

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

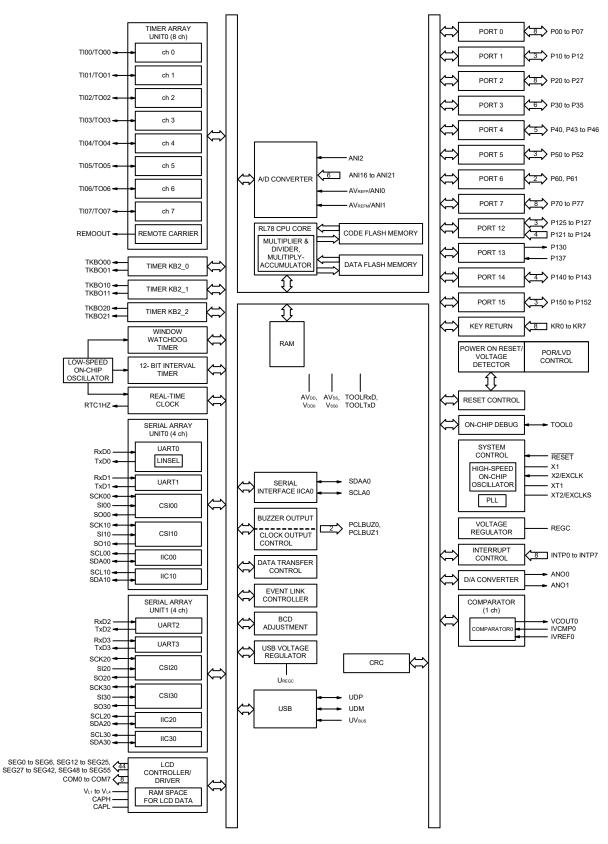
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	73
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 13x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f111peafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


1.4 Pin Identification

ANI0 to ANI6,	: Analog Input	SCL00, SCL10, SCL20, SCL30	· Serial Clock Output
ANI16 to ANI21		SDAA0, SDA00, SDA10,	: Serial Data Input/Output
ANO0, ANO1	: Analog Output	SDA10, SDA00, SDA10, SDA20, SDA30	
AVDD	: Analog Power Supply	SEG0 to SEG55	: LCD Segment Output
AVREFM	: Analog Reference Voltage	SI00, SI10, SI20, SI30	: Serial Data Input
AVREIM	Minus	SO00, SO10, SO20, SO30	: Serial Data Mput
		TI00 to TI07	: Timer Input
AVREFP	: Analog Reference Voltage		
A)/00	Plus		: Timer Output
AVss	: Analog Ground		
CAPH, CAPL	: Capacitor for LCD	TKBO11, TKBO20, TKBO21	· Data lanut/Outrout for Tool
COM0 to COM7	: LCD Common Output	TOOLO	: Data Input/Output for Tool
EXCLK	: External Clock Input	TOOLRXD, TOOLTXD	: Data Input/Output for
	(Main System Clock)		External Device
EXCLKS	: External Clock Input	UDM, UDP	: USB Input/Output
	(Subsystem Clock)	UREGC	: USB Regulator Capacitance
INTP0 to INTP7	: External Interrupt Input	UVBUS	: USB Input/USB Power Supply
IVCMP0, IVCMP1	: Comparator Input	TxD0 to TxD3	: Transmit Data
IVREF0, IVREF1	: Comparator Reference Input	VCOUT0, VCOUT1	: Comparator Output
KR0 to KR7	: Key Return	VDD0, VDD1	: Power Supply
P00 to P07	: Port 0	VL1 to VL4	: LCD Power Supply
P10 to P17	: Port 1	VSS0, VSS1	: Ground
P20 to P27	: Port 2	X1, X2	: Crystal Oscillator
P30 to P37	: Port 3		(Main System Clock)
P40 to P46	: Port 4	XT1, XT2	: Crystal Oscillator
P50 to P57	: Port 5		(Subsystem Clock)
P60 to P62	: Port 6		
P70 to P77	: Port 7		
P80 to P83	: Port 8		
P121 to P127	: Port 12		
P130, P137	: Port 13		
P140 to P143	: Port 14		
P150 to P156	: Port 15		
PCLBUZ0, PCLBUZ1	: Programmable Clock Output/ Buzzer Output		
REGC	: Regulator Capacitance		
REMOOUT	: Remote Control Output		
RESET	: Reset		
RTC1HZ	: Real-time Clock Correction Clock (1 Hz) Output		
RxD0 to RxD3	: Receive Data		
SCK00, SCK10, SCK20, SCK30	: Serial Clock Input/Output		
SCLA0	: Serial Clock Input/Output		

1.5 Block Diagram

1.5.1 80/85-pin products (with USB)

1.6 Outline of Functions

[80/85-pin,	100-pin	products	(with	USB)]
Loo, oo b,		piouuoto		002/1

(1/2)

	· · ·				
	ltem	80/85-pin	100-pin		
		R5F110Mx/R5F110Nx (x = E to H, J)	R5F110Px (x = E to H, J)		
Code flash memory	(KB)	64 to 256	64 to 256		
Data flash memory ((КВ)	8	8		
RAM (KB)		8 to 16 ^{Note 1}	8 to 16 ^{Note 1}		
Memory space		1 MB			
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main syste 1 to 20 MHz: VDD = 2.7 to 3.6 V, 1 to 8 MHz: VDD			
	High-speed on-chip oscillator clock	HS (high-speed main) operation mode: 1 to 24 MHz (VDD = 2.7 to 3.6 V), HS (high-speed main) operation mode: 1 to 16 MHz (VDD = 2.4 to 3.6 V), LS (low-speed main) operation mode: 1 to 8 MHz (VDD = 1.8 to 3.6 V), LV (low-voltage main) operation mode: 1 to 4 MHz (VDD = 1.6 to 3.6 V)			
	PLL clock	6, 12, 24 MHz ^{Note 2} : VDD = 2.4 to 3.6 V			
Subsystem clock		XT1 (crystal) oscillation, external subsystem clock i 32.768 kHz (TYP.): VDD = 1.6 to 3.6 V	nput (EXCLKS)		
Low-speed on-chip	oscillator clock	15 kHz (TYP.): VDD = 1.6 to 3.6 V			
General-purpose ree	gister	8 bits × 32 registers (8 bits × 8 registers × 4 banks)			
Minimum instruction execution time		0.04167 µs (High-speed on-chip oscillator clock: fHOCO = fiH = 24 MHz operation)			
		0.04167 µs (PLL clock: fPLL = 48 MHz/fiH = 24 MHz	Note 2 operation)		
		0.05 µs (High-speed system clock: fMX = 20 MHz o	peration)		
		30.5 µs (Subsystem clock: fs∪B = 32.768 kHz opera	ation)		
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 			
I/O port	Total	59	77		
	CMOS I/O	51	69		
	CMOS input	5	5		
	CMOS output	1	1		
	N-ch open-drain I/O (6 V tolerance)	2	2		
Timer	16-bit timer TAU	8 channels (with 1 channel remote control output fu	nction) (Timer outputs: 8, PWM outputs: 7 Note		
	16-bit timer KB2	3 channels (PWM outputs: 6)			
	Watchdog timer	1 channel			
	12-bit interval timer	1 channel			
	Real-time clock 2	1 channel			
	RTC output	1 1 Hz (subsystem clock: fs∪B = 32.768 kHz)			

Note 1. In the case of the 16 KB, this is about 15 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/L1C User's Manual).

Note 2. In the PLL clock 48 MHz operation, the system clock is 2/4/8 dividing ratio.

Note 3. The number of outputs varies, depending on the setting of channels in use and the number of the master.

(2/2)

			(2/2)				
	ltem	80/85-pin	100-pin				
		R5F110Mx/R5F110Nx (x = E to H, J)	R5F110Px (x = E to H, J)				
Clock output/bu	zzer output	2	2				
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 M (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 k (Subsystem clock: fSUB = 32.768 kHz operation) 	Hz, 8.192 kHz, 16.384 kHz, 32.768 kHz				
8/12-bit resoluti	on A/D converter	9 channels	13 channels				
D/A converter		2 channels	2 channels				
Comparator		1 channel	2 channels				
Serial interface		CSI: 1 channel/UART (UART supporting LIN-bu CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C:	1 channel 1 channel				
	I ² C bus	1 channel	1 channel				
USB	Function	1 cha	nnel				
LCD controller/driver		Internal voltage boosting method, capacitor split r are switchable.	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.				
Segr	ment signal output	44 (40) ^{Note 1}	56 (52) ^{Note 1}				
Com	imon signal output	4 (8)	4 (8) Note 1				
Data transfer co	ontroller (DTC)	32 sources	33 sources				
Event link contr	oller (ELC)	Event input: 30, Event trigger output: 22	Event input: 31, Event trigger output: 22				
Vectored interru	ipt Internal	36	37				
sources	External	9	9				
Key interrupt	•	8	8				
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Not} Internal reset by RAM parity error Internal reset by illegal-memory access	te 2				
Power-on-reset	circuit	 Power-on-reset: 1.51 ± 0.03 V Power-down-reset: 1.50 ± 0.03 V 					
Voltage detecto	r	Rising edge: 1.67 V to 3.13 V (12 stages) Falling edge: 1.63 V to 3.06 V (12 stages)					
On-chip debug	function	Provided					
Power supply v	oltage	VDD = 1.6 to 3.6 V (TA = -40 to +85°C) VDD = 2.4 to 3.6 V (TA = -40 to +105°C)					
Operating ambi	ent temperature	TA = -40 to +85°C (A: Consumer applications), TA	A = -40 to +105°C (G: Industrial applications)				

Note 1. The number in parentheses indicates the number of signal outputs when 8 coms are used.

Note 2. The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

<R>

Absolute Max	ximum Rat	ings (TA = 25°C)			(2/3)
Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	VLI1	VL1 input voltage	Note 1	-0.3 to +2.8	V
	VLI2	VL2 input voltage	Note 1	-0.3 to +6.5	V
	VLI3	VL3 input voltage	Note 1	-0.3 to +6.5	V
	VLI4	VL4 input voltage ^I	Note 1	-0.3 to +6.5	V
	VLI5	CAPL, CAPH inpu	it voltage ^{Note 1}	-0.3 to +6.5	V
	VLO1	VL1 output voltage	•	-0.3 to +2.8	V
	VLO2	VL2 output voltage)	-0.3 to +6.5	V
	VLO3	VL3 output voltage)	-0.3 to +6.5	V
	VLO4	VL4 output voltage)	-0.3 to +6.5	V
	VLO5	CAPL, CAPH outp	out voltage	-0.3 to +6.5	V
	VLO6	COM0 to COM7	External resistance division method	-0.3 to VDD + 0.3 Note 2	V
	VLO6 COM0 to COM7 SEG0 to SEG55		Capacitor split method	-0.3 to VDD + 0.3 Note 2	V
		output voltage	Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V

Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 ± 30%) and connect a capacitor (0.47 ± 30%) between the CAPL and CAPH pins.

Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	VOH1 P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57,	2.7 V ≤ VDD ≤ 3.6 V, Іон1 = -2.0 mA	Vdd - 0.6			V	
		P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	1.8 V ≤ VDD ≤ 3.6 V, Іон1 = -1.5 mA	Vdd - 0.5			V
			1.6 V ≤ VDD < 3.6 V, Іон1 = -1.0 mA	Vdd - 0.5			V
	Voh2	P150 to P156	1.6 V ≤ VDD ≤ 3.6 V, IOH2 = -100 μA	AVDD - 0.5			V
Output voltage, low	VOL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57,	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL1 = 3.0 mA			0.6	V
		P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	2.7 V ≤ VDD ≤ 3.6 V, IOL1 = 1.5 mA			0.4	V
			1.8 V ≤ VDD ≤ 3.6 V, IOL1 = 0.6 mA			0.4	V
			1.6 V ≤ VDD < 1.8 V, IOL1 = 0.3 mA			0.4	V
Vol2 Vol3	Vol2	P150 to P156	1.6 V ≤ VDD ≤ 3.6 V, IOL2 = 400 μA			0.4	V
	Vol3	P60, P61	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ IOL3 = 3.0 mA			0.4	V
			$1.8 V \le VDD \le 3.6 V$, IOL3 = 2.0 mA			0.4	V
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 1.8 \text{ V},$ IOL3 = 1.0 mA			0.4	V

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

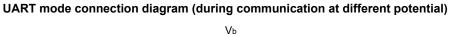
Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

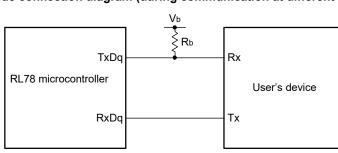
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	VI = VDD				1	μA
	ILIH2	P20, P21, P140 to P143	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	ILIH4	P150 to P156	VI = AVDI	0			1	μA
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	VI = VSS				-1	μA
	ILIL2	P20, P21, P140 to P143	VI = Vss				-1	μA
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
	ILIL4	P150 to P156	VI = AVss				-1	μA
On-chip pull-up	RU1	P00 to P07, P10 to P17, P20 to P27,	VI = Vss	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	10	20	100	kΩ
resistance		P30 to P37, P50 to P57, P70 to P77, P140 to P143, P125 to P127		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.4 \text{ V}$	10	30	100	
	RU2	P40 to P46, P80 to P83	VI = Vss		10	20	100	kΩ

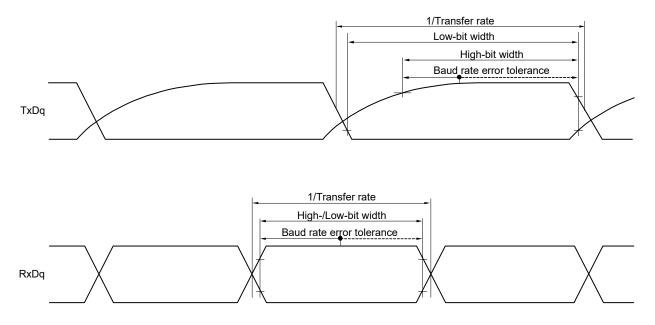
(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

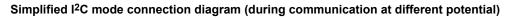
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

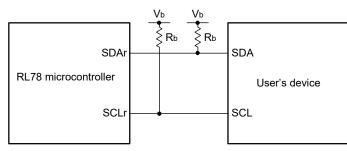



- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 Note 3. When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

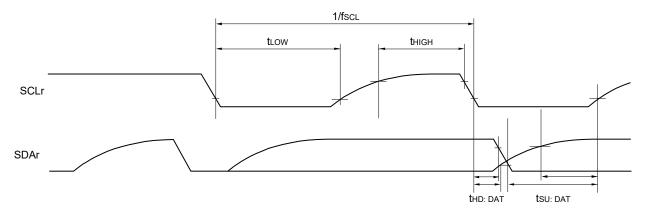
HS (high-speed main) mode:	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}_{@}1 \text{ MHz}$ to 24 MHz
	2.4 V ≤ VDD ≤ 3.6 V@1 MHz to 16 MHz
LS (low-speed main) mode:	1.8 V ≤ VDD ≤ 3.6 V@1 MHz to 8 MHz
LV (low-voltage main) mode	1.6 V ≤ VDD ≤ 3.6 V@1 MHz to 4 MHz


- **Remark 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- **Remark 2.** fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fill: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C


UART mode bit width (during communication at different potential) (reference)



- Remark 1. $Rb[\Omega]$: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)


Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 10, 20, 30), g: PIM, POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 02, 10, 12)

(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI6

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit	
Resolution	Res	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$		8		12	bit	
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1		
			$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$		8 Note 2	2		
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±6.0	LSB	
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0		
		8-bit resolution	$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±2.5		
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le 3.6 \text{ V}$	3.375			μs	
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	6.75				
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le 3.6 \text{ V}$	13.5				
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	2.5625				
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	5.125			1	
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	10.25				
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	LSB	
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	-	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0		
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	LSB	
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5		
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0		
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	LSB	
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±1.5		
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±1.0	1	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±1.5	LSB	
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±1.5		
		8-bit resolution	$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±1.0		
Analog input voltage	VAIN		•	0		AVREFP	V	

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

(4) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI16 to ANI21, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, VSS = 0 V, AVSS = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit	
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit	
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1		
			$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$		8 Note 2	2		
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±7.0	LSB	
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.5		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0		
Conversion time	tCONV	ADTYP = 0,	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs	
		12-bit resolution						
		ADTYP = 0,	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	9.5				
		10-bit resolution Note 1						
		ADTYP = 0,	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	57.5				
		8-bit resolution Note 2						
		ADTYP = 1,	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.3125				
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	7.875				
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	54.25				
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB	
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0		
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5		
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB	
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0		
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5		
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	LSB	
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5		
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB	
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5		
Analog input voltage	VAIN			0		AVREFP	V	
		Internal reference voltage (2.4 V \leq VDD \leq 3.6 V, HS (high-speed main) mode)		VBGR Note 4				
		Temperature sensor out (2.4 V \leq VDD \leq 3.6 V, H	itput voltage IS (high-speed main) mode)	V	TMP25 No	ote 4		

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

3.2 Oscillator Characteristics

3.2.1 X1 and XT1 oscillator characteristics

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx)	Ceramic resonator/crystal resonator	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	1.0		20.0	MHz
Note		2.4 V ≤ VDD < 2.7 V	1.0		16.0	
XT1 clock oscillation frequency	Crystal resonator		32	32.768	35	kHz
(fxt) Note						

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/L1C User's Manual.

3.3 DC Characteristics

3.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{AV}_{DD} = \text{V}_{DD} \le 3.6 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

<R>

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	IOH1	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143				-3.0 Note 2	mA
		Total of P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143 (When duty ≤ 70% ^{Note 3})	$2.7 V \le VDD \le 3.6 V$ $2.4 V \le VDD \le 2.7 V$			-15.0 -7.0	mA mA
	Іон2	Per pin for P150 to P156				-0.1 Note 2	mA
		Total of all pins	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			-0.7	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

Note 2. However, do not exceed the total current value.

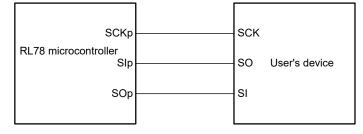
Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IOH = -10.0 mA

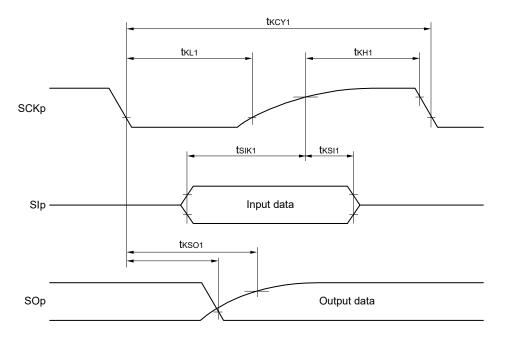
Total output current of pins = (-10.0 × 0.7)/(80 × 0.01) ≈ -8.7 mA

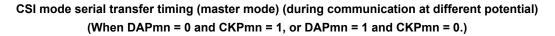
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

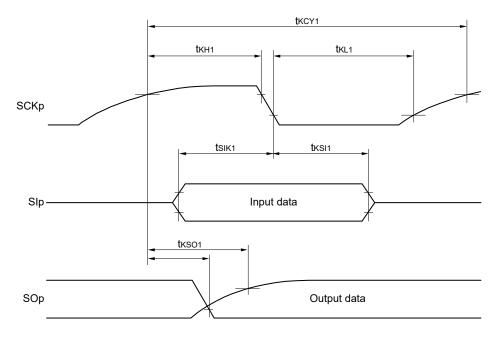

Caution P00 to P02, P10 to P12, P24 to P26, P33 to P35, and P42 to P44 do not output high level in N-ch open-drain mode.

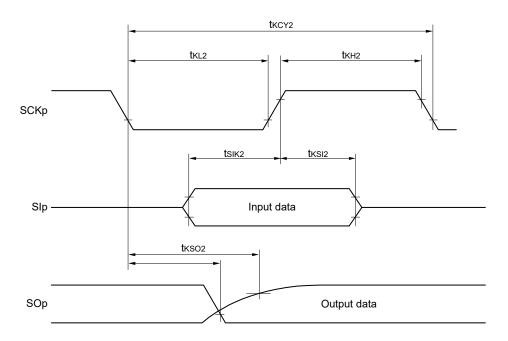
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

<R>

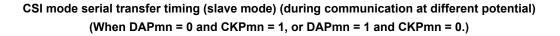

CSI mode connection diagram (during communication at same potential)

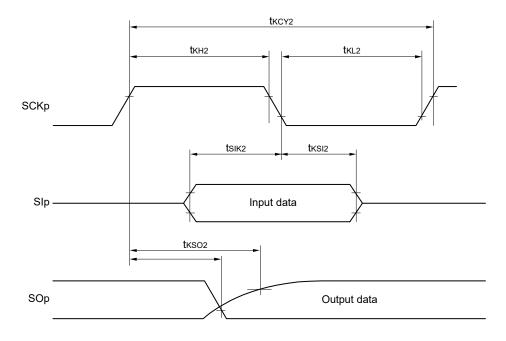

Remark 1. p: CSI number (p = 00, 10, 20, 30)


Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)





Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark
 p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1),

 n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input Channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = AV _{DD} Reference voltage (-) = AV _{SS}	Reference voltage (+) = Internal reference voltage Reference voltage (-) = AVss
High-accuracy channel; ANI0 to ANI6 (input buffer power supply: AVDD)	Refer to 3.6.1 (1) .	Refer to 3.6.1 (2) .	Refer to 3.6.1 (5) .
Standard channel; ANI16 to ANI21 (input buffer power supply: VDD)	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .	
Internal reference voltage, Temperature sensor output voltage	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .	_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI6

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, VSS = 0 V, AVSS = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
Overall error Note	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	LSB
Full-scale error Note	EFS	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le 3.6 \text{ V}$			±1.5	LSB
Analog input voltage	VAIN			0		AVREFP	V

Note Excludes quantization error (±1/2 LSB).

(2) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI6

(TA = -40 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES		$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		12	bit
Overall error Note	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±7.5	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
Full-scale error Note	EFS	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	LSB
Analog input voltage	VAIN		•	0		AVdd	V

Note Excludes quantization error (±1/2 LSB).

(2) 1/4 bias method

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C4 Note 1 =	0.47 μF	2 VL1 - 0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 ^{Note 1} = 0.47 µF		3 VL1 - 0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 ^{Note 1} = 0.47 µF		4 VL1 - 0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	t∨WAIT2	C1 to C5 Note 1 =	= 0.47µF	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V{\mbox{\scriptsize L1}}$ and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between $\mathsf{VL3}$ and GND

C5: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 µF±30%

Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

