

Welcome to E-XFL.COM

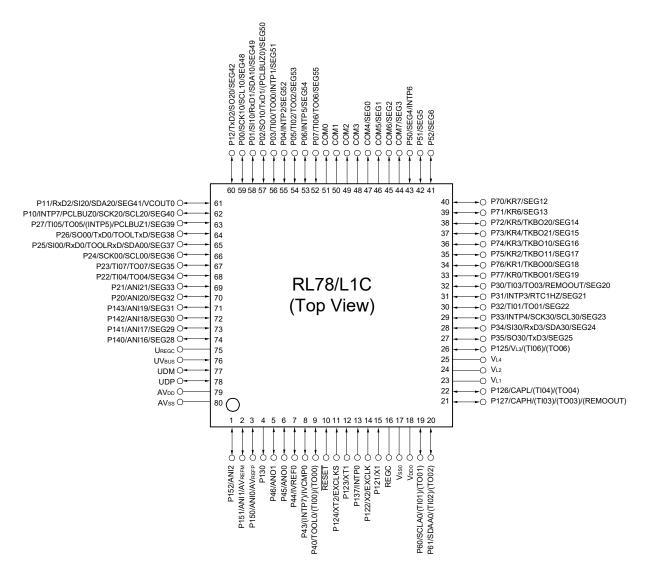
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	73
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 13x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f111pgafb-30


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Pin Configuration (Top View)

1.3.1 80-pin products (with USB)

• 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)

Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F). Caution 2. Connect the UREGC pin to Vss pin via a capacitor (0.33 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.4 Pin Identification

ANI0 to ANI6,	: Analog Input	SCL00, SCL10, SCL20, SCL30	· Serial Clock Output
ANI16 to ANI21		SDAA0, SDA00, SDA10,	: Serial Data Input/Output
ANO0, ANO1	: Analog Output	SDA10, SDA00, SDA10, SDA20, SDA30	
AVDD	: Analog Power Supply	SEG0 to SEG55	: LCD Segment Output
AVREFM	: Analog Reference Voltage	SI00, SI10, SI20, SI30	: Serial Data Input
AVREIM	Minus	SO00, SO10, SO20, SO30	: Serial Data Mput
		TI00 to TI07	: Timer Input
AVREFP	: Analog Reference Voltage		
A)/00	Plus		: Timer Output
AVss	: Analog Ground		
CAPH, CAPL	: Capacitor for LCD	TKBO11, TKBO20, TKBO21	· Data lanut/Outrout for Tool
COM0 to COM7	: LCD Common Output	TOOLO	: Data Input/Output for Tool
EXCLK	: External Clock Input	TOOLRXD, TOOLTXD	: Data Input/Output for
	(Main System Clock)		External Device
EXCLKS	: External Clock Input	UDM, UDP	: USB Input/Output
	(Subsystem Clock)	UREGC	: USB Regulator Capacitance
INTP0 to INTP7	: External Interrupt Input	UVBUS	: USB Input/USB Power Supply
IVCMP0, IVCMP1	: Comparator Input	TxD0 to TxD3	: Transmit Data
IVREF0, IVREF1	: Comparator Reference Input	VCOUT0, VCOUT1	: Comparator Output
KR0 to KR7	: Key Return	VDD0, VDD1	: Power Supply
P00 to P07	: Port 0	VL1 to VL4	: LCD Power Supply
P10 to P17	: Port 1	VSS0, VSS1	: Ground
P20 to P27	: Port 2	X1, X2	: Crystal Oscillator
P30 to P37	: Port 3		(Main System Clock)
P40 to P46	: Port 4	XT1, XT2	: Crystal Oscillator
P50 to P57	: Port 5		(Subsystem Clock)
P60 to P62	: Port 6		
P70 to P77	: Port 7		
P80 to P83	: Port 8		
P121 to P127	: Port 12		
P130, P137	: Port 13		
P140 to P143	: Port 14		
P150 to P156	: Port 15		
PCLBUZ0, PCLBUZ1	: Programmable Clock Output/ Buzzer Output		
REGC	: Regulator Capacitance		
REMOOUT	: Remote Control Output		
RESET	: Reset		
RTC1HZ	: Real-time Clock Correction Clock (1 Hz) Output		
RxD0 to RxD3	: Receive Data		
SCK00, SCK10, SCK20, SCK30	: Serial Clock Input/Output		
SCLA0	: Serial Clock Input/Output		

(2/2)

			(2/2)				
	ltem	80/85-pin	100-pin				
		R5F110Mx/R5F110Nx (x = E to H, J)	R5F110Px (x = E to H, J)				
Clock output/bu	zzer output	2	2				
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 M (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 k (Subsystem clock: fSUB = 32.768 kHz operation) 	Hz, 8.192 kHz, 16.384 kHz, 32.768 kHz				
8/12-bit resoluti	on A/D converter	9 channels	13 channels				
D/A converter		2 channels	2 channels				
Comparator		1 channel	2 channels				
Serial interface		CSI: 1 channel/UART (UART supporting LIN-bu CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C: CSI: 1 channel/UART: 1 channel/simplified I ² C:	1 channel 1 channel				
	I ² C bus	1 channel	1 channel				
USB	Function	1 cha	nnel				
LCD controller/driver		Internal voltage boosting method, capacitor split r are switchable.	Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.				
Segr	ment signal output	44 (40) ^{Note 1}	56 (52) ^{Note 1}				
Com	imon signal output	4 (8)	4 (8) Note 1				
Data transfer co	ontroller (DTC)	32 sources	33 sources				
Event link contr	oller (ELC)	Event input: 30, Event trigger output: 22	Event input: 31, Event trigger output: 22				
Vectored interru	ipt Internal	36	37				
sources	External	9	9				
Key interrupt	•	8	8				
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Not} Internal reset by RAM parity error Internal reset by illegal-memory access	te 2				
Power-on-reset circuit		 Power-on-reset: 1.51 ± 0.03 V Power-down-reset: 1.50 ± 0.03 V 					
Voltage detector		Rising edge: 1.67 V to 3.13 V (12 stages) Falling edge: 1.63 V to 3.06 V (12 stages)					
On-chip debug function		Provided					
Power supply v	oltage	VDD = 1.6 to 3.6 V (TA = -40 to +85°C) VDD = 2.4 to 3.6 V (TA = -40 to +105°C)					
Operating ambi	ent temperature	TA = -40 to +85°C (A: Consumer applications), TA	A = -40 to +105°C (G: Industrial applications)				

Note 1. The number in parentheses indicates the number of signal outputs when 8 coms are used.

Note 2. The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

<R>

2.2.2 On-chip oscillator characteristics

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fносо			1		48	MHz
High-speed on-chip oscillator		-20 to +85°C	1.8 V ≤ VDD ≤ 3.6 V	-1.0		+1.0	%
clock frequency accuracy			1.6 V ≤ VDD ≤ 1.8 V	-5.0		+5.0	%
		-40 to -20°C	1.8 V ≤ VDD < 3.6 V	-1.5		+1.5	%
			1.6 V ≤ VDD ≤ 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fiL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.2.3 PLL oscillator characteristics

$(TA = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note	fpllin	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	fpll			48.00		MHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.3.2 Supply current characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

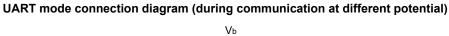
(1/2)Parameter Symbol Conditions MIN. TYP. MAX. Unit VDD = 3.6 V 2.8 Supply IDD1 Operating HS fHOCO = 48 MHz Note 3, Basic 2.2 mΑ current Note 1 mode (high-speed main) fiH = 24 MHz Note 3 operation VDD = 3.0 V 2.2 2.8 mode Note 5 Normal VDD = 3.6 V 4.4 8.5 operation VDD = 3.0 V 4.4 8.5 VDD = 3.6 V fHOCO = 24 MHz Note 3. Basic 2.0 2.6 operation fiH = 24 MHz Note 3 VDD = 3.0 V 2.0 2.6 VDD = 3.6 V Normal 4.2 6.8 operation VDD = 3.0 V 4.2 6.8 VDD = 3.6 V fHOCO = 16 MHz Note 3, Normal 3.1 4.9 operation fiH = 16 MHz Note 3 VDD = 3.0 V 3.1 4.9 IS fHOCO = 8 MHz Note 3, Normal VDD = 3.0 V 1.4 2.2 mΑ (low-speed main) fIH = 8 MHz Note 3 operation VDD = 2.0 V 1.4 2.2 mode Note 5 ١V fHOCO = 4 MHz Note 3, VDD = 3.0 V 1.3 1.8 Normal mΑ (low-voltage main) fIH = 4 MHz Note 3 operation VDD = 2.0 V 1.3 1.8 mode Note 5 HS 3.5 5.5 fmx = 20 MHz Note 2, Normal Square wave input mΑ (high-speed main) VDD = 3.6 V operation Resonator connection 3.6 5.7 mode Note 5 fmx = 20 MHz Note 2, 3.5 5.5 Normal Square wave input VDD = 3.0 V operation Resonator connection 3.6 5.7 fMX = 16 MHz Note 2, 2.9 4.5 Normal Square wave input VDD = 3.6 V operation Resonator connection 3.1 4.6 fmx = 16 MHz Note 2, Normal Square wave input 2.9 4.5 VDD = 3.0 Voperation Resonator connection 3.1 4.6 fmx = 10 MHz Note 2, Normal Square wave input 2.1 3.2 VDD = 3.6 V operation Resonator connection 2.2 3.2 2.1 3.2 $f_{MX} = 10 MH_7 Note 2$ Normal Square wave input VDD = 3.0 V operation Resonator connection 2.2 3.2 IS fMX = 8 MHz Note 2, Normal Square wave input 1.2 2.0 mΑ (low-speed main) operation VDD = 3.6 V Resonator connection 1.3 2.0 mode Note 5 fMX = 8 MHz Note 2. Normal Square wave input 1.2 2.1 VDD = 3.0 V operation Resonator connection 1.3 22 HS fPLL = 48 MHz, Normal VDD = 3.6 V 4.7 7.5 mΑ (High-speed main) fCLK = 24 MHz Note 2 operation VDD = 3.0 V 4.7 7.5 mode fPLL = 48 MHz, Vdd = 3.6 V 3.1 5.1 Normal (PLL operation) fCLK = 12 MHz Note 2 operation VDD = 3.0 V 3.1 5.1 fPLL = 48 MHz. VDD = 3.6 V 23 39 Normal fclk = 6 MHz Note 2 operation VDD = 3.0 V 2.3 3.9 Subsystem clock 4.6 fSUB = 32.768 kHz Note 4 Normal Square wave input 6.9 μΑ operation TA = -40°C operation Resonator connection 47 69 fsub = 32.768 kHz^{Note 4} Normal Square wave input 4.9 7.0 TA = +25°C operation Resonator connection 5.0 7.2 5.2 fsub = 32.768 kHzNote 4 Normal Square wave input 76 TA = +50°C operation Resonator connection 5.2 7.7 fsub = 32.768 kHzNote 4 Normal Square wave input 5.5 9.3 $T_A = +70^{\circ}C$ operation Resonator connection 5.6 9.4 13.3 fsub = 32.768 kHz^{Note 4} Normal Square wave input 6.2 TA = +85°C operation 62 134 Resonator connection

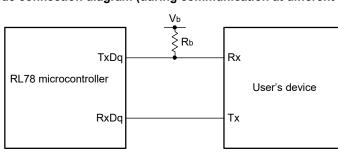
(Notes and Remarks are listed on the next page.)

(1/2)

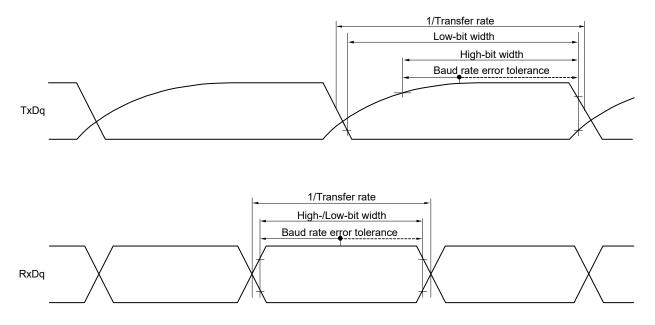
2.4 AC Characteristics

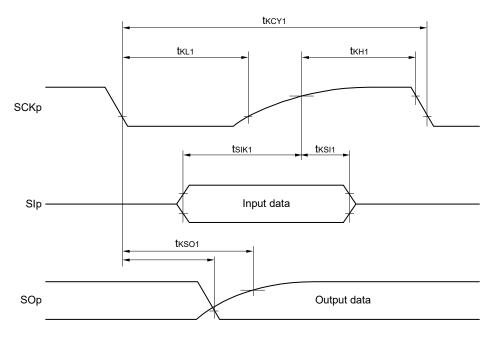
2.4.1 Basic operation

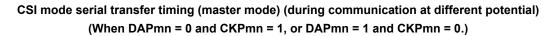

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

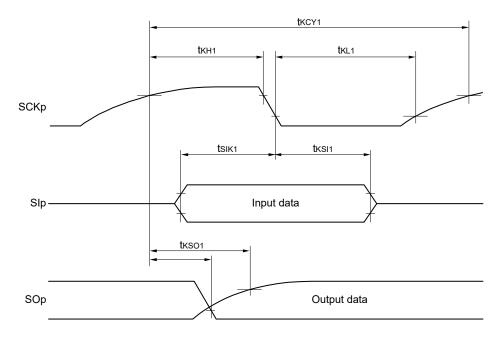

Items	Symbol		Conditions				MAX.	Unit
Instruction cycle	Тсү	Main system	HS (high-speed main)	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0.0417		1	μs
(minimum instruction		clock (fMAIN)	mode	$2.4 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$	0.0625		1	μs
execution time)		operation	LS (low-speed main) mode	1.8 V ≤ VDD ≤ 3.6 V	0.125		1	μs
			LV (low-voltage main) mode	1.6 V ≤ VDD ≤ 3.6 V	0.25		1	μs
		Subsystem clo	ock (fSUB) operation	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0.0417		1	μs
		programming	mode	$2.4 \text{ V} \leq \text{VDD} < 2.7 \text{ V}$	0.0625		1	μs
		mode	LS (low-speed main) mode	1.8 V ≤ VDD ≤ 3.6 V	0.125		1	μs
			LV (low-voltage main) mode	1.8 V ≤ VDD ≤ 3.6 V	0.25		1	μs
External main system	tem fEX 2.7 V ≤ VDD ≤		3.6 V		1.0		20.0	MHz
clock frequency		$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$			1.0		16.0	MHz
		1.8 V ≤ VDD <	2.4 V		1.0		8.0	MHz
		1.6 V ≤ VDD <	1.8 V		1.0		4.0	MHz
	fext				32		35	kHz
External main system	texн,	2.7 V ≤ VDD ≤	3.6 V		24			ns
clock input high-level	tEXL	2.4 V ≤ VDD <	2.7 V		30			ns
width, low-level width		1.8 V ≤ VDD <	2.4 V		60			ns
		1.6 V ≤ VDD <	1.8 V		120			ns
	texhs, texls				13.7			μs
TI00 to TI07 input high-level width, low-level width	t⊤ıн, t⊤ı∟				1/fмск + 10			ns

Remark fMCK: Timer array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 7))


UART mode bit width (during communication at different potential) (reference)


- Remark 1. $Rb[\Omega]$: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0 to 3)


Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

2.6.6 LVD circuit characteristics

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD2	Power supply rise time	3.07	3.13	3.19	V
voltage			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pul	se width	tLW		300			μs
Detection de	lav time					300	μs

Caution Set the detection voltage (VLVD) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range. HS (high-speed main) mode: VDD = 2.7 to 3.6 V at 1 MHz to 24 MHz

 $V_{DD} = 2.4$ to 3.6 V at 1 MHz to 16 MHz

LS (low-speed main) mode: VDD = 1.8 to 3.6 V at 1 MHz to 8 MHz

LV (low-voltage main) mode: VDD = 1.6 to 3.6 V at 1 MHz to 4 MHz

(2) 1/4 bias method

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 µF Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C4 Note 1 =	0.47 μF	2 VL1 - 0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C4 Note 1 =	= 0.47 μF	3 VL1 - 0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 Note 1 =	= 0.47 μF	4 VL1 - 0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C5 Note 1 =	= 0.47μF	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

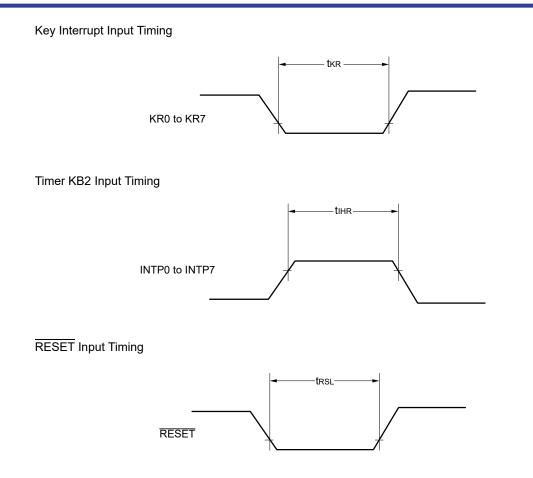
C4: A capacitor connected between VL3 and GND

C5: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 µF±30%

Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).


Suppy Note 1 IMAL mode No.2 HAL Ford Marken 2 HAL Ford Marken 2 HAL Ford Marken 2 Marken 2 </th <th>Parameter</th> <th>Symbol</th> <th>Conditions</th> <th></th> <th></th> <th></th> <th>MIN.</th> <th>TYP.</th> <th>MAX.</th> <th>Unit</th>	Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit			
Note 1 Note 1 Note 2 Note 1 Note 3 V 0.07 3.4 Note 1 Note 3 V 0.55 2.7 Note 2 Note 3 V 0.55 2.7 Note 3 V 0.55 2.7 Note 3 V 0.048 1.9 Note 3 V 0.048 1.9 Note 3 V 0.05 2.01 0.44 1.00 Note 7 Note 3 Square wave input 0.33 2.10 Note 3 Note 1 Note 7 Note 3 Square wave input 0.30 1.20 Note 3 Square wave input 0.30 1.20 Note 3 Note	Supply		HALT mode		fHOCO = 48 MHz Note 4,	VDD = 3.6 V		0.77	3.4	mA			
$ \left \begin{tabular}{ c c c c c c c c } & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Note 2		mode Note 7	fiH = 24 MHz Note 4	VDD = 3.0 V		0.77	3.4				
Image: here of the high speed main mode Nae 7 Image:	Note				fHOCO = 24 MHz Note 4,	VDD = 3.6 V		0.55	2.7				
$ \left \begin{array}{ c c c c } & $					fiH = 24 MHz Note 4	VDD = 3.0 V		0.55	2.7				
HS (high-speed main) mode Note 7 htt = 20 MHz Nete 3 Von 3.6 V Square wave input 0.03 2.10 Note 3 mA Von 3.6 V Resonator connection 0.61 2.20 htt = 20 MHz Nete 3, Von 3.0 V Square wave input 0.34 2.10 Note 3 MA Yon 3.6 V Resonator connection 0.051 2.20 htt = 16 MHz Nete 3, Von 3.0 V Square wave input 0.30 1.25 Note 3 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.30 1.25 Note 3 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.22 1.10 Note 3 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.22 1.10 Note 3 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.22 1.10 Note 3 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.22 1.10 Note 3 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.22 1.10 Note 3 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.22 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.22 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.22 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.22 Image 20 MHz Nete 3, Von 3.0 V Square wave input 0.					fHOCO = 16 MHz Note 4,	VDD = 3.6 V		0.48	1.9				
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $					fiн = 16 MHz ^{Note 4}	VDD = 3.0 V		0.47	1.9				
Image: here is a serie of the seri				,	fMX = 20 MHz Note 3,	Square wave input		0.35	2.10	mA			
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				mode Note 7	VDD = 3.6 V	Resonator connection		0.51	2.20				
Index 6 Note 3 Vibe 3.6 V O.30 1.25 Index 6 Max 16 Max 16 Max 10 0.45 1.41 Index 16 Max 16 Max 10 Square wave input 0.29 1.23 Vab 3.0 V Resonator connection 0.45 1.41 Index 10 Max 10 Max 10 Max 10 Max 10 Max 10 Max 10 1.20 1.23 Vab 3.0 V Resonator connection 0.43 1.10 0.30 1.20 fmx 10 MHz Note 3, Vab 3.0 V Square wave input 0.22 1.10 fmx = 10 MHz Note 3, Vab 3.0 V Resonator connection 0.30 1.20 fmx = 48 MHz, Vab 3 Quare wave input 0.22 1.10 (High-speed main) mode (PLL operation) fmx = 48 MHz, Vab 3 Vab 3.6 V 0.99 2.93 fmx = 48 MHZ, Vab 3 Vab 3.0 V 0.84 2.90 Incx 4.8 MA Vab 3.0 V 0.84 2.90 full sets State MHZ, Vab 3 Quare wave input </td <td></td> <td></td> <td></td> <td></td> <td>fMX = 20 MHz Note 3,</td> <td>Square wave input</td> <td></td> <td>0.34</td> <td>2.10</td> <td></td>					fMX = 20 MHz Note 3,	Square wave input		0.34	2.10				
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					VDD = 3.0 V	Resonator connection		0.51	2.20				
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $					fMX = 16 MHz Note 3,	Square wave input		0.30	1.25				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					VDD = 3.6 V	Resonator connection		0.45	1.41				
$ \left \begin{array}{c c c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					fMX = 16 MHz Note 3,	Square wave input		0.29	1.23				
$ \left \text{NDD} = 3.6 \text{ V} \\ \hline \text{Resonator connection} \\ \hline \text$					VDD = 3.0 V	Resonator connection		0.45	1.41				
$ \frac{1}{1000} = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ MHZ \ Note 3 \ Vop = 3.0 \ V = 1.0 \ MHZ \ MHZ \ Note 3 \ Note 4.0 \ MHZ \ MOD = 3.0 \ MD \ M$				HS (High-speed main)	fMX = 10 MHz Note 3,	Square wave input		0.23	1.10				
$ \begin{tabular}{ c c c c c c c } \hline Vode 3.0 V & Resonator connection & 0.30 & 1.20 \\ \hline HS (High-speed main) mode (PLL operation) \\ \hline MX = 48 MHz, \\ (PLL operation) & fcLx = 24 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 12 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 6 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 6 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fcLx = 6 MHz Nole 3 \\ \hline MX = 48 MHz, \\ fsUB = 32.768 kHz Nole 3 \\ \hline Ta = -40^{\circ}C \\ \hline Ta = -40^{\circ}C \\ \hline Ta = +25^{\circ}C \\ \hline Ta = +50^{\circ}C \\ \hline Ta = +50^{\circ}C \\ \hline Ta = +85^{\circ}C \\ \hline Ta = +85^{\circ}C \\ \hline Ta = +25^{\circ}C \\ \hline Ta = $					VDD = 3.6 V	Resonator connection		0.30	1.20				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					fMX = 10 MHz Note 3,	Square wave input		0.22	1.10				
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $					Vdd =	VDD = 3.0 V	Resonator connection		0.30	1.20			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						VDD = 3.6 V		0.99	2.93	mA			
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $						VDD = 3.0 V		0.99	2.92				
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $					fmx = 48 MHz,	VDD = 3.6 V		0.89	2.51				
$ \left \begin{array}{c c c c c c c c c } & \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						fC fN	fcLк = 12 MHz ^{Note} fмx = 48 MHz,	fCLK = 12 MHz Note 3	VDD = 3.0 V		0.89	2.50	
$\frac{1}{100} = 32.768 \text{ kHz Note 5} \\ \frac{1}{100} = 32.768 \text{ kHz Note 5} \\ \frac{1}{10} = 32.768 \text{ kHz Note 5} \\ \frac{1}{10} = 32.768 \text{ kHz Note 5} \\ \frac{1}{10} = 32.768 kHz Note $								fmx = 48 MHz,	VDD = 3.6 V		0.84	2.30	
$\begin{tabular}{ c c c c c c c } \hline TA = -40^\circ C & \hline Resonator connection & 0.51 & 0.80 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +25^\circ C & \hline Resonator connection & 0.62 & 0.91 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +50^\circ C & \hline Resonator connection & 0.75 & 2.49 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +70^\circ C & \hline Resonator connection & 1.08 & 4.22 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +85^\circ C & \hline Resonator connection & 1.08 & 4.22 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +85^\circ C & \hline Resonator connection & 1.08 & 4.22 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +85^\circ C & \hline Resonator connection & 1.08 & 4.22 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +85^\circ C & \hline Resonator connection & 1.62 & 8.23 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +85^\circ C & \hline Resonator connection & 1.62 & 8.23 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +105^\circ C & \hline Resonator connection & 1.62 & 8.23 \\ \hline fsuB = 32.768 \ kHz \ Note 5 \\ \hline TA = +25^\circ C & \hline 0.18 & 0.52 \\ \hline TA = +25^\circ C & \hline 0.34 & 2.21 \\ \hline TA = +50^\circ C & \hline TA = +25^\circ C & \hline 0.34 & 2.21 \\ \hline TA = +70^\circ C & \hline 0.64 & 3.94 \\ \hline TA = +85^\circ C & \hline 1.18 & 7.95 \\ \hline \end{tabular}$					fCLK = 6 MHz Note 3	VDD = 3.0 V		0.84	2.29				
$\frac{1}{1003} = \frac{1}{1000} + 1$				Subsystem clock	Subsystem clock fsuB = 32.768 kHz Note 5 So	Square wave input		0.32	0.61	μA			
$ \begin{array}{ c c c c c c } \hline IDD3 \\ Note 6 \\ \hline IDD3 \\ IDD3 \\ IDD3 \\ IDD3 \\ ID12 \\ IID12 \\ IIID12 \\ IIIID12 \\ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$				operation	operation	operation	pperation $T_A = -40^{\circ}C$	Resonator connection		0.51	0.80		
$\frac{1}{1003} = \frac{1}{1003} = \frac{1}{100} = $					fsub = 32.768 kHz Note 5	Square wave input		0.41	0.74				
$ \begin{array}{ c c c c c c c c } \hline IA = +50^{\circ}C & \hline Resonator connection & 0.75 & 2.49 \\ \hline fSUB = 32.768 \ \text{kHz} \ \text{Note 5} \\ \hline IA = +70^{\circ}C & \hline Resonator connection & 1.08 & 4.22 \\ \hline fSUB = 32.768 \ \text{kHz} \ \text{Note 5} \\ \hline IA = +85^{\circ}C & \hline Resonator connection & 1.08 & 4.22 \\ \hline fSUB = 32.768 \ \text{kHz} \ \text{Note 5} \\ \hline IA = +85^{\circ}C & \hline Resonator connection & 1.62 & 8.23 \\ \hline fSUB = 32.768 \ \text{kHz} \ \text{Note 5} \\ \hline IA = +105^{\circ}C & \hline Square \ \text{wave input} & 3.29 & 41.00 \\ \hline Resonator \ \text{connection} & 3.63 & 41.00 \\ \hline \end{array} \\ \hline \begin{array}{c} \text{IDD3} \\ \text{Note 6} & \hline \\ \text{Note 8} & \hline \\ \hline IA = +25^{\circ}C & \hline \\ IA = +25^{\circ}C & \hline \\ \hline IA = +25^{\circ}C & \hline \\ \hline IA = +50^{\circ}C & \hline \\ \hline IA = +70^{\circ}C & \hline \\ \hline IA = +70^{\circ}C & \hline \\ \hline IA = +70^{\circ}C & \hline \\ \hline IA = +85^{\circ}C & \hline \\ \hline \hline IA = +85^{\circ}C & \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \mu A \\ \hline A = +85^{\circ}C & \hline \\ \hline IA = +85^{\circ}C & \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \mu A \\ \hline \end{array} \\ \hline $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline					TA = +25°C	Resonator connection		0.62	0.91				
$\frac{1}{1003} = \frac{1}{100} + 1$					fsub = 32.768 kHz Note 5	Square wave input		0.52	2.30				
$ \begin{array}{ c c c c c c } \hline TA = +70^{\circ} C & \hline Resonator connection & 1.08 & 4.22 \\ \hline fSUB = 32.768 \ \mbox{kHz Note 5} \\ TA = +85^{\circ} C & \hline Square wave input & 1.38 & 8.04 \\ \hline Resonator connection & 1.62 & 8.23 \\ \hline fSUB = 32.768 \ \mbox{kHz Note 5} \\ TA = +105^{\circ} C & \hline Resonator connection & 3.63 & 41.00 \\ \hline \hline Resonator connection & 3.63 & 41.00 \\ \hline \hline Resonator connection & 3.63 & 41.00 \\ \hline \hline Resonator connection & 0.18 & 0.52 \\ \hline TA = +25^{\circ} C & 0.34 & 2.21 \\ \hline TA = +70^{\circ} C & 0.64 & 3.94 \\ \hline TA = +85^{\circ} C & 0.64 & 3.94 \\ \hline \hline TA = +85^{\circ} C & 0.64 & 3.94 \\ \hline \hline TA = +85^{\circ} C & 0.64 & 3.94 \\ \hline \end{array} \right) $					TA = +50°C	Resonator connection		0.75	2.49				
$\frac{1}{100} = \frac{1}{100} + \frac{1}$					fsub = 32.768 kHz Note 5	Square wave input		0.82	4.03				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					TA = +70°C	Resonator connection		1.08	4.22				
$\frac{1}{1000} = \frac{1}{100} + 1$						Square wave input		1.38	8.04				
$ \begin{array}{ c c c c c c c } \hline \mbox{TA} & = +105^{\circ}\mbox{C} & \hline \mbox{Resonator connection} & 3.63 & 41.00 \\ \hline \mbox{IDD3} \\ \mbox{Note 6} & $ \begin{tabular}{c c c c c c c } \hline \mbox{TA} & = -40^{\circ}\mbox{C} & & & & & & & & & & & & & & & & & & &$					TA = +85°C	Resonator connection		1.62	8.23				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Square wave input		3.29	41.00				
Note 6 Note 8 TA = $+25^{\circ}$ C 0.25 0.52 TA = $+50^{\circ}$ C 0.34 2.21 TA = $+70^{\circ}$ C 0.64 3.94 TA = $+85^{\circ}$ C 1.18 7.95					TA = +105°C	Resonator connection		3.63	41.00				
$T_A = +25^{\circ}C$ 0.25 0.52 $T_A = +50^{\circ}C$ 0.34 2.21 $T_A = +70^{\circ}C$ 0.64 3.94 $T_A = +85^{\circ}C$ 1.18 7.95			-	$T_A = -40^{\circ}C$				0.18	0.52	μA			
TA = +70°C 0.64 3.94 TA = +85°C 1.18 7.95		Note 6 Note 8 TA = +25°C				0.25	0.52						
T _A = +85°C 1.18 7.95				T _A = +50°C				0.34	2.21				
				T _A = +70°C					3.94				
				T _A = +85°C				1.18	7.95				
				T _A = +105°C			1	2.92	40.00				

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)

(Notes and Remarks are listed on the next page.)

(2/2)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +105°C, 2.4 V ≤ VDD ≤ 3.6 V, VSS = 0 V)

Parameter	Symbol		Conditions		HS (high-speed main) Mode		
Farameter			onulions	MIN.	MAX.	Unit	
SCKp cycle time	tKCY1	tĸcy1 ≥ fclĸ/4	tkcy1 ≥ fclk/4 2.7 V ≤ VDD ≤ 3.6 V			ns	
			$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	500		ns	
SCKp high-/low-level width	tĸн1, tĸ∟1	$2.7 V \leq VDD \leq 3.$	2.7 V ≤ VDD ≤ 3.6 V			ns	
		$2.4 \text{ V} \leq \text{VDD} \leq 3.$	6 V	tkcy1/2 - 76		ns	
SIp setup time (to SCKp↑) ^{Note 1}	tSIK1	$2.7 V \leq VDD \leq 3.$	6 V	66		ns	
		$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		133		ns	
SIp hold time (from SCKp↑) Note 2	tKSI1			38		ns	
Delay time from SCKp↓ to SOp output ^{Note 3}	tKSO1	C = 30 pF Note 4			50	ns	

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

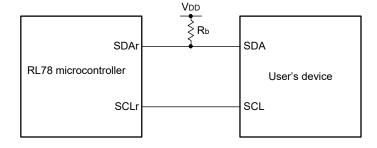
Remark 1. p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)

Remark 2. fMCK: Serial array unit operation clock frequency

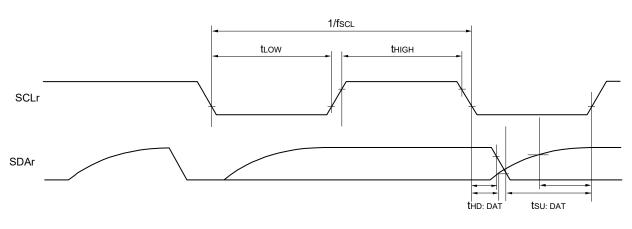
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (simplified I²C mode)

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

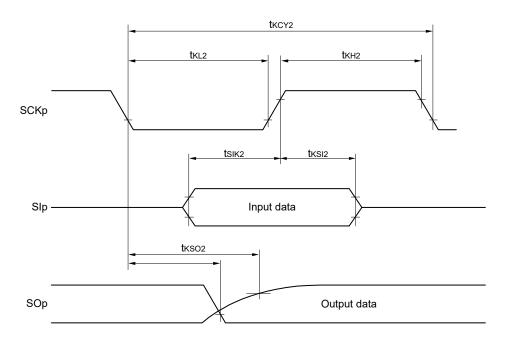

Parameter	Complete J	Conditions	HS (high-speed	main) Mode	Unit
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fSCL	$2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω		400 Note 1	kHz
		$\begin{array}{l} 2.4 \ V \leq VDD \leq 3.6 \ V, \\ Cb = 100 \ pF, \ Rb = 3 \ k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7 V \le VDD \le 3.6 V$, Cb = 50 pF, Rb = 2.7 kΩ	1200		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	thigh	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega$	1200		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 3 \text{ k}\Omega$	4600		ns
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega$	1/fMCK + 200 Note 2		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 3 \text{ k}\Omega$	1/fMCK + 580 Note 2		ns
Data hold time (transmission)	thd: dat	$2.7 V \le VDD \le 3.6 V,$ Cb = 50 pF, Rb = 2.7 kΩ	0	770	ns
		$\begin{array}{l} 2.4 \ V \leq VDD \leq 3.6 \ V, \\ Cb = 100 \ pF, \ Rb = 3 \ k\Omega \end{array}$	0	1420	ns

Note 1. The value must be equal to or less than $f_{MCK}/4$.

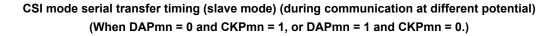

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

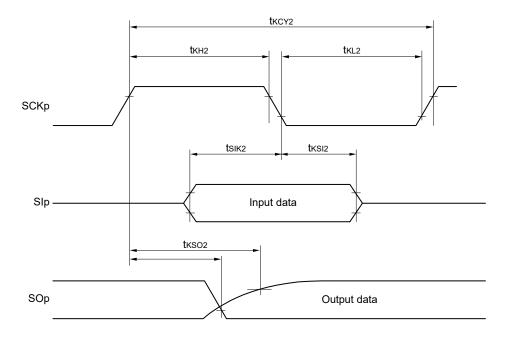
Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)



Simplified I²C mode serial transfer timing (during communication at same potential)


- Remark 1. Rb[Ω]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance
- **Remark 2.** r: IIC number (r = 00, 10, 20, 30), g: PIM number (g = 0 to 3),
- h: POM number (h = 0 to 3)


Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark
 p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1),

 n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

(3) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target ANI16 to ANI21, internal reference voltage, temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, 2.4 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, VSS = 0 V, AVSS = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
Overall error Note 1	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±7.0	LSB
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le 3.6 \text{ V}$	4.125			μs
Zero-scale error Note 1	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±5.0	LSB
Full-scale error Note 1	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB
Integral linearity error Note 1	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±3.0	LSB
Differential linearity error Note 1	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le 3.6 \text{ V}$			±2.0	LSB
Analog input voltage	VAIN			0		AVREFP	V
		Internal reference voltage (2.4 V ≤ VDD ≤ 3.6 V, HS (high-speed main) mode)		V	BGR Note	2	
		Temperature sensor output voltage (2.4 V ≤ VDD ≤ 3.6 V, HS (high-speed main) mode)		V	MP25 Not	e 2	

Note 1. Excludes quantization error (±1/2 LSB).

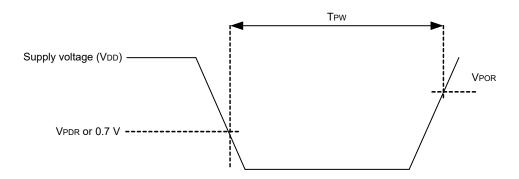
Note 2. Refer to 3.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

3.6.4 Comparator

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Input voltage range	lvref			0		Vdd - 1.4	V
	lvcmp			-0.3		VDD + 0.3	V
Output delay td	td	VDD = 3.0 V Input slew rate > 50 mV/µs	High-speed comparator mode, standard mode			1.2	μs
			High-speed comparator mode, window mode			2.0	μs
			Low-speed comparator mode, standard mode		3	5.0	μs
High-electric-potential judgment voltage	VTW+	High-speed comparator mode, window mode			0.76 Vdd		V
Low-electric-potential judgment voltage	VTW-	High-speed comparator mode, window mode			0.24 Vdd		V
Operation stabilization wait time	t CMP			100			μs
Internal reference voltage ^{Note}	Vbgr	2.4 V \leq VDD \leq 3.6 V, HS (high-speed main) mode		1.38	1.45	1.50	V

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$


Note Not usable in sub-clock operation or STOP mode.

3.6.5 POR circuit characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time Note	1.44	1.50	1.56	V
Minimum pulse width	TPW		300			μs

Note Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.8.3 Capacitor split method

(1) 1/3 bias method

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V∟4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		Vdd		V
VL2 voltage	VL2	C1 to C4 = 0.47 µF Note 2	2/3 VL4 - 0.07	2/3 VL4	2/3 VL4 + 0.07	V
VL1 voltage	VL1	C1 to C4 = 0.47 µF Note 2	1/3 VL4 - 0.08	1/3 VL4	1/3 VL4 + 0.08	V
Capacitor split wait time Note 1	t∨wait		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

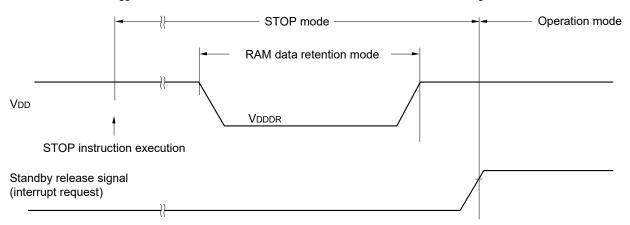
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND


C1 = C2 = C3 = C4 = 0.47 µF±30%

3.9 RAM Data Retention Characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.44 ^{Note}		3.6	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard" Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances: machine tools: personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.3.0-1 November 2016) RENESAS **Renesas Electronics Corporation** SALES OFFICES http://www.renesas.com Refer to "http://www.renesas.com/" for the latest and detailed information Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

 Renesas Electronics (China) Co., Ltd.

 Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China

 Tei: +86-10-8235-1155, Fax: +86-10-8235-7679

 Renesas Electronics (Shanghai) Co., Ltd.

 Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333

 Tei: +86-17-2226-0888, Fax: +86-228-0999

 Renesas Electronics Hong Kong Limited

 Unit 1001-1611, 1617, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tei: +86-2265-6888, Fax: +86-2286-9092

 Renesas Electronics Taiwan Co., Ltd.

 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

 Tei: +88-2-8175-9600, Fax: +886 2-8175-9670

 Renesas Electronics Singapore Pte. Ltd.

 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

 Tei: +261-2020, Fax: +865-210-3000

 Renesas Electronics Malaysia Sdn.Bhd.

 Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

 Tei: +267-2080, Fax: +865-210-3000

 Renesas Electronics India Pvt. Ltd.

 No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India

 Tei: +30-67208700, Fax: +80-7208777

 Renesas Electronics Korea Co., Ltd.

 12F., 234 Teheran-ro, Gangman-Gu, Seoul, 135-080, Korea