

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	73
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 13x8/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f111pjafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	VI = VDD				1	μA
	ILIH2	P20, P21, P140 to P143	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	ILIH4	P150 to P156	VI = AVDI	0			1	μA
Input leakage current, low	°					-1	μA	
	ILIL2	P20, P21, P140 to P143	VI = Vss				-1	μA
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
	ILIL4	P150 to P156	VI = AVss				-1	μA
On-chip pull-up	RU1	P00 to P07, P10 to P17, P20 to P27,	VI = Vss	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	10	20	100	kΩ
resistance		P30 to P37, P50 to P57, P70 to P77, P140 to P143, P125 to P127		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.4 \text{ V}$	10	30	100	
	RU2	P40 to P46, P80 to P83	VI = Vss		10	20	100	kΩ

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Note 1.	Current flowing to VDD.
Note 2.	When high speed on-chip oscillator and high-speed system clock are stopped.
Note 3.	Current flowing only to the real-time clock 2 (excluding the operating current of the low-speed on-chip oscillator and the
	XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC,
	when the real-time clock 2 operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected,
	IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock 2.
Note 4.	Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and

- illator and N the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and ITMKA, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the 12-bit interval timer.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode.
- Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, IAVREF, IADREF when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing to the AVDD.
- Note 8. Current flowing from the reference voltage source of A/D converter.
- Note 9. Operation current flowing to the internal reference voltage.
- Note 10 Current flowing to the AVREFP.
- Current flowing only to the D/A converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and Note 11. IDA when the D/A converter operates in an operation mode or the HALT mode.
- Note 12. Current flowing only to the comparator circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates in the Operating, HALT or STOP mode.
- Note 13. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- Note 14. Current flowing only during self-programming.
- Note 15. Current flowing only during data flash rewrite.
- For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/L1C User's Manual. Note 16.
- Note 17. Current flowing only to the LCD controller/driver (VDD pin). The current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.
- Note 18. Not including the current that flows through the external divider resistor divider resistor.
- Note 19. Current flowing to the UVBUS.
- Note 20. Including the operating current when fPLL = 48 MHz.
- Note 21. Including the current supplied from the pull-up resistor of the UDP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fCLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

RL	_78/L	_1C

Parameter	Sym	Conditions		HS (high-spee Mode	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
	bol			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tĸcy1 ≥ fclk/4	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	167		500		1000		ns
			$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	250		500		1000		ns
			1.8 V ≤ VDD ≤ 3.6 V	-		500		1000		ns
			1.6 V ≤ VDD ≤ 3.6 V	-		—		1000		ns
SCKp high-/	tĸнı,	2.7 V ≤ VDD ≤ 3	3.6 V	tксү1/2 - 18		tkcy1/2 - 50		tkcy1/2 - 50		ns
low-level width	tĸ∟1	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		tксү1/2 - 38		tkcy1/2 - 50		tkcy1/2 - 50		ns
		1.8 V ≤ VDD ≤ 3.6 V		-		tkcy1/2 - 50		tkcy1/2 - 50		ns
		1.6 V ≤ VDD ≤ 3	3.6 V	-		—		tkcy1/2 - 100		ns
SIp setup time	tsik1	2.7 V ≤ VDD ≤ 3	44		110		110		ns	
(to SCKp↑) ^{Note 1}		$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		75		110		110		ns
		1.8 V ≤ VDD ≤ 3	3.6 V	_		110		110		ns
		1.6 V ≤ VDD ≤ 3	3.6 V	_		—		220		ns
SIp hold time	tKSI1	$2.4 \text{ V} \leq \text{VDD} \leq 3$	3.6 V	19		19		19		ns
(from SCKp↑) ^{Note 2}		1.8 V ≤ VDD ≤ 3	3.6 V	—		19		19		ns
		1.6 V ≤ VDD ≤ 3	3.6 V	—		—		19		ns
Delay time from	tKSO1		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		25		50		50	ns
SCKp↓ to SOp output Note 3		Note 4	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		25		50		50	ns
			1.8 V ≤ VDD ≤ 3.6 V		—		50		50	ns
			1.6 V ≤ VDD ≤ 3.6 V		_		_		50	ns

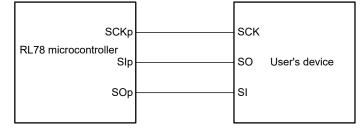
(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, Vss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.


Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0 to 3)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at same potential)

Remark 1. p: CSI number (p = 00, 10, 20, 30)

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(7) Communication at different potential (2.5 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		HS (high-spee Mode	HS (high-speed main) Mode		l main)	LV (low-voltage main) Mode		Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tĸcy1 ≥ fcLĸ/2	$2.7V \le V_{DD} < 3.6 V,$ $2.3 V \le V_b \le 2.7 V,$ $C_b = 20 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	300		1150		1150		ns
SCKp high-level width	tкн1	$2.7 V \le V_{DD} \le 2.3 V \le V_b \le 2$ C _b = 20 pF, Rb	7 V,	tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		ns
SCKp low-level width	tKL1	$2.7 V \le V_{DD} \le 2.3 V \le V_b \le 2$ C _b = 20 pF, Rb		tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tSIK1	$2.7 V \le V_{DD} \le 2.3 V \le V_b \le 2$ C _b = 20 pF, Rb	7 V,	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tKSI1	2.7 V ≤ VDD < 2.3 V ≤ Vb ≤ 2 Cb = 20 pF, Rb		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tKSO1	$2.7 V \le V_{DD} \le 2.3 V \le V_{b} \le 2$ C _b = 20 pF, R _b	7 V,		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tSIK1	2.7 V ≤ VDD < 2.3 V ≤ Vb ≤ 2. Cb = 20 pF, Rb	7 V,	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tKSI1	2.7 V ≤ VDD < 2.3 V ≤ Vb ≤ 2. Cb = 20 pF, Rb	7 V,	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tKSO1	2.7 V ≤ VDD < 2.3 V ≤ Vb ≤ 2. Cb = 20 pF, Rb	7 V,		10		10		10	ns

$(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 2)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

RL78/L1C

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

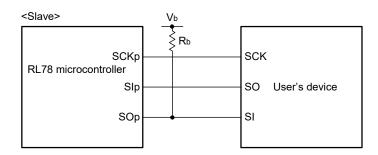
Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 k Ω	177		479		479		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tKSI1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from tKSO1 SCKp↓ to SOp output ^{Note 1}	tKSO1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, \text{R}_{b} = 2.7 \text{ k}\Omega$		195		195		195	ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note } 3, \\ C_b = 30 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{array}$		483		483		483	ns
SIp setup time (to SCKp↓) ^{Note 2}	tSIK1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	44		110		110		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	110		110		483	ns	
SIp hold time (from SCKp↓) ^{Note 2}	tKSI1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ Cb = 30 pF, Rb = 2.7 kΩ	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ \mbox{Note 3}, \\ C_{b} = 30 \ p\mbox{F}, \ R_{b} = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from tκ SCKp↑ to SOp	tKSO1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		25		25		25	ns
output ^{Note 2}		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{Note \ 3}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$		25		25		25	ns

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Note 3. Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10, 12))

2.5.2 Serial interface IICA

(1) I²C standard mode

$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Co	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fscl	Standard mode:	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0	100	0	100	0	100	kHz
frequency		fc∟k ≥ 1 MHz	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	—	—	0	100	0	100	kHz
			$1.6 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	—	—	—	—	0	100	kHz
Setup time of	tsu: sta	$2.7 V \leq VDD \leq 3.6$	S V	4.7		4.7		4.7		μs
restart condition		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	S V	-	_	4.7		4.7		μs
		$1.6 \text{ V} \leq \text{VDD} \leq 3.6$	S V	-	_	-	_	4.7		μs
Hold time Note 1	thd: STA	2.7 V ≤ VDD ≤ 3.6	γV	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	S V	-	_	4.0		4.0		μs
		1.6 V ≤ VDD ≤ 3.6	S V	-	_	-	_	4.0		μs
Hold time when	tLOW	$2.7 V \leq VDD \leq 3.6$	4.7		4.7		4.7		μs	
SCLA0 = "L"		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	S V	-				4.7		μs
			γV	-	_		_			μs
Hold time when		2.7 V ≤ VDD ≤ 3.6	4.0		4.0		4.0		μs	
SCLA0 = "H"		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	γV	-	_	4.0		4.0		μs
		$1.6 \text{ V} \leq \text{VDD} \leq 3.6$	γV	-	_	-	_	4.0		μs
Data setup time	tsu: DAT	$2.7 V \leq VDD \leq 3.6$	S V	250		250		250		ns
(reception)		1.8 V ≤ VDD ≤ 3.6	γV	-	_	250		250		ns
		1.6 V ≤ VDD ≤ 3.6	γV	-	_	-	_	250	MIN. MAX. 0 100 0 100 0 100 4.7 100 4.7 100 4.7 100 4.7 100 4.7 100 4.0 100 4.0 100 4.0 100 4.7 100 4.7 100 4.7 100 4.7 100 4.7 100 4.7 100 4.7 100 4.0 100 4.0 100 250 100	ns
Data hold time	thd: dat	$2.7 V \leq VDD \leq 3.6$	S V	0	3.45	0	3.45	0	3.45	μs
(transmission) Note 2		$1.8 \text{ V} \leq \text{VDD} \leq 3.6$	γV	—	—	0	3.45	0	3.45	μs
		$1.6 \text{ V} \leq \text{VDD} \leq 3.6$	γV	-	—	—	—	0	3.45	μs
Setup time of stop	tsu: sto	2.7 V ≤ VDD ≤ 3.6	γV	4.0		4.0		4.0		μs
condition		1.8 V ≤ VDD ≤ 3.6	γV	-	_	4.0		4.0		μs
		1.6 V ≤ VDD ≤ 3.6	S V	-	_	-	_	4.0		μs
Bus-free time	tBUF	2.7 V ≤ VDD ≤ 3.6	γV	4.7		4.7		4.7		μs
		1.8 V ≤ VDD ≤ 3.6	γV	-	_	4.7		4.7		μs
		1.6 V ≤ VDD ≤ 3.6	SV .	-	_	-	_	4.7		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

 Remark
 The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 Standard mode: Cb = 400 pF, Rb = 2.7 kΩ

(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI6

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		12	bit
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1	
			$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$		8 Note 2	2	
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	±2.5			
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	3.375			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	6.75			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	13.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	2.5625			
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	5.125			
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±1.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±1.0	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±1.5	LSB
Note 3	10-bit resolution $1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$				±1.5		
		8-bit resolution	$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	±1		±1.0	1
Analog input voltage	VAIN		•	0		AVREFP	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

3.1 Absolute Maximum Ratings

		20 0,		(1/3)
Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to + 6.5	V
	UVBUS		-0.5 to + 6.5	V
	AVdd	AVDD ≤ VDD	-0.5 to + 4.6	V
REGC pin input voltage	VIREGC	REGC	-0.3 to + 2.8	V
			and -0.3 to VDD + 0.3 Note 1	
UREGC pin input voltage	VIUREGC	UREGC	-0.3 to UVBUS + 0.3 Note 2	V
nput voltage	VI1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, EXCLK, EXCLKS, RESET	-0.3 to VDD + 0.3 Note 3	V
	VI2	P60, P61 (N-ch open-drain)	-0.3 to + 6.5	V
	Vıз	UDP, UDM	-0.3 to + 6.5	V
	VI4	P150 to P156	-0.3 to AVDD + 0.3 Note 4	V
Output voltage	V01	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P130, P140 to P143	-0.3 to VDD + 0.3 Note 3	V
	Vo2	P150 to P156	-0.3 to AVDD + 0.3 Note 3	V
	V03	UDP, UDM	-0.3 to + 3.8	V
Analog input voltage	VAI1	ANI16 to ANI21	-0.3 to VDD + 0.3	V
			and AVREF(+) + 0.3 Notes 3, 5	
	VAI2	ANI0 to ANI6	-0.3 to AVDD + 0.3 and AVREF(+) + 0.3 Notes 3, 5	V

Absolute Maximum Ratings (TA = 25°C)

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Connect the UREGC pin to Vss via a capacitor (0.33 μF). This value regulates the absolute maximum rating of the UREGC pin. Do not use this pin with voltage applied to it.

Note 3. Must be 6.5 V or lower.

Note 4. Must be 4.6 V or lower.

Note 5. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

(1/3)

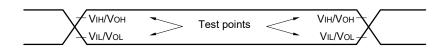
Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET	VI = VDD				1	μΑ
	ILIH2	P20, P21, P140 to P143	VI = VDD				1	μA
			In input port or external clock input			1	μA	
				In resonator connection			10	μA
	ILIH4	P150 to P156	VI = AVDI	D			1	μA
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P46, P50 to P57, P60, P61, P70 to P77, P80 to P83, P125 to P127, P137, P140 to P143, RESET					-1	μA
	ILIL2	P20, P21, P140 to P143	VI = Vss				-1	μA
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
	ILIL4	P150 to P156	VI = AVss	6			-1	μA
On-chip pull-up resistance	Ru1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P77, P140 to P143, P125 to P127	VI = VSS	$2.4 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	10	20	100	kΩ
	Ru2	P40 to P46, P80 to P83	VI = Vss		10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

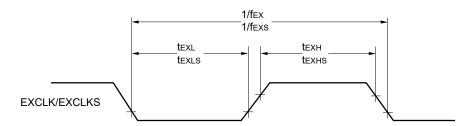
- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD controller/driver, A/D converter, D/A converter, comparator, LVD circuit, USB 2.0 function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the real-time clock 2, 12-bit interval timer, and watchdog timer.
- Note 5.
 Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

 HS (high-speed main) mode:
 2.7 V ≤ VDD ≤ 3.6 V@1 MHz to 24 MHz

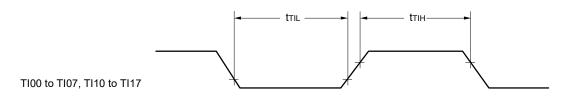
 Quark
 2.4 V(1) V(0) ≤ 3.6 V@1 MHz to 24 MHz
 - $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}_{@}1 \text{ MHz}$ to 16 MHz
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (48 MHz max.)
- Remark 3. fill: Main system clock source frequency when the high-speed on-chip oscillator clock divided 1, 2, 4, or 8, or the PLL clock divided by 2, 4, or 8 is selected (24 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

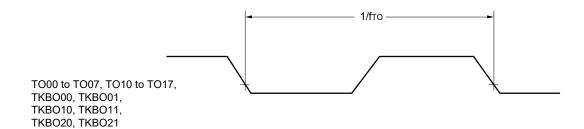


Parameter	Symbol	Conditions					TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	FIL Note 1			0.20		μA			
RTC2 operating current	IRTC Notes 1, 3			0.02		μA			
12-bit interval timer operating current	ITMKA Notes 1, 2, 4			0.02		μA			
Watchdog timer operating current	IWDT Notes 1, 2, 5	fı∟ = 15 kHz		0.22		μA			
A/D converter operating current	IADC Notes 6, 7	AVDD = 3.0 V, when conversion at maximum speed					422	720	μA
AVREF (+) current	IAVREF Note 8	AVDD = 3.0 V, ADREFP1 = 0, ADREFP0 = 0 Note 7					14.0	25.0	μA
		AVREFP = 3.0 V, ADREFP1 = 0, ADREFP0 = 1 Note 10					14.0	25.0	
		ADREFP1 = 1, ADREFP0 = 0 Note 1					14.0	25.0	
A/D converter reference voltage current	IADREF Notes 1, 9	VDD = 3.0 V					75.0		μA
Temperature sensor operating current	ITMPS Note 1						78		μA
D/A converter operating current	IDAC Notes 1, 11	Per D/A converter channel					0.53	1.5	mA
Comparator operating current	ICMP Notes 1, 12	VDD = 3.6 V,	Window mode			12.5		μA	
		Regulator output voltage = 2.1 V	Comparator high-speed mode				4.5		μA
		·g ·	Comparator low-speed	d mode			1.2		μA
LVD operating current	ILVD Notes 1, 13						0.06		μA
Self-programming operating current	IFSP Notes 1, 14						2.50	12.20	mA
BGO operating current	IBGO Notes 1, 15						1.68	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 16				0.34 1.10	mA	
operating current			The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V				0.53	2.04	
		CSI/UART operation					0.70	1.54	mA
LCD operating current	ILCD1 Notes 17, 18	External resistance division method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.6 V, LV4 = 3.6 V		0.14		μA
	ILCD2 Note 17	Internal voltage boosting method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, LV4 = 3.0 V (VLCD = 04H)		0.61		μA
	ILCD3 Note 17	Capacitor split method	fLCD = fSUB LCD clock = 128 Hz	1/3 bias 4-time slice	VDD = 3.0 V, Lv4 = 3.0 V		0.12		μA
USB current	IUSB Note 20	Operating current during USB communication					4.88	1	mA
Note 19		Operating current in the USB suspended state							

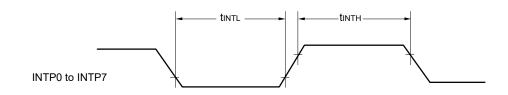

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V})$

(Notes and Remarks are listed on the next page.)

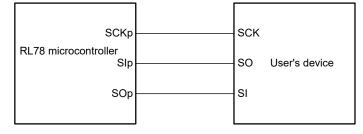

AC Timing Test Points



External System Clock Timing

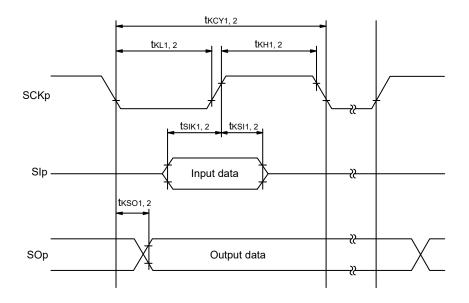


TI/TO Timing

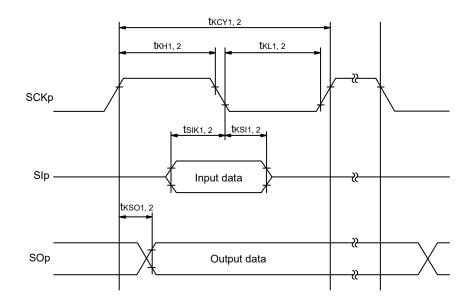


Interrupt Request Input Timing

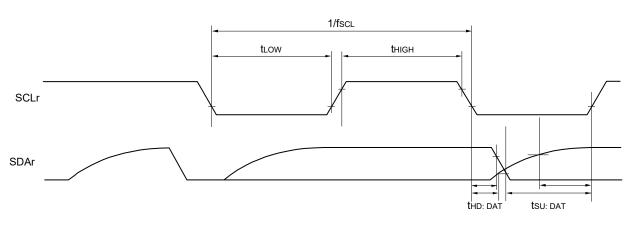
CSI mode connection diagram (during communication at same potential)



Remark 1. p: CSI number (p = 00, 10, 20, 30)

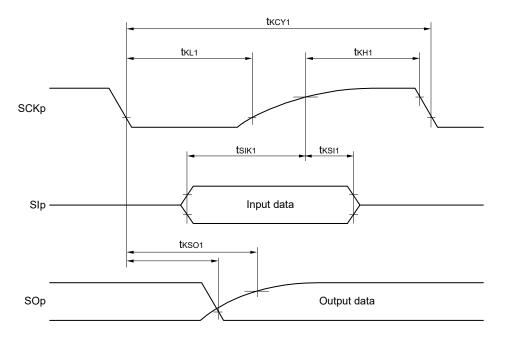

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

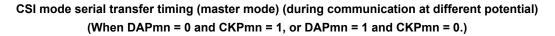


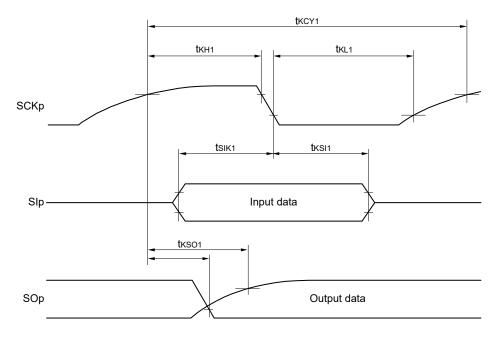
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

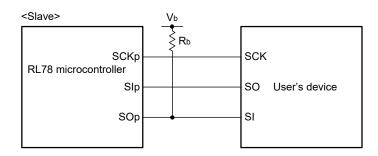
Remark 1. p: CSI number (p = 00, 10, 20, 30) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)



Simplified I²C mode serial transfer timing (during communication at same potential)


- Remark 1. Rb[Ω]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance
- **Remark 2.** r: IIC number (r = 00, 10, 20, 30), g: PIM number (g = 0 to 3),
- h: POM number (h = 0 to 3)


Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)


CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

CSI mode connection diagram (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0 to 3)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10, 12))

(8) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

TA = -40 to +105°C, 2.4 V \leq VDD \leq 3.6 V, Vss = 0 V)	
· · · · ·	

Deremeter	Symbol	Conditions	HS (high-spee	Unit	
Parameter		Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k_{\Omega} \end{array}$		100 Note 1	kHz
		$\begin{array}{l} 2.4 \; V \leq V \text{DD} < 3.3 \; \text{V}, \; 1.6 \; \text{V} \leq V \text{b} \leq 2.0 \; \text{V} \; ^{\text{Note 2}}, \\ \text{Cb} = 100 \; \text{pF}, \; \text{Rb} = 5.5 \; \text{k} \Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tlow	$\begin{array}{l} 2.7 \; V \leq VDD \leq 3.6 \; V, 2.3 \; V \leq Vb < 2.7 \; V, \\ Cb = 50 \; pF, \; Rb = 2.7 \; k\Omega \end{array}$	1200		ns
		$\begin{array}{l} 2.7 \; V \leq V \text{DD} \leq 3.6 \; \text{V}, \; 2.3 \; \text{V} \leq V \text{b} < \!\! 2.7 \; \text{V}, \\ \text{Cb} = 100 \; \text{pF}, \; \text{Rb} = 2.7 \; \text{k} \Omega \end{array}$	4600		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V\!\!\!, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; ^{Note \; 2}, \\ C_b = 100 \; pF\!\!\!, \; R_b = 5.5 \; k\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	thigh	$\begin{array}{l} 2.7 \; V \leq V \text{DD} \leq 3.6 \; \text{V}, \; 2.3 \; \text{V} \leq V \text{b} < 2.7 \; \text{V}, \\ \text{Cb} = 50 \; \text{pF}, \; \text{Rb} = 2.7 \; \text{k} \Omega \end{array}$	500		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k_{\Omega} \end{array}$	2400		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V\!\!\!, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; ^{Note \; 2}, \\ C_b = 100 \; pF\!\!\!, \; R_b = 5.5 \; k\Omega \end{array}$	1830		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 2.7 \; V \leq V \text{DD} \leq 3.6 \; \text{V}, \; 2.3 \; \text{V} \leq V \text{b} < 2.7 \; \text{V}, \\ \text{Cb} = 50 \; \text{pF}, \; \text{Rb} = 2.7 \; \text{k} \Omega \end{array}$	1/fMCK + 340 Note 3		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k_{\Omega} \end{array}$	1/fMCK + 760 Note 3		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V\!\!\!, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; ^{Note \; 2}, \\ C_b = 100 \; pF\!\!\!, \; R_b = 5.5 \; k\Omega \end{array}$	1/fмск + 570 ^{Note 3}		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} < 2.7 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k_{\Omega} \end{array}$	0	1420	ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V\!\!\!, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; ^{Note \; 2}, \\ C_b = 100 \; pF\!\!\!, \; R_b = 5.5 \; k\Omega \end{array}$	0	1215	ns

Note 1. The value must be equal to or less than fMCK/4.

Note 2. Use it with $V_{DD} \ge V_b$.

Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

