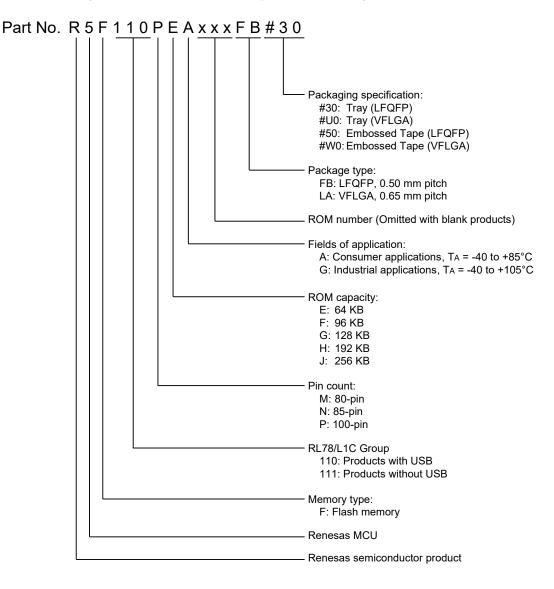
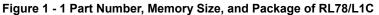


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 11x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	85-VFLGA
Supplier Device Package	85-VFLGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f111njala-w0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Caution Orderable part numbers are current as of when this manual was published. Please make sure to refer to the relevant product page on the Renesas website for the latest part numbers.

(2/2)

			(2/2)					
	ltem	80/85-pin	100-pin					
	arator I interface I 2C bus Function Controller/driver Segment signal output Common signal output transfer controller (DTC) I ink controller (ELC) red interrupt es External External I External	R5F110Mx/R5F110Nx (x = E to H, J)	R5F110Px (x = E to H, J)					
Clock output/bu	zzer output	2	2					
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 M (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 k (Subsystem clock: fSUB = 32.768 kHz operation) 	Hz, 8.192 kHz, 16.384 kHz, 32.768 kHz					
8/12-bit resoluti	on A/D converter	9 channels	13 channels					
D/A converter		2 channels	2 channels					
Comparator		1 channel	2 channels					
Serial interface		CSI: 1 channel/UART (UART supporting LIN-bu CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C:	1 channel 1 channel					
	I ² C bus	1 channel	1 channel					
USB	Function	1 cha	nnel					
LCD controller/o	driver	Internal voltage boosting method, capacitor split r are switchable.	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.					
Segr	ment signal output	44 (40) ^{Note 1}	56 (52) ^{Note 1}					
Com	imon signal output	4 (8)	4 (8) Note 1					
Data transfer co	ontroller (DTC)	32 sources	33 sources					
Event link contr	oller (ELC)	Event input: 30, Event trigger output: 22	Event input: 31, Event trigger output: 22					
Vectored interru	ipt Internal	36	37					
sources	External	9	9					
Key interrupt	•	8	8					
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Not} Internal reset by RAM parity error Internal reset by illegal-memory access	te 2					
Power-on-reset	circuit	 Power-on-reset: 1.51 ± 0.03 V Power-down-reset: 1.50 ± 0.03 V 						
Voltage detector		Rising edge: 1.67 V to 3.13 V (12 stages) Falling edge: 1.63 V to 3.06 V (12 stages)						
On-chip debug	function	Provided						
Power supply v	oltage	VDD = 1.6 to 3.6 V (TA = -40 to +85°C) VDD = 2.4 to 3.6 V (TA = -40 to +105°C)						
Operating ambi	ent temperature	TA = -40 to +85°C (A: Consumer applications), TA	A = -40 to +105°C (G: Industrial applications)					

Note 1. The number in parentheses indicates the number of signal outputs when 8 coms are used.

Note 2. The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

<R>

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
nput voltage, high	VIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	9 P37, P40 to P46, P50 to P57, 9 P77, P80 to P83, P125 to P127,			Vdd	V
	VIH2	P00, P01, P10, P11, P24, P25, P33, P34, P43, P44	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	2.0		Vdd	V
	VIH1 P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143 Nor VIH2 P00, P01, P10, P11, P24, P25, P33, P34, P43, P44 TTL 3.3 VIH2 P150 to P156 VIH4 P60, P61 VIH5 P121 to P124, P137, EXCLK, EXCLKS, RES VIL1 P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143 VIL2 P00, P01, P10, P11, P24, P25, P33, P34, P43, P44 TTL	TTL input buffer 1.6 V ≤ VDD < 3.3 V	1.50		VDD	V	
	VIH3	P150 to P156	0.7 AVDD		AVdd	V	
	VIH4	P60, P61	0.7 Vdd		6.0	V	
	Vih5	P121 to P124, P137, EXCLK, EXCLKS, RESET				Vdd	V
Input voltage, low	VIL1	P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127,	Normal input buffer	0		0.2 VDD	V
Input voltage, low	VIL2					0.5	V
			TTL input buffer 1.6 V ≤ VDD < 3.3 V	0		0.32	V
	VIL3	P150 to P156		0		0.3 AVDD	V
	VIL4	P60, P61		0		0.3 Vdd	V
Input voltage, low	VIL5	P121 to P124, P137, EXCLK, EXCLKS,	RESET	0		0.2 Vdd	V

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Caution The maximum value of VIH of pins P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 is VDD, even in the N-ch open-drain mode.

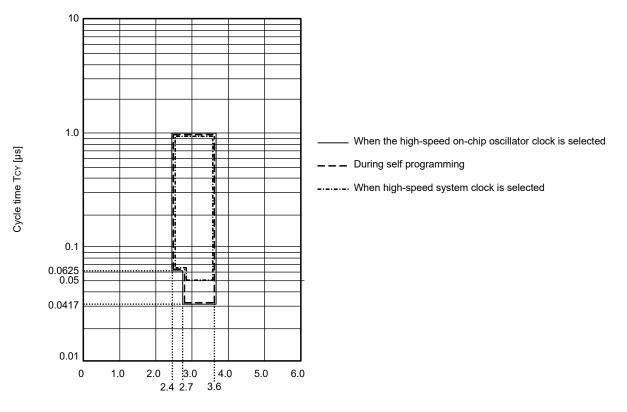
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	VI = VDD				1	μA
	ILIH2	P20, P21, P140 to P143	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	ILIH4	P150 to P156	VI = AVDI	0			1	μA
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	Vi = Vss				-1	μA
	ILIL2	P20, P21, P140 to P143	VI = Vss				-1	μA
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
	ILIL4	P150 to P156	VI = AVss	5			-1	μA
On-chip pull-up	RU1	P00 to P07, P10 to P17, P20 to P27,	VI = Vss	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	10	20	100	kΩ
resistance		P30 to P37, P50 to P57, P70 to P77, P140 to P143, P125 to P127		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.4 \text{ V}$	10	30	100	
	RU2	P40 to P46, P80 to P83	VI = Vss		10	20	100	kΩ

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 Note 3. When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.


HS (high-speed main) mode:	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}_{@}1 \text{ MHz}$ to 24 MHz
	2.4 V ≤ VDD ≤ 3.6 V@1 MHz to 16 MHz
LS (low-speed main) mode:	1.8 V ≤ VDD ≤ 3.6 V@1 MHz to 8 MHz
LV (low-voltage main) mode	1.6 V ≤ VDD ≤ 3.6 V@1 MHz to 4 MHz

- **Remark 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- **Remark 2.** fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fill: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)

Supply voltage VDD [V]

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tĸcy1 ≥ fcLĸ/2	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 3.6~\textrm{V}$	167		250		500		ns
SCKp high-/ low-level width	tKL1	2.7 V ≤ V _{DD} ≤	3.6 V	tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		ns
Slp setup time (to SCKp↑) ^{Note 1}	tsik1	2.7 V ≤ V _{DD} ≤	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			110		110		ns
SIp hold time (from SCKp↑) ^{Note 2}	tKSI1	2.7 V ≤ V _{DD} ≤	$1.7 V \leq V_{DD} \leq 3.6 V$			10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tKSO1	C = 20 pF Note 4	1		10		10		10	ns

$(T_A = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

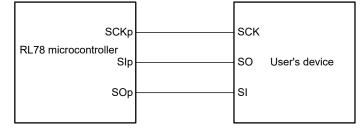
Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

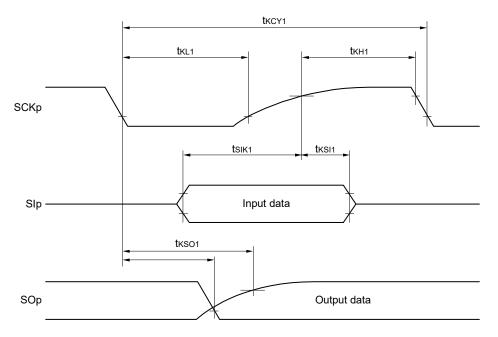
Note 4. C is the load capacitance of the SCKp and SOp output lines.

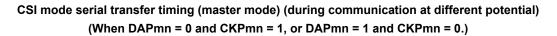
Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

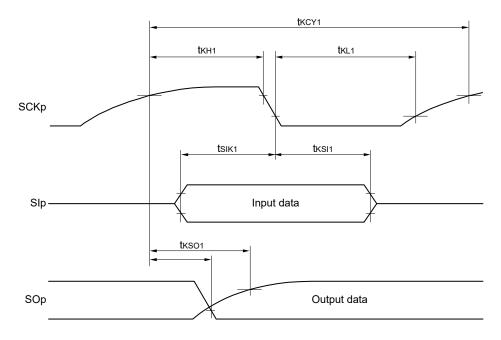

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 2)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))


CSI mode connection diagram (during communication at same potential)


Remark 1. p: CSI number (p = 00, 10, 20, 30)


Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

2.5.2 Serial interface IICA

(1) I²C standard mode

$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	ymbol Conditions		HS (high-s Mo	peed main) ode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fscl	Standard mode:	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0	100	0	100	0	100	kHz
frequency		fclk ≥ 1 MHz	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	—	—	0	100	0	100	kHz
			$1.6 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	—	—	—	—	0	100	kHz
Setup time of	tsu: sta	$2.7 V \leq VDD \leq 3.6$	S V	4.7		4.7		4.7		μs
restart condition		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	S V	-	_	4.7		4.7		μs
		$1.6 \text{ V} \leq \text{VDD} \leq 3.6$	S V	-	_	-	_	4.7		μs
Hold time Note 1	thd: STA	2.7 V ≤ VDD ≤ 3.6	S V	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	S V	-	_	4.0		4.0		μs
		1.6 V ≤ VDD ≤ 3.6	S V	-	_	-	_	4.0		μs
Hold time when	tLOW	$2.7 V \leq VDD \leq 3.6$	S V	4.7		4.7		4.7		μs
SCLA0 = "L"		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	S V	_		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{VDD} \leq 3.6$	γV	-	_		_	4.7		μs
Hold time when	tнigн	2.7 V ≤ VDD ≤ 3.6	S V	4.0		4.0		4.0		μs
SCLA0 = "H"		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	γV	-	_	4.0		4.0		μs
		$1.6 \text{ V} \leq \text{VDD} \leq 3.6$	γV	_		-	_	4.0		μs
Data setup time	tsu: DAT	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	S V	250		250		250		ns
(reception)		1.8 V ≤ VDD ≤ 3.6	γV	-	_	250		250		ns
		1.6 V ≤ VDD ≤ 3.6	γV	-	_	_		250		ns
Data hold time	thd: dat	$2.7 \text{ V} \leq \text{VDD} \leq 3.6$	S V	0	3.45	0	3.45	0	3.45	μs
(transmission) Note 2		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	γV	—	—	0	3.45	0	3.45	μs
		$1.6 \text{ V} \leq \text{VDD} \leq 3.6$	γV	-	—	—	—	0	3.45	μs
Setup time of stop	tsu: sto	2.7 V ≤ VDD ≤ 3.6	γV	4.0		4.0		4.0		μs
condition		1.8 V ≤ VDD ≤ 3.6	γV	-	_	4.0		4.0		μs
		1.6 V ≤ VDD ≤ 3.6	S V	-	_	-	_	4.0		μs
Bus-free time	tBUF	2.7 V ≤ VDD ≤ 3.6	γV	4.7		4.7		4.7		μs
		1.8 V ≤ VDD ≤ 3.6	S V	-	_	4.7		4.7		μs
		1.6 V ≤ VDD ≤ 3.6	SV .	-	_	-	_	4.7		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

 Remark
 The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 Standard mode: Cb = 400 pF, Rb = 2.7 kΩ

(2) 1/4 bias method

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1 VLCD = 04H		0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C4 Note 1 =	0.47 μF	2 VL1 - 0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 Note 1 =	= 0.47 μF	3 VL1 - 0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 Note 1 =	= 0.47 μF	4 VL1 - 0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C5 Note 1 =	= 0.47μF	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

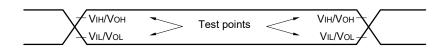
C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

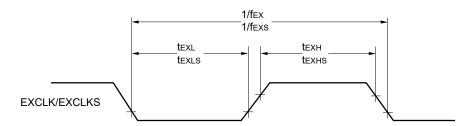
C3: A capacitor connected between VL2 and GND

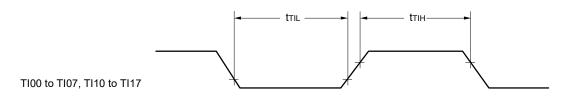
C4: A capacitor connected between VL3 and GND

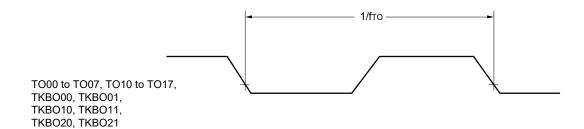
C5: A capacitor connected between VL4 and GND


C1 = C2 = C3 = C4 = 0.47 µF±30%

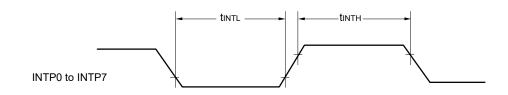
Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).


Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

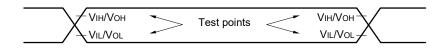

AC Timing Test Points



External System Clock Timing



TI/TO Timing



Interrupt Request Input Timing

3.5 Peripheral Functions Characteristics

3.5.1 Serial array unit

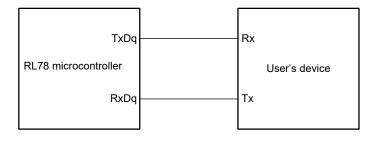
(1) During communication at same potential (UART mode)

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)

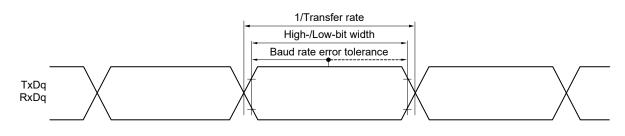
Parameter	Symbol	nbol Conditions		HS (high-speed main) Mode		
Farameter Symbol		Conditions	MIN.	MAX.	Unit	
Transfer rate Note 1		$2.4 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$		fMCK/12 Note 2	bps	
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		2.0	Mbps	

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2. The following conditions are required for low voltage interface.


2.4 V ≤ VDD < 2.7 V: MAX. 1.3 Mbps

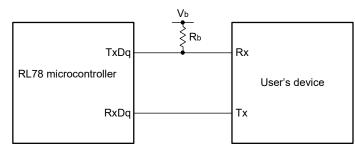
Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:


HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V) 16 MHz (2.4 V \leq VDD \leq 3.6 V)

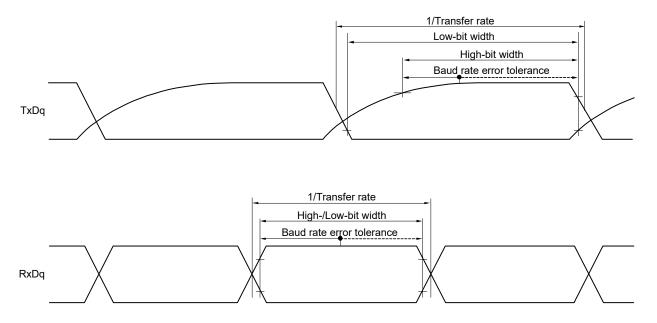
Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

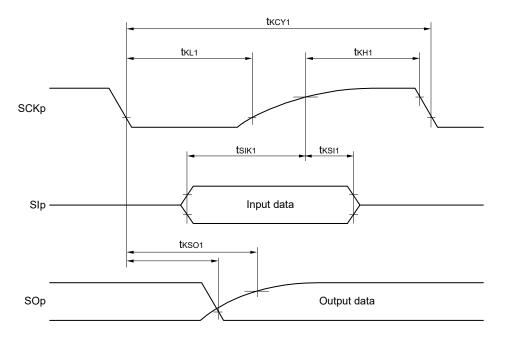


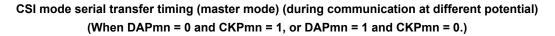
Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)

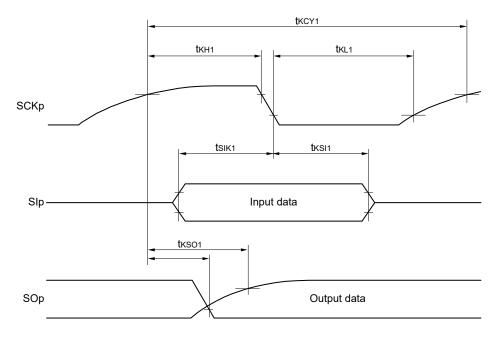

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

UART mode connection diagram (during communication at different potential)


UART mode bit width (during communication at different potential) (reference)


- **Remark 1.** Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)


Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

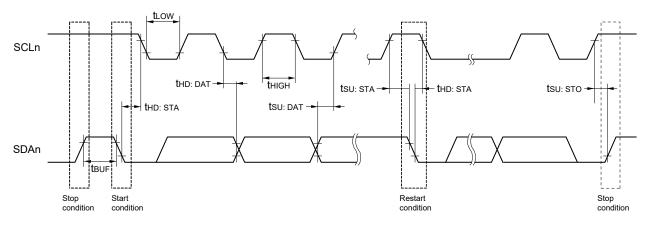
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

3.5.2 Serial interface IICA

TA = -40 to +105°C, $2.4 V \le VDD \le 3.6 V$, Vss = 0 V)	
--	--

			H	HS (high-speed main) Mode				
Parameter	Symbol	Conditions	Standa	rd mode	Fast mode		Unit	
			MIN.	MAX.	MIN.	MAX.		
SCLA0 clock frequency	fSCL	Fast mode: fCLK ≥ 3.5 MHz	—	—	0	400	kHz	
		Standard mode: fc∟ĸ ≥ 1 MHz	0	100	—	—	kHz	
Setup time of restart condition	tsu: sta		4.7		0.6		μs	
Hold time Note 1	thd: STA		4.0		0.6		μs	
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μs	
Hold time when SCLA0 = "H"	thigh		4.0		0.6		μs	
Data setup time (reception)	tsu: dat		250		100		ns	
Data hold time (transmission) Note 2	thd: dat		0	3.45	0	0.9	μs	
Setup time of stop condition	tsu: sto		4.0		0.6		μs	
Bus-free time	tBUF		4.7		1.3		μs	


Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & \mbox{Cb} = 400 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & \mbox{Cb} = 320 \mbox{ pF}, \mbox{ Rb} = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

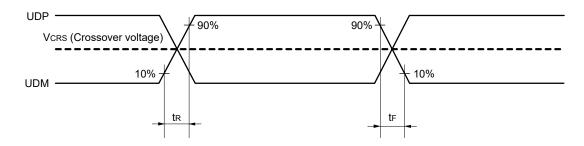
3.5.3 USB

(1) Electrical specifications

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UREGC	UREGC output voltage characteristic	Uregc	UVBUS = 4.0 to 5.5 V, PXXCON = VDDUSBE = 1	3.0	3.3	3.6	V
UVBUS	UVBUS input voltage characteristic	UVBUS	Function	4.35 (4.02 ^{Note})	5.00	5.25	V

Note Value of instantaneous voltage


$(TA = -40 \text{ to } +105^{\circ}C, 4.35 \text{ V} \le UVBUS \le 5.25 \text{ V}, 2.4 \text{ V} \le VDD \le 3.6 \text{ V}, \text{VSS} = 0 \text{ V})$

	Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Input voltage		Vih		2.0			V
characteristic (FS/LS receiver)			VIL				0.8	V
	Difference input sensitivity		Vdi	UDP voltage - UDM voltage	0.2			V
	Difference common mode range		Vсм		0.8		2.5	V
Output	Output voltage		Vон	Іон = -200 μА	2.8		3.6	V
characteristic			Vol	IOL = 2 mA	0		0.3	V
(FS driver)	Transition	Rising	tFR	Rising: From 10% to 90% of amplitude,	4		20	ns
	time	Falling	tFF	Falling: From 90% to 10% of amplitude,	4		20	ns
	Matching (TFR/TFF)	VFRFM	- CL = 50 pF			111.1	%
	Crossover voltage		VFCRS		1.3		2.0	V
	Output Impedance		Zdrv		28		44	Ω
Output	Output voltage		Vон		2.8		3.6	V
characteristic			Vol		0		0.3	V
(LS driver)	Transition time	Rising	tLR	Rising: From 10% to 90% of amplitude, Falling: From 90% to 10% of amplitude,	75		300	ns
		Falling	tLF		75		300	ns
	Matching (TFR/TFF) Note		VLTFM	CL = 250 pF to 750 pF The UDP and UDM pins are individually pulled	80		125	%
	Crossover voltage Note		VLCRS	down via 15 k Ω	1.3		2.0	V
Pull-up,	Pull-down resistor		RPD		14.25		24.80	kΩ
Pull-down	Pull-up resistor	Idle	Rpui		0.9		1.575	kΩ
		Reception	Rpua		1.425		3.09	kΩ
UVBUS	UVBUS pull-down resistor		Rvbus	UVBUS voltage = 5.5 V		1000		kΩ
	UVBUS input voltage		Viн		3.20			V
			VIL				0.8	V

Note Excludes the first signal transition from the idle state.

Timing of UDP and UDM

(2) BC standard

(TA = -40 to +105°C, 4.35 V \leq UVBUS \leq 5.25 V, 2.4 V \leq VDD \leq 3.6 V, VSS = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB	UDP sink current	IDP_SINK		25	100	175	μΑ
standard	UDM sink current	IDM_SINK		25	100	175	μΑ
BC1.2	DCD source current	IDP_SRC		7	10	13	μΑ
	Data detection voltage	VDAT_REF		0.25	0.325	0.4	V
	UDP source voltage	VDP_SRC	Output current 250 µA	0.5	0.6	0.7	V
	UDM source voltage	VDM_SRC	Output current 250 µA	0.5	0.6	0.7	V

3.10 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	f CLK	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C ^{Note 4}	100,000			
		Retained for 20 years TA = 85°C ^{Note 4}	10,000			

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

Note 4. This temperature is the average value at which data are retained.

3.11 Dedicated Flash Memory Programmer Communication (UART)

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

Rev.	Date		Description			
		Page	Summary			
2.00 Feb 21, 2014		4	Modification of Figure 1 - 1 Part Number, Memory Size, and Package of RL78/L1C			
		69	Modification of (1) Electrical specifications in 2.5.3 USB			
		82	Modification of note 1 in (1) 1/3 bias method in 2.8.2 Internal voltage boosting method			
		130	Modification of (1) Electrical specifications in 3.5.3 USB			
		142	Modification of note 1 in (1) 1/3 bias method in 3.8.2 Internal voltage boosting method			
2.10	Aug 12, 2016	5	Addition of product name (RL78/L1C) and description (Top View) in 1.3.1 80-pin products (with USB)			
		6	Addition of product name (RL78/L1C) and description (Top View) in 1.3.2 80-pin products (without USB)			
		9	Addition of product name (RL78/L1C) and description (Top View) in 1.3.5 100-pin products (with USB)			
		10	Addition of product name (RL78/L1C) and description (Top View) in 1.3.6 100-pin products (without USB)			
		17, 19	Modification of 1.6 Outline of Functions			
		23	Modification of description in Absolute Maximum Ratings (TA = 25°C)			
		26, 27	Modification of description in 2.3.1 Pin characteristics			
		39, 40	Modification of the graph for Minimum Instruction Execution Time during Main System Clock Operation			
		72	Modification of conditions in (1) of 2.6.1 A/D converter characteristics			
		85	Modification of the title and note in 2.9 RAM Data Retention Characteristics			
		85	Modification of conditions in 2.10 Flash Memory Programming Characteristics			
		87	Modification of description in 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105 °C)			
		88, 90	Modification of description in Absolute Maximum Ratings (TA = 25°C)			
		93, 94, 96	Modification of description in 3.3.1 Pin characteristics			
		106	Modification of the graph for Minimum Instruction Execution Time during Main System Clock Operation			
		144	Modification of the title and note in 3.9 RAM Data Retention Characteristics			
		145	Modification of conditions and addition of note 4 in 3.10 Flash Memory Programming Characteristics			
2.20	Dec 28, 2017	13	Modification of figure in 1.5.2 80/85-pin products (without USB)			
		17, 19	Modification of tables in 1.6 Outline of Functions			
		26, 27	Modification of table and note 3 in 2.3.1 Pin characteristics			
		85	Modification of figure in 2.12 Timing of Entry to Flash Memory Programming Modes			
		89	Modification of table in 3.1 Absolute Maximum Ratings			
		92, 93	Modification of table and note 3 in 3.3.1 Pin characteristics			
		144	Modification of figure in 3.12 Timing of Entry to Flash Memory Programming Modes			