

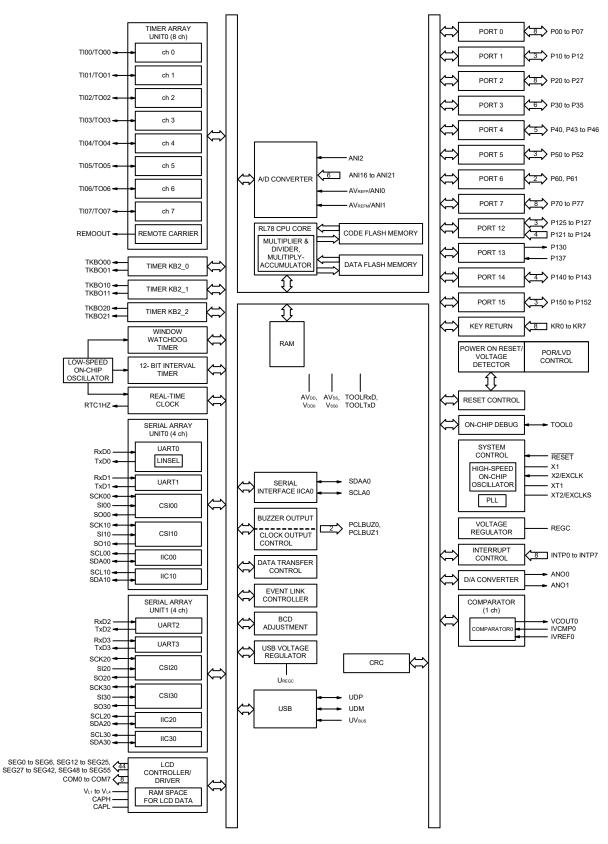
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 11x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	85-VFLGA
Supplier Device Package	85-VFLGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f111njgla-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5 Block Diagram

1.5.1 80/85-pin products (with USB)

(2/2)

			,					
	Item	80/85-pin	100-pin					
	item	R5F111Mx/R5F111Nx (x = E to H, J)	R5F111Px (x = E to H, J)					
Clock output/buzzer	output	2	2					
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 M (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 k (Subsystem clock: fSUB = 32.768 kHz operation) 	Hz, 8.192 kHz, 16.384 kHz, 32.768 kHz					
8/12-bit resolution A	/D converter	11 channels	13 channels					
D/A converter		2 channels	2 channels					
Comparator		1 channel	2 channels					
Serial interface		CSI: 1 channel/UART (UART supporting LIN-bi CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C:	1 channel 1 channel					
	I ² C bus	1 channel	1 channel					
LCD controller/driver		Internal voltage boosting method, capacitor split are switchable.	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.					
Segment	signal output	44 (40) ^{Note 1}	56 (52) ^{Note 1}					
Common	signal output	4 (8)	Note 1					
Data transfer contro	ller (DTC)	30 sources	31 sources					
Event link controller	(ELC)	Event input: 30, Event trigger output: 22	Event input: 31, Event trigger output: 22					
Vectored interrupt	Internal	32	33					
sources	External	9	9					
Key interrupt		8	8					
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{No} Internal reset by RAM parity error Internal reset by illegal-memory access 	 Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note 2} Internal reset by RAM parity error 					
Power-on-reset circ	uit	Power-on-reset: 1.51 ± 0.03 V Power-down-reset: 1.50 ± 0.03 V						
Voltage detector		 Rising edge: 1.67 V to 3.13 V (12 stages) Falling edge: 1.63 V to 3.06 V (12 stages) 						
On-chip debug funct	lion	Provided	Provided					
Power supply voltag	е	VDD = 1.6 to 3.6 V (TA = -40 to +85°C) VDD = 2.4 to 3.6 V (TA = -40 to +105°C)						
Operating ambient t	emperature	TA = -40 to +85°C (A: Consumer applications), TA	A = -40 to +105°C (G: Industrial applications)					

Note 1. The number in parentheses indicates the number of signal outputs when 8 coms are used.

Note 2. The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.2.2 On-chip oscillator characteristics

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fносо			1		48	MHz
High-speed on-chip oscillator		-20 to +85°C	1.8 V ≤ VDD ≤ 3.6 V	-1.0		+1.0	%
clock frequency accuracy			1.6 V ≤ VDD ≤ 1.8 V	-5.0		+5.0	%
		-40 to -20°C	1.8 V ≤ VDD < 3.6 V	-1.5		+1.5	%
			1.6 V ≤ VDD ≤ 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fiL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.2.3 PLL oscillator characteristics

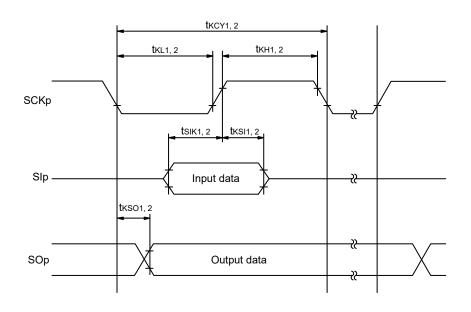
$(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note	fpllin	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	fpll			48.00		MHz

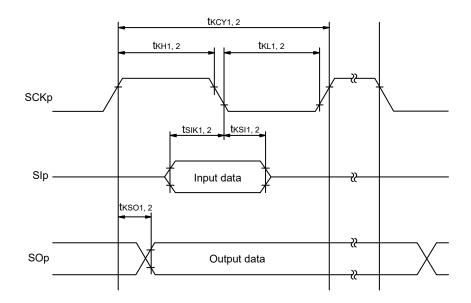
Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	to P37, P40 to P46, P50 to P57, to P77, P80 to P83, P125 to P127,			Vdd	V
	VIH2	P00, P01, P10, P11, P24, P25, P33, P34, P43, P44	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	2.0		Vdd	V
			TTL input buffer 1.6 V ≤ VDD < 3.3 V	1.50		VDD	V
	VIH3	P150 to P156	·	0.7 AVDD		AVDD	V
	VIH4	P60, P61		0.7 Vdd		6.0	V
	Vih5	P121 to P124, P137, EXCLK, EXCLKS,	0.8 Vdd		Vdd	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	Normal input buffer	0		0.2 VDD	V
	VIL2	P00, P01, P10, P11, P24, P25, P33, P34, P43, P44	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	0		0.5	V
			TTL input buffer 1.6 V ≤ VDD < 3.3 V	0		0.32	V
	VIL3	P150 to P156		0		0.3 AVDD	V
	VIL4	P60, P61		0		0.3 Vdd	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS,	RESET	0		0.2 Vdd	V

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)


Caution The maximum value of VIH of pins P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 is VDD, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


AC Timing Test Points Vih/Voh Vін/Vон Test points VIL/VOL VIL/VOL External System Clock Timing 1/fex 1/fexs texl tехн **t**EXLS **t**EXHS EXCLK/EXCLKS TI/TO Timing t⊤ı∟ ttiH-TI00 to TI07, TI10 to TI17 1/fто TO00 to TO07, TO10 to TO17, TKBO00, TKBO01, TKBO10, TKBO11, TKBO20, TKBO21 Interrupt Request Input Timing tintl tinth-INTP0 to INTP7

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 10, 20, 30) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(6) Communication at different potential (1.8 V, 2.5V) (UART mode)

(TA = -40 to +85°C, 1.8 ≤ VDD ≤ 3.6 V, VSS = 0 V)									(2/2)	
Parameter	Symbol		Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Transfer transmiss rate Note 2	transmission	$2.7 V \le V_{DD} \le 3.6 V,$ $2.3 V \le V_{b} \le 2.7 V$		Note 1		Note 1		Note 1	bps	
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 2		1.2 Note 2		1.2 Note 2	Mbps
			$1.8 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Notes 3, 4		Notes 3, 4		Notes 3, 4	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 5		0.43 Note 5		0.43 Note 5	Mbps

$(T_A = -40 \text{ to } +85^{\circ}\text{C} + 1.8 \le \text{V}_{DD} \le 3.6 \text{ V} \text{ V}_{SS} = 0.\text{V})$

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq VDD < 3.6 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =

[bps]
$$\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3$$

1

Baud rate error (theoretical value) =
$$\frac{1}{\frac{1}{\text{Transfer rate} \times 2}} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}$$

$$(\frac{1}{\frac{1}{\text{Transfer rate}}}) \times \text{Number of transferred bits}$$

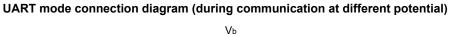
* This value is the theoretical value of the relative difference between the transmission and reception sides.

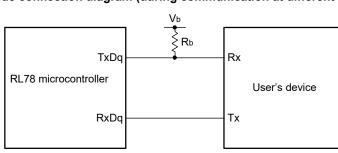
Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

1

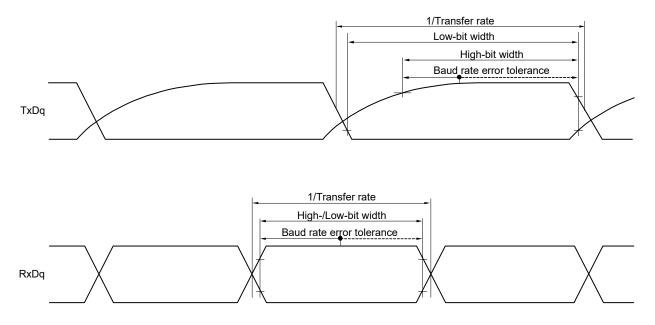
Note 3. Use it with $VDD \ge Vb$.

Note 4. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 1.8 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

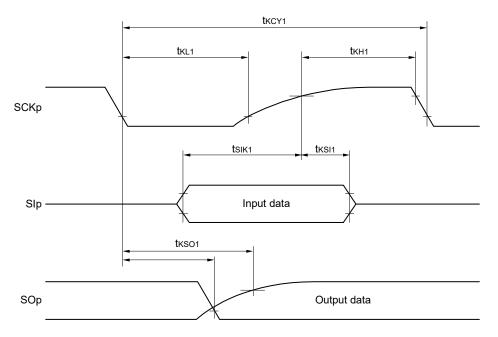

Maximum transfer rate =

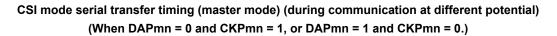

$$\frac{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b}) \times 3}{\left\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\right\} \times 3}$$

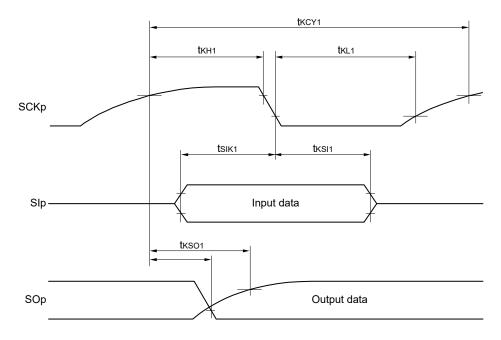
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate } \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

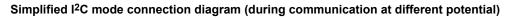

* This value is the theoretical value of the relative difference between the transmission and reception sides.

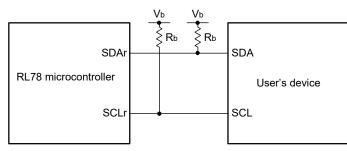
- Note 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq Caution pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

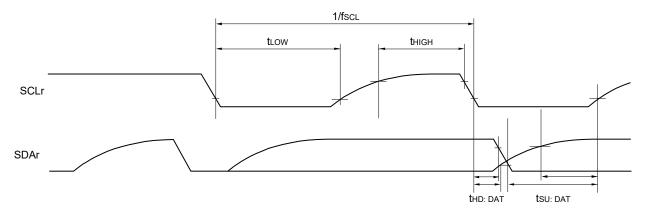

UART mode bit width (during communication at different potential) (reference)


- Remark 1. $Rb[\Omega]$: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)


Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))




CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 10, 20, 30), g: PIM, POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 02, 10, 12)

2.5.3 USB

(1) Electrical specifications

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V, HS (High-speed main) mode only)

	Parameter		Conditions	MIN.	TYP.	MAX.	Unit
UREGC	UREGC output voltage characteristic	UREGC	UVBUS = 4.0 to 5.5 V, PXXCON = VDDUSBE = 1	3.0	3.3	3.6	V
UVBUS	UVBUS input voltage characteristic	UVBUS	Function	4.35 (4.02 ^{Note})	5.00	5.25	V

Note Value of instantaneous voltage

(TA = -40 to +85°C, 4.35 V ≤ UVBUS ≤ 5.25 V, 2.4 V ≤ VDD ≤ 3.6 V, VSS = 0 V, HS (High-speed main) mode only)

				-	-	-		37
	Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Input voltag	ge	Vih		2.0			V
characteristic			VIL				0.8	V
(FS/LS receiver)	Difference sensitivity	Difference input sensitivity		UDP voltage - UDM voltage	0.2			V
		Difference common mode range			0.8		2.5	V
Output	Output volt	Output voltage		Іон = -200 µА	2.8		3.6	V
characteristic			Vol	IOL = 2 mA	0		0.3	V
(FS driver)	Transition	Rising	tFR	Rising: From 10% to 90% of amplitude,	4		20	ns
	time	Falling	tFF	Falling: From 90% to 10% of amplitude,	4		20	ns
	Matching (Matching (TFR/TFF)		CL = 50 pF	90		111.1	%
	Crossover	Crossover voltage			1.3		2.0	V
	Output Imp	edance	Zdrv		28		44	Ω
	Output volt	Output voltage			2.8		3.6	V
characteristic					0		0.3	V
(LS driver)	Transition	Rising	tLR	Rising: From 10% to 90% of amplitude,	75		300	ns
	time	Falling	tLF	Falling: From 90% to 10% of amplitude,	75		300	ns
	Matching (Note	TFR/TFF)	VLTFM	CL = 250 pF to 750 pF The UDP and UDM pins are individually pulled	80		125	%
	Crossover	voltage Note	VLCRS	down via 15 k Ω	1.3		2.0	V
Pull-up,	Pull-down	resistor	Rpd		14.25		24.80	kΩ
Pull-down	Pull-up	Idle	Rpui		0.9		1.575	kΩ
	resistor	Reception	Rpua		1.425		3.09	kΩ
UVBUS	UVBUS pull resistor	UVBUS pull-down		UVBUS voltage = 5.5 V		1000		kΩ
	UVBUS inp	UVBUS input voltage			3.20			V
			VIL				0.8	V

Note Excludes the first signal transition from the idle state.

Absolute Maximum Ratings (TA = 25°C)

(3/3)

	(5/5					
Parameter	Symbols		Conditions	Ratings	Unit	
Output current, high	Юн1	Per pin	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-40	mA	
		Total of all	P40 to P46	-70	mA	
		pins -170 mA	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-100	mA	
	Іон2	Per pin	P150 to P156	-0.1	mA	
		Total of all pins		-0.7	mA	
	Юнз	Per pin	UDP, UDM	-3	mA	
Output current, low	IOL1 Per pin		P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	40	mA	
		Total of all	P40 to P46	70	mA	
		pins 170 mA	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	100	mA	
	IOL2	Per pin	P150 to P156	0.4	mA	
		Total of all pins		2.8	mA	
	IOL3	Per pin	UDP, UDM	3	mA	
Operating ambient	ТА	In normal o	In normal operation mode		°C	
temperature		In flash me	mory programming mode	-40 to +105		
Storage temperature	Tstg			-65 to +150	°C	

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

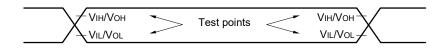
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143			Vdd	V
	VIH2	P00, P01, P10, P11, P24, P25, P33, P34, P43, P44	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	2.0		Vdd	V
			TTL input buffer 2.4 V ≤ VDD < 3.3 V	1.50		Vdd	V
	VIH3	P150 to P156	•	0.7 AVDD		AVdd	V
	VIH4	P60, P61		0.7 Vdd		6.0	V
	Vih5	P121 to P124, P137, EXCLK, EXCLKS,	0.8 Vdd		Vdd	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P140 to P143	Normal input buffer	0		0.2 VDD	V
	VIL2	P00, P01, P10, P11, P24, P25, P33, P34, P43, P44	TTL input buffer 3.3 V ≤ VDD ≤ 3.6 V	0		0.5	V
			TTL input buffer 2.4 V ≤ VDD < 3.3 V	0		0.32	V
	VIL3	P150 to P156	•	0		0.3 AVDD	V
	VIL4	P60, P61		0		0.3 Vdd	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS,	RESET	0		0.2 Vdd	V

$(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Caution The maximum value of VIH of pins P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 is VDD, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



Parameter	Symbol		Conditio	ons		MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	FIL Note 1						0.20		μA
RTC2 operating current	IRTC Notes 1, 3						0.02		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 4						0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fi∟ = 15 kHz					0.22		μA
A/D converter operating current	IADC Notes 6, 7	AVDD = 3.0 V, whe	n conversion at maximu	im speed			422	720	μA
AVREF (+) current	IAVREF Note 8	AVDD = 3.0 V, ADF	REFP1 = 0, ADREFP0 =	0 Note 7			14.0	25.0	μA
		AVREFP = 3.0 V, AI		14.0	25.0				
		ADREFP1 = 1, AD	REFP0 = 0 Note 1				14.0	25.0	
A/D converter reference voltage current	IADREF Notes 1, 9	VDD = 3.0 V					75.0		μA
Temperature sensor operating current	ITMPS Note 1				78		μA		
D/A converter operating current	IDAC Notes 1, 11	Per D/A converter channel					0.53	1.5	mA
Comparator	ICMP	VDD = 3.6 V,	Window mode				12.5		μA
operating current	Notes 1, 12	Regulator output voltage = 2.1 V	1 V						μA
		5	Comparator low-speed	d mode			1.2		μA
LVD operating current	ILVD Notes 1, 13						0.06		μA
Self-programming operating current	IFSP Notes 1, 14						2.50	12.20	mA
BGO operating current	IBGO Notes 1, 15						1.68	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performe	d Note 16			0.34	1.10	mA
operating current			The A/D conversion of mode, AVREFP = VDD		erformed, Low voltage		0.53	2.04	
		CSI/UART operation	on 				0.70	1.54	mA
LCD operating current	ILCD1 Notes 17, 18	External resistance division method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.6 V, Lv4 = 3.6 V		0.14		μA
	ILCD2 Note 17	Internal voltage boosting method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, LV4 = 3.0 V (VLCD = 04H)		0.61		μA
	ILCD3 Note 17	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, Lv4 = 3.0 V		0.12		μA
USB current	IUSB Note 20	Operating current during USB communication					4.88		mA
Note 19	IUSB Note 21	Operating current i	n the USB suspended s	tate		1	0.04		mA

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(Notes and Remarks are listed on the next page.)

3.5 Peripheral Functions Characteristics

3.5.1 Serial array unit

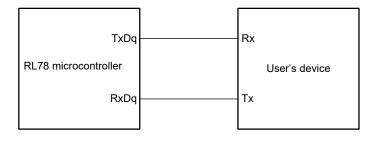
(1) During communication at same potential (UART mode)

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)

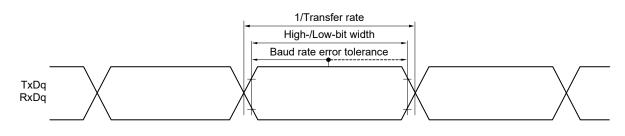
Parameter	Svmbol	Conditions	HS (high-spee	Unit	
				MAX.	Onic
Transfer rate Note 1		$2.4 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$		fMCK/12 Note 2	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		2.0	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2. The following conditions are required for low voltage interface.


2.4 V ≤ VDD < 2.7 V: MAX. 1.3 Mbps

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:


HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V) 16 MHz (2.4 V \leq VDD \leq 3.6 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(5) Communication at different potential (1.8 V, 2.5 V) (UART mode)

$(T_{A} = -40 \text{ to } +105^{\circ}\text{C})$	$2.4 V \le VDD \le 3.6 V, VSS = 0 V$	
(1A = -40.00 + 100.0)		

(1/2)

Parameter Symbol		Conditions		HS (high-	Unit		
Farameter	Symbol		Conditions		MIN.	MAX.	Unit
Transfer rate Notes 1, 2		Reception	n $2.7 V \le VDD \le 3.6 V$, $2.3 V \le Vb \le 2.7 V$			fMCK/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 4$		2.0	Mbps
				$V \le V_{DD} < 3.3 V$, $V \le V_b \le 2.0 V$		fMCK/12 Notes 1, 2, 3	bps
	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 4$		1.3	Mbps			

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

Note 2. Use it with $VDD \ge Vb$.

Note 3.The following conditions are required for low voltage interface. $2.4 V \le V \text{DD} < 2.7 V$:MAX. 2.6 Mbps

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are: HS (high-speed main) mode: 24 MHz ($2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$)

16 MHz (2.4 V ≤ VDD ≤ 3.6 V)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(7) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		HS (high-spe	Unit	
Parameter	Symbol	Con	MIN.	MAX.	Unit	
SCKp cycle time Note 1	tKCY2	$2.7 V \le VDD \le 3.6 V$, $2.3 V \le Vb \le 2.7 V$	20 MHz < fмск ≤ 24 MHz	32/fмск		ns
			16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	20 MHz < fмск ≤ 24 MHz	72/fмск		ns
		$1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V} \text{ Note } 2$	16 MHz < fмск ≤ 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			4 MHz < fмск ≤ 8 MHz	32/fмск		ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tkh2, tkl2	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$		tkcy2/2 - 36		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$ Note 2		tксү2/2 - 100		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsik2	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		1/fмск + 40		ns
		2.4 V ≤ VDD < 3.3 V		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 4	tKSI2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 5}	tKSO2	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$ Cb = 30 pF, Rb = 2.7 kΩ			2/fмск + 428	ns
		2.4 V ≤ VDD < 3.3 V, 1.6 V Cb = 30 pF, Rb = 5.5 kΩ	$V \le V_b \le 2.0 V$ Note 2		2/fмск + 1146	ns

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Note 2. Use it with $VDD \ge Vb$.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

3.6.6 LVD circuit characteristics

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Detection voltage	Detection voltage Supply voltage level	VLVD2	Power supply rise time	3.01	3.13	3.25	V	
			Power supply fall time	2.94	3.06	3.18	V	
		VLVD3	Power supply rise time	2.90	3.02	3.14	V	
			Power supply fall time	2.85	2.96	3.07	V	
		VLVD4	Power supply rise time	2.81	2.92	3.03	V	
			Power supply fall time	2.75	2.86	2.97	V	
		VLVD5	Power supply rise time	2.71	2.81	2.92	V	
			Power supply fall time	2.64	2.75	2.86	V	
		VLVD6	Power supply rise time	2.61	2.71	2.81	V	
			Power supply fall time	2.55	2.65	2.75	V	
			VLVD7	Power supply rise time	2.51	2.61	2.71	V
		Power supply fall time	2.45	2.55	2.65	V		
Minimum pulse width		tlw		300			μs	
Detection delay time						300	μs	

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range. HS (high-speed main) mode: VDD = 2.7 to 3.6 V at 1 MHz to 24 MHz

VDD = 2.4 to 3.6 V at 1 MHz to 16 MHz

3.8.3 Capacitor split method

(1) 1/3 bias method

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V∟4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		Vdd		V
VL2 voltage	VL2	C1 to C4 = 0.47 µF Note 2	2/3 VL4 - 0.07	2/3 VL4	2/3 VL4 + 0.07	V
VL1 voltage	VL1	C1 to C4 = 0.47 µF Note 2	1/3 VL4 - 0.08	1/3 VL4	1/3 VL4 + 0.08	V
Capacitor split wait time Note 1	t∨wait		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

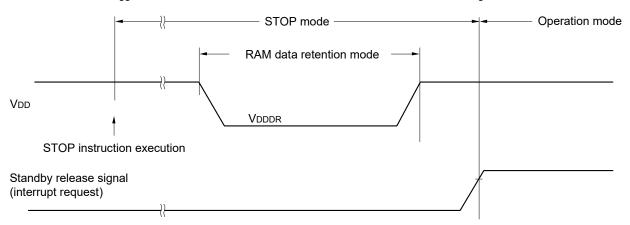
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

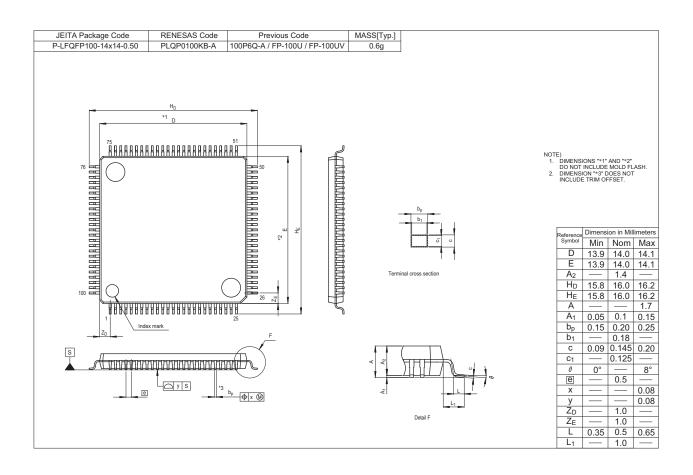
C4: A capacitor connected between VL4 and GND


C1 = C2 = C3 = C4 = 0.47 µF±30%

3.9 RAM Data Retention Characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.44 ^{Note}		3.6	V


Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

4.3 100-pin products

R5F110PEAFB, R5F110PFAFB, R5F110PGAFB, R5F110PHAFB, R5F110PJAFB R5F111PEAFB, R5F111PFAFB, R5F111PGAFB, R5F111PHAFB, R5F111PJAFB R5F110PEGFB, R5F110PFGFB, R5F110PGGFB, R5F110PHGFB, R5F110PJGFB R5F111PEGFB, R5F111PFGFB, R5F111PGGFB, R5F111PHGFB, R5F111PJGFB

