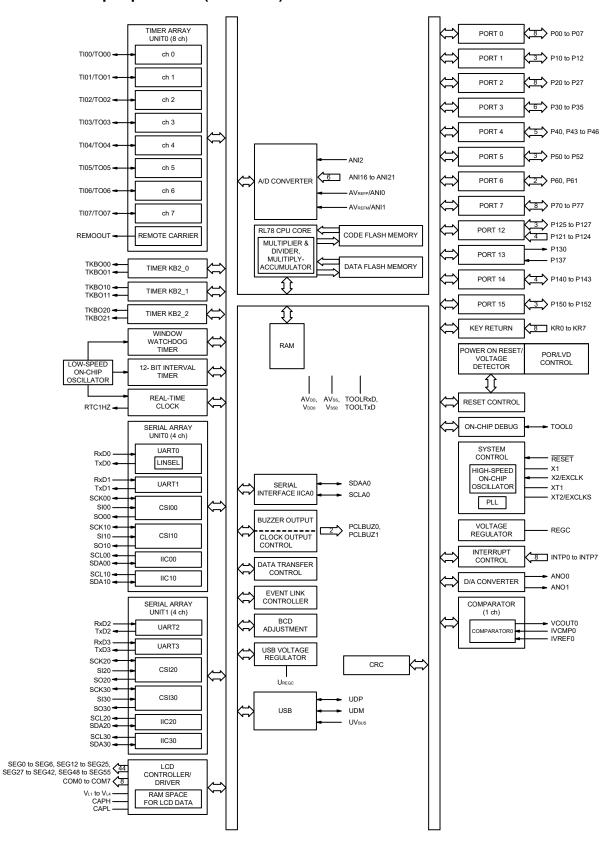
- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Caution 2. Connect the UREGC pin to Vss pin via a capacitor (0.33 µF).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RL78/L1C 1. OUTLINE

1.3.2 80-pin products (without USB)

• 80-pin plastic LFQFP (fine pitch) (12 × 12 mm, 0.5 mm pitch)

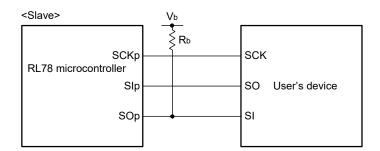
Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).


Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

RL78/L1C 1. OUTLINE

1.5 Block Diagram


1.5.1 80/85-pin products (with USB)

- Note 1. Current flowing to VDD.
- Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing to the AVDD.
- Note 8. Current flowing from the reference voltage source of A/D converter.
- **Note 9.** Operation current flowing to the internal reference voltage.
- Note 10. Current flowing to the AVREFP.
- **Note 11.** Current flowing only to the D/A converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDA when the D/A converter operates in an operation mode or the HALT mode.
- Note 12. Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates in the Operating, HALT or STOP mode.
- Note 13. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- Note 14. Current flowing only during self-programming.
- Note 15. Current flowing only during data flash rewrite.
- Note 16. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/L1C User's Manual.
- Note 17. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.
- Note 18. Not including the current that flows through the external divider resistor divider resistor.
- Note 19. Current flowing to the UVBUS.
- **Note 20.** Including the operating current when fPLL = 48 MHz.
- Note 21. Including the current supplied from the pull-up resistor of the UDP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fclk: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10, 12))

2.5.2 Serial interface IICA

(1) I²C standard mode

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{Vdd} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter Symbol		Conditions			HS (high-speed main) Mode		peed main) ode	,	oltage main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fSCL	Standard mode:	2.7 V ≤ VDD ≤ 3.6 V	0	100	0	100	0	100	kHz
frequency		fclk ≥ 1 MHz	1.8 V ≤ VDD ≤ 3.6 V	_	_	0	100	0	100	kHz
			1.6 V ≤ VDD ≤ 3.6 V	_	_	_	_	0	100	kHz
Setup time of	tsu: sta	2.7 V ≤ VDD ≤ 3.6	V	4.7		4.7		4.7		μs
restart condition	1.8 V ≤ VDD ≤ 3.6	5 V	_	_	4.7		4.7		μs	
		1.6 V ≤ VDD ≤ 3.6	5 V	_	_	-	_	4.7		μs
Hold time Note 1	thd: Sta	2.7 V ≤ VDD ≤ 3.6	5 V	4.0		4.0		4.0		μs
	1.8 V ≤ VDD ≤ 3.6	5 V	_	_	4.0		4.0		μs	
		1.6 V ≤ VDD ≤ 3.6 V		-	_	-	_	4.0		μs
Hold time when tLow		2.7 V ≤ VDD ≤ 3.6 V		4.7		4.7		4.7		μs
SCLA0 = "L"		1.8 V ≤ VDD ≤ 3.6 V		-	_	4.7		4.7		μs
		1.6 V ≤ VDD ≤ 3.6	S V	-	_	-	_	4.7		μs
Hold time when			S V	4.0		4.0		4.0		μs
SCLA0 = "H"		1.8 V ≤ VDD ≤ 3.6 V		-	_	4.0		4.0		μs
		1.6 V ≤ VDD ≤ 3.6	S V	_		-	_	4.0		μs
Data setup time	tsu: dat	2.7 V ≤ VDD ≤ 3.6 V		250		250		250		ns
(reception)		1.8 V ≤ VDD ≤ 3.6 V		_		250		250		ns
		1.6 V ≤ VDD ≤ 3.6	S V	_		_		250		ns
Data hold time	thd: dat	2.7 V ≤ VDD ≤ 3.6	S V	0	3.45	0	3.45	0	3.45	μs
(transmission) Note 2		1.8 V ≤ VDD ≤ 3.6	S V	_	_	0	3.45	0	3.45	μs
		1.6 V ≤ VDD ≤ 3.6	S V	_	_	_	_	0	3.45	μs
Setup time of stop	tsu: sto	2.7 V ≤ VDD ≤ 3.6	S V	4.0		4.0		4.0		μs
condition		1.8 V ≤ VDD ≤ 3.6	S V	-	_	4.0		4.0		μs
		1.6 V ≤ VDD ≤ 3.6 V		-		_		4.0		μs
Bus-free time	tBUF	2.7 V ≤ VDD ≤ 3.6	S V	4.7		4.7		4.7		μs
		1.8 V ≤ VDD ≤ 3.6	S V	-	_	4.7		4.7		μs
		1.6 V ≤ VDD ≤ 3.6	5 V	_	_	_	_	4.7		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω

(3) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVSS (ADREFM = 0), conversion target: ANI0 to ANI6

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Cor	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		2.4 V ≤ AVDD ≤ 3.6 V	8		12	bit
			1.8 V ≤ AVDD ≤ 3.6 V	8		10 Note 1	
			1.6 V ≤ AVDD ≤ 3.6 V		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±7.5	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.5	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±3.0	
Conversion time	tconv	ADTYP = 0, 12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V	3.375			μs
		ADTYP = 0, 10-bit resolution Note 1	1.8 V ≤ AVDD ≤ 3.6 V	6.75			
		ADTYP = 0, 8-bit resolution Note 2	1.6 V ≤ AVDD ≤ 3.6 V	13.5			
		ADTYP = 1,	2.4 V ≤ AVDD ≤ 3.6 V	2.5625			
		8-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V	5.125			
			1.6 V ≤ AVDD ≤ 3.6 V	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±6.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5	
Full-scale error Note 3	EFS	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±6.0	LSB
		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±5.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±2.5	
Integral linearity error	ILE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±3.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Differential linearity error	DLE	12-bit resolution	2.4 V ≤ AVDD ≤ 3.6 V			±2.0	LSB
Note 3		10-bit resolution	1.8 V ≤ AVDD ≤ 3.6 V			±2.0	
		8-bit resolution	1.6 V ≤ AVDD ≤ 3.6 V			±1.5	
Analog input voltage	VAIN	ANI0 to ANI6		0		AVDD	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(6) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6, ANI16 to ANI21

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 3.6 V, 1.6 V \leq VDD, 1.6 V \leq AVDD = VDD, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		8			bit
Conversion time	tconv	8-bit resolution	16			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Reference voltage (+)	AVREF(+)	= Internal reference voltage (VBGR)	1.38	1.45	1.5	V
Analog input voltage	Vain		0		VBGR	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.2 Temperature sensor, internal reference voltage output characteristics

(TA = -40 to +85°C, 2.4 V ≤ VDD ≤ 3.6 V, Vss = 0 V (HS (high-speed main) mode))

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		10			μs

2.6.3 D/A converter characteristics

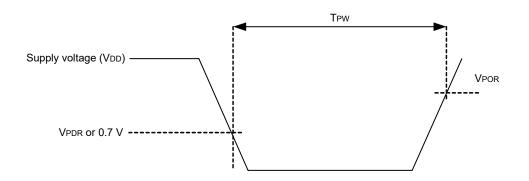
 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 MΩ	1.8 V ≤ VDD ≤ 3.6 V			±2.5	LSB
		Rload = 8 MΩ	1.8 V ≤ VDD ≤ 3.6 V			±2.5	LSB
Settling time	tset	Cload = 20 pF	2.7 V ≤ VDD ≤ 3.6 V			3	μs
			1.6 V ≤ V _{DD} < 2.7 V			6	μs

2.6.4 Comparator

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Col	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		VDD - 1.4	V
	Ivcmp			-0.3		V _{DD} + 0.3	V
Output delay	td	V _{DD} = 3.0 V Input slew rate > 50 mV/µs	nput slew rate > 50 mV/µs standard mode			1.2	μs
			High-speed comparator mode, window mode			2.0	μs
			Low-speed comparator mode, standard mode		3	5.0	μs
High-electric-potential judgment voltage	VTW+	High-speed comparator mod	de, window mode		0.76 VDD		V
Low-electric-potential judgment voltage	VTW-	High-speed comparator mod	de, window mode		0.24 VDD		V
Operation stabilization wait time	tCMP			100			μs
Internal reference voltage ^{Note}	VBGR			1.38	1.45	1.50	V


Note Stope Not usable in LS (low-speed main) mode, LV (low-voltage main) mode, sub-clock operation, or STOP mode.

2.6.5 POR circuit characteristics

(TA = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time Note	1.46	1.50	1.54	V
Minimum pulse width	Tpw		300			μs

Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

(2) 1/4 bias method

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C4 Note 1 =	= 0.47 µF	2 V _{L1} - 0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 Note 1 =	= 0.47 µF	3 V _{L1} - 0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 Note 1 = 0.47 µF		4 V _{L1} - 0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C5 Note 1 =	= 0.47µF	500			ms

- Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between VL1 and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between VL3 and GND
 - C5: A capacitor connected between VL4 and GND
 - $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$
- **Note 2.** This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

2.8.3 Capacitor split method

(1) 1/3 bias method

 $(TA = -40 \text{ to } +85^{\circ}C, 2.2 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 µF Note 2		VDD		V
VL2 voltage	VL2	C1 to C4 = 0.47 µF Note 2	2/3 VL4 - 0.1	2/3 VL4	2/3 V _{L4} + 0.1	V
VL1 voltage	VL1	C1 to C4 = 0.47 µF Note 2	1/3 VL4 - 0.1	1/3 VL4	1/3 VL4 + 0.1	V
Capacitor split wait time Note 1	tvwait		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND

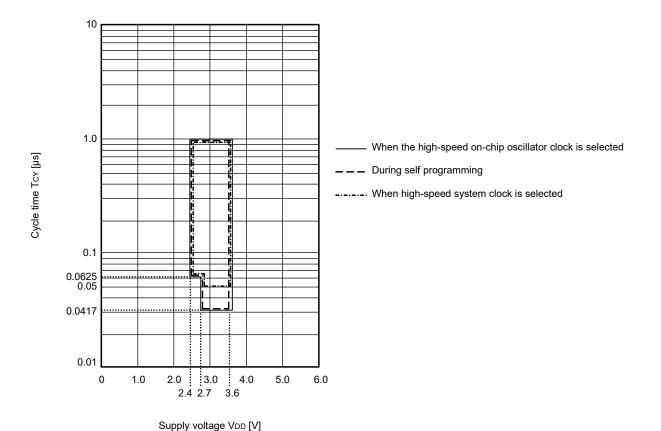
 $C1 = C2 = C3 = C4 = 0.47 \mu F \pm 30\%$

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- **Note 2.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

 HS (high-speed main) mode: 2.7 V ≤ VDD ≤ 3.6 V@1 MHz to 24 MHz

 2.4 V ≤ VDD ≤ 3.6 V@1 MHz to 16 MHz
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fin: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)


Parameter	Symbol	<u> </u>	Condition	ne		MIN.	TYP.	MAX.	Unit
Low-speed	Symbol IFIL Note 1		Conditio	פות		IVIIIN.	0.20	IVIAA.	
on-chip oscillator operating current	IEIT More I						0.20		μA
RTC2 operating current	IRTC Notes 1, 3						0.02		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 4						0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fiL = 15 kHz					0.22		μA
A/D converter operating current	IADC Notes 6, 7	AVDD = 3.0 V, when conversion at maximum speed					422	720	μA
AVREF (+) current	IAVREF Note 8	AVDD = 3.0 V, ADF	REFP1 = 0, ADREFP0 =	0 Note 7			14.0	25.0	μA
		AVREFP = 3.0 V, AI	DREFP1 = 0, ADREFP0	= 1 Note 10			14.0	25.0	
		ADREFP1 = 1, AD	REFP0 = 0 Note 1				14.0	25.0	
A/D converter reference voltage current	IADREF Notes 1, 9	VDD = 3.0 V	/DD = 3.0 V				75.0		μА
Temperature sensor operating current	ITMPS Note 1						78		μΑ
D/A converter operating current	IDAC Notes 1, 11	Per D/A converter channel					0.53	1.5	mA
Comparator	ICMP	V _{DD} = 3.6 V, Window mode					12.5		μΑ
operating current	Notes 1, 12	Regulator output voltage = 2.1 V	Comparator high-spee	ed mode			4.5		μΑ
		_	Comparator low-speed	d mode			1.2		μA
LVD operating current	ILVD Notes 1, 13						0.06		μA
Self-programming operating current	IFSP Notes 1, 14						2.50	12.20	mA
BGO operating current	IBGO Notes 1, 15						1.68	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performe	d Note 16			0.34	1.10	mA
operating current			The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V					2.04	
		CSI/UART operation	on				0.70	1.54	mA
LCD operating current	ILCD1 Notes 17, 18	External resistance division method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.6 V, LV4 = 3.6 V		0.14		μА
	ILCD2 Note 17	Internal voltage boosting method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, LV4 = 3.0 V (VLCD = 04H)		0.61		μА
	ILCD3 Note 17	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, LV4 = 3.0 V		0.12		μA
USB current	IUSB Note 20	Operating current during USB communication					4.88		mA
Note 19	IUSB Note 21	Operating current i	Operating current in the USB suspended state				0.04		mA

(Notes and Remarks are listed on the next page.)



Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs VDD (HS (high-speed main) mode)

3.5 Peripheral Functions Characteristics

3.5.1 Serial array unit

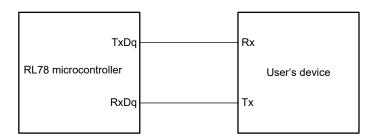
(1) During communication at same potential (UART mode)

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter Svr	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit	
Farameter	Symbol	Conditions	MIN.	MAX.	Offic	
Transfer rate Note 1		2.4 V ≤ VDD ≤ 3.6 V		fMCK/12 Note 2	bps	
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		2.0	Mbps	

- Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
- Note 2. The following conditions are required for low voltage interface.

 $2.4 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$: MAX. 1.3 Mbps


Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

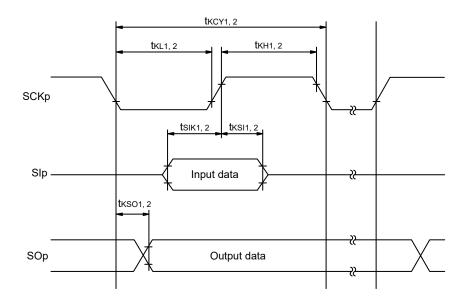
HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V)

16 MHz $(2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V})$

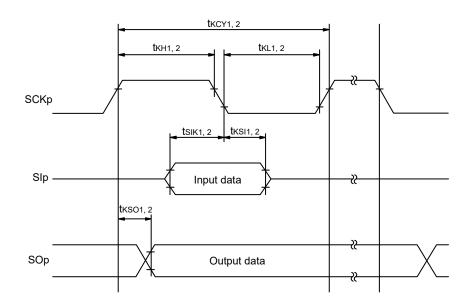
Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)


Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 2. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

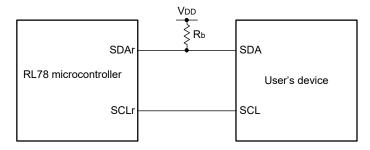
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 10, 20, 30)

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(4) During communication at same potential (simplified I²C mode)

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions	HS (high-speed	Unit	
			MIN.	MAX.	Unit
SCLr clock frequency	fscl	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ		400 Note 1	kHz
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	1200		ns
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	4600		ns
Hold time when SCLr = "H"	thigh	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	1200		ns
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	4600		ns
Data setup time (reception)	tsu: dat	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	1/fMCK + 200 Note 2		ns
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	1/fMCK + 580 Note 2		ns
Data hold time (transmission)	thd: dat	2.7 V \leq VDD \leq 3.6 V, Cb = 50 pF, Rb = 2.7 kΩ	0	770	ns
		2.4 V \leq VDD \leq 3.6 V, Cb = 100 pF, Rb = 3 kΩ	0	1420	ns

Note 1. The value must be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

(5) Communication at different potential (1.8 V, 2.5 V) (UART mode)

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter Svr	Symbol			Conditions	HS (high-speed main) Mode		Unit	
Faranietei Symbo		Conditions		MIN.	MAX.	Offic		
Transfer rate Notes 1, 2		Reception		V ≤ VDD ≤ 3.6 V, V ≤ Vb ≤ 2.7 V		fMCK/12 Note 1	bps	
					Theoretical value of the maximum transfer rate fmck = fclk Note 4		2.0	Mbps
				V ≤ VDD < 3.3 V, V ≤ Vb ≤ 2.0 V		fMCK/12 Notes 1, 2, 3	bps	
				Theoretical value of the maximum transfer rate fmck = fclk Note 4		1.3	Mbps	

- **Note 1.** Transfer rate in the SNOOZE mode is 4,800 bps only.
- Note 2. Use it with $VDD \ge Vb$.
- **Note 3.** The following conditions are required for low voltage interface.

 $2.4 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$: MAX. 2.6 Mbps

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz ($2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$)

16 MHz (2.4 V \leq VDD \leq 3.6 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- Remark 1. Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)
- Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

3.10 Flash Memory Programming Characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fCLK	2.4 V ≤ VDD ≤ 3.6 V	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°CNote 4	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°CNote 4	100,000			
		Retained for 20 years TA = 85°CNote 4	10,000			

- Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
- Note 2. When using flash memory programmer and Renesas Electronics self programming library
- **Note 3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- Note 4. This temperature is the average value at which data are retained.

3.11 Dedicated Flash Memory Programmer Communication (UART)

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.