# E·XFL



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                 |
|----------------------------|------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M4                                                        |
| Core Size                  | 32-Bit Single-Core                                                     |
| Speed                      | 50MHz                                                                  |
| Connectivity               | I <sup>2</sup> C, IrDA, SPI, UART/USART                                |
| Peripherals                | DMA, I <sup>2</sup> S, LVD, POR, PWM, WDT                              |
| Number of I/O              | 60                                                                     |
| Program Memory Size        | 512KB (512K x 8)                                                       |
| Program Memory Type        | FLASH                                                                  |
| EEPROM Size                | -                                                                      |
| RAM Size                   | 64K x 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                                           |
| Data Converters            | A/D 24x16b; D/A 1x12b                                                  |
| Oscillator Type            | Internal                                                               |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                     |
| Mounting Type              | Surface Mount                                                          |
| Package / Case             | 80-LQFP                                                                |
| Supplier Device Package    | 80-FQFP (12x12)                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mk12dn512vlk5r |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





# 1 Ordering parts

## 1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK12 and MK12.

# 2 Part identification

### 2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

# 2.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

## 2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

| Field | Description          | Values                                                                                     |
|-------|----------------------|--------------------------------------------------------------------------------------------|
| Q     | Qualification status | <ul> <li>M = Fully qualified, general market flow</li> <li>P = Prequalification</li> </ul> |
| K##   | Kinetis family       | • K12                                                                                      |
| A     | Key attribute        | <ul> <li>D = Cortex-M4 w/ DSP</li> <li>F = Cortex-M4 w/ DSP and FPU</li> </ul>             |
| Μ     | Flash memory type    | <ul> <li>N = Program flash only</li> <li>X = Program flash and FlexMemory</li> </ul>       |

Table continues on the next page...



Terminology and guidelines

| Field | Description                | Values                                                                                     |
|-------|----------------------------|--------------------------------------------------------------------------------------------|
| Q     | Qualification status       | <ul> <li>M = Fully qualified, general market flow</li> <li>P = Prequalification</li> </ul> |
| С     | Speed                      | • G = 50 MHz                                                                               |
| F     | Flash memory configuration | <ul> <li>G = 128 KB + Flex</li> <li>H = 256 KB + Flex</li> <li>9 = 512 KB</li> </ul>       |
| Т     | Temperature range (°C)     | • V = -40 to 105                                                                           |
| PP    | Package identifier         | • MC = 121 MAPBGA                                                                          |

This tables lists some examples of small package marking along with the original part numbers:

| Original part number | Alternate part number |
|----------------------|-----------------------|
| MK12DX256VLF5        | M12GHVLF              |
| MK12DN512VLH5        | M12G9VLH              |

# 3 Terminology and guidelines

## 3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

## 3.1.1 Example

This is an example of an operating requirement:

| Symbol          | Description                  | Min. | Max. | Unit |
|-----------------|------------------------------|------|------|------|
| V <sub>DD</sub> | 1.0 V core supply<br>voltage | 0.9  | 1.1  | V    |



## 5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.



The midpoint is  $V_{IL}$  +  $(V_{IH} - V_{IL})/2$ .

Figure 1. Input signal measurement reference

## 5.2 Nonswitching electrical specifications

# 5.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

| Symbol             | Description                                                                              | Min.                 | Max.                 | Unit | Notes |
|--------------------|------------------------------------------------------------------------------------------|----------------------|----------------------|------|-------|
| V <sub>DD</sub>    | Supply voltage                                                                           | 1.71                 | 3.6                  | V    |       |
| V <sub>DDA</sub>   | Analog supply voltage                                                                    | 1.71                 | 3.6                  | V    |       |
| $V_{DD} - V_{DDA}$ | V <sub>DD</sub> -to-V <sub>DDA</sub> differential voltage                                | -0.1                 | 0.1                  | V    |       |
| $V_{SS} - V_{SSA}$ | V <sub>SS</sub> -to-V <sub>SSA</sub> differential voltage                                | -0.1                 | 0.1                  | V    |       |
| V <sub>BAT</sub>   | RTC battery supply voltage                                                               | 1.71                 | 3.6                  | V    |       |
| V <sub>IH</sub>    | Input high voltage                                                                       |                      |                      |      |       |
|                    | • $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$                             | $0.7 \times V_{DD}$  | _                    | V    |       |
|                    | • $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$                             | $0.75 \times V_{DD}$ | _                    | V    |       |
| V <sub>IL</sub>    | Input low voltage                                                                        |                      |                      |      |       |
|                    | • $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$                             | _                    | $0.35 \times V_{DD}$ | V    |       |
|                    | • $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$                             | —                    | $0.3 \times V_{DD}$  | V    |       |
| V <sub>HYS</sub>   | Input hysteresis                                                                         | $0.06 \times V_{DD}$ | —                    | V    |       |
| I <sub>ICIO</sub>  | I/O pin DC injection current — single pin                                                |                      |                      |      | 1     |
|                    | <ul> <li>V<sub>IN</sub> &lt; V<sub>SS</sub>-0.3V (Negative current injection)</li> </ul> |                      |                      | mA   |       |
|                    | <ul> <li>V<sub>IN</sub> &gt; V<sub>DD</sub>+0.3V (Positive current injection)</li> </ul> | -3                   | —                    |      |       |
|                    |                                                                                          | —                    | +3                   |      |       |

Table continues on the next page ...



1. Rising threshold is the sum of falling threshold and hysteresis voltage

|                       | ····· · · · · · · · · · · · · · · · ·  | 13   |      |      |      |       |
|-----------------------|----------------------------------------|------|------|------|------|-------|
| Symbol                | Description                            | Min. | Тур. | Max. | Unit | Notes |
| V <sub>POR VBAT</sub> | Falling VBAT supply POR detect voltage | 0.8  | 1.1  | 1.5  | V    |       |

Table 3. VBAT power operating requirements

#### 5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors

| Symbol           | Description                                                             | Min.                  | Max. | Unit | Notes |
|------------------|-------------------------------------------------------------------------|-----------------------|------|------|-------|
| V <sub>OH</sub>  | Output high voltage — high drive strength                               |                       |      |      |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OH</sub> = - 9 mA   | V <sub>DD</sub> – 0.5 | _    | V    |       |
|                  | • 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V, I <sub>OH</sub> = -3 mA   | V <sub>DD</sub> – 0.5 | _    | V    |       |
|                  | Output high voltage — low drive strength                                |                       |      |      |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OH</sub> = -2 mA    | V <sub>DD</sub> – 0.5 | _    | V    |       |
|                  | • 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V, I <sub>OH</sub> = -0.6 mA | $V_{DD} - 0.5$        | _    | V    |       |
| I <sub>OHT</sub> | Output high current total for all ports                                 | —                     | 100  | mA   |       |
| V <sub>OL</sub>  | Output low voltage — high drive strength                                |                       |      |      |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OL</sub> = 9 mA     | —                     | 0.5  | V    |       |
|                  | • 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V, I <sub>OL</sub> = 3 mA    | _                     | 0.5  | V    |       |
|                  | Output low voltage — low drive strength                                 |                       |      |      |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OL</sub> = 2 mA     | _                     | 0.5  | V    |       |
|                  | • 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V, I <sub>OL</sub> = 0.6 mA  |                       | 0.5  | V    |       |
| I <sub>OLT</sub> | Output low current total for all ports                                  | —                     | 100  | mA   |       |
| I <sub>IN</sub>  | Input leakage current (per pin)                                         |                       |      |      |       |
|                  | @ full temperature range                                                | —                     | 1.0  | μA   | 1     |
|                  | • @ 25 °C                                                               | —                     | 0.1  | μA   |       |
| I <sub>OZ</sub>  | Hi-Z (off-state) leakage current (per pin)                              | —                     | 1    | μA   |       |
| I <sub>OZ</sub>  | Total Hi-Z (off-state) leakage current (all input pins)                 | —                     | 4    | μΑ   |       |
| R <sub>PU</sub>  | Internal pullup resistors                                               | 22                    | 50   | kΩ   | 2     |
| R <sub>PD</sub>  | Internal pulldown resistors                                             | 22                    | 50   | kΩ   | 3     |

1. Tested by ganged leakage method

- 2. Measured at Vinput =  $V_{SS}$
- 3. Measured at Vinput =  $V_{DD}$



| Symbol                | Description                                                                   | Min. | Тур.  | Max. | Unit   | Notes |
|-----------------------|-------------------------------------------------------------------------------|------|-------|------|--------|-------|
| I <sub>DD_RUN</sub>   | Run mode current — all peripheral clocks enabled, code executing from flash   |      |       |      |        | 3, 4  |
|                       | • @ 1.8 V                                                                     | _    | 17.04 | 19.3 | mΔ     |       |
|                       | • @ 3.0 V                                                                     |      | 17.04 | 10.0 | 11// ( |       |
|                       | • @ 25°C                                                                      | _    | 17.01 | 18.9 | mA     |       |
|                       | • @ 125°C                                                                     | _    | 19.8  | 21.3 | mA     |       |
| I <sub>DD_WAIT</sub>  | Wait mode high frequency current at 3.0 V — all peripheral clocks disabled    | _    | 7.95  | 9.5  | mA     | 2     |
| I <sub>DD_WAIT</sub>  | Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled |      | 5.88  | 7.4  | mA     | 5     |
| I <sub>DD_STOP</sub>  | Stop mode current at 3.0 V                                                    | _    | 320   | 436  | μA     |       |
|                       | • @ -40 to 25°C<br>• @ 50°C                                                   |      | 360   | 489  |        |       |
|                       | • @ 70°C                                                                      |      | 410   | 620  |        |       |
|                       | • @ 105°C                                                                     |      | 610   | 1100 |        |       |
| I <sub>DD_VLPR</sub>  | Very-low-power run mode current at 3.0 V — all peripheral clocks disabled     | _    | 754   |      | μΑ     | 6     |
| I <sub>DD_VLPR</sub>  | Very-low-power run mode current at 3.0 V — all peripheral clocks enabled      |      | 1.1   |      | mA     | 7     |
| I <sub>DD_VLPW</sub>  | Very-low-power wait mode current at 3.0 V                                     |      | 437   | —    | μA     | 8     |
| I <sub>DD_VLPS</sub>  | Very-low-power stop mode current at 3.0 V                                     | _    | 7.33  | 24.2 | μΑ     |       |
|                       | • @ -40 to 25°C<br>• @ 50°C                                                   |      | 14    | 32   |        |       |
|                       | • @ 70°C                                                                      |      | 28    | 48   |        |       |
|                       |                                                                               |      | 110   | 280  |        |       |
| I <sub>DD_LLS</sub>   | Low leakage stop mode current at 3.0 V<br>• @ -40 to 25°C                     | _    | 3.14  | 4.8  | μΑ     |       |
|                       | • @ 50°C                                                                      |      | 6.48  | 28.3 |        |       |
|                       | • @ 70°C<br>• @ 105°C                                                         |      | 13.85 | 44.6 |        |       |
|                       |                                                                               |      | 55.53 | 71.3 |        |       |
| I <sub>DD_VLLS3</sub> | Very low-leakage stop mode 3 current at 3.0 V                                 | —    | 2.19  | 3.4  | μΑ     |       |
|                       | • @ -40 to 25°C                                                               |      | 4.35  | 4.35 |        |       |
|                       | • @ 70°C                                                                      |      | 8.92  | 24.6 |        |       |
|                       | • @ 105°C                                                                     |      | 35.33 | 45.3 |        |       |
| I <sub>DD_VLLS2</sub> | Very low-leakage stop mode 2 current at 3.0 V                                 | _    | 1.77  | 3.1  | μA     |       |
|                       | • @ -40 to 25°C<br>• @ 50°C                                                   |      | 2.81  | 13.8 |        |       |
|                       | • @ 70°C                                                                      |      | 5.20  | 22.3 |        |       |
|                       | - @ 105 0                                                                     |      | 19.88 | 34.2 |        |       |

#### Table 6. Power consumption operating behaviors (continued)

Table continues on the next page...





Figure 2. Run mode supply current vs. core frequency

![](_page_7_Picture_0.jpeg)

- 3.  $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, f_{OSC} = 12 \text{ MHz} \text{ (crystal)}, f_{SYS} = 48 \text{ MHz}, f_{BUS} = 48 \text{ MHz}$
- 4. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

#### 5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

#### 5.2.8 Capacitance attributes

#### Table 8. Capacitance attributes

| Symbol            | Description                     | Min. | Max. | Unit |
|-------------------|---------------------------------|------|------|------|
| C <sub>IN_A</sub> | Input capacitance: analog pins  | —    | 7    | pF   |
| C <sub>IN_D</sub> | Input capacitance: digital pins | _    | 7    | pF   |

## 5.3 Switching specifications

#### 5.3.1 Device clock specifications

Table 9. Device clock specifications

| Symbol                   | Description                    | Min. | Max. | Unit | Notes |
|--------------------------|--------------------------------|------|------|------|-------|
|                          | Normal run mode                |      |      |      |       |
| f <sub>SYS</sub>         | System and core clock          | —    | 50   | MHz  |       |
| f <sub>BUS</sub>         | Bus clock                      | —    | 50   | MHz  |       |
| f <sub>FLASH</sub>       | Flash clock                    | —    | 25   | MHz  |       |
| f <sub>LPTMR</sub>       | LPTMR clock                    | —    | 25   | MHz  |       |
|                          | VLPR mode <sup>1</sup>         |      |      | •    |       |
| f <sub>SYS</sub>         | System and core clock          | —    | 4    | MHz  |       |
| f <sub>BUS</sub>         | Bus clock                      | —    | 4    | MHz  |       |
| f <sub>FLASH</sub>       | Flash clock                    | —    | 1    | MHz  |       |
| f <sub>ERCLK</sub>       | External reference clock       | —    | 16   | MHz  |       |
| f <sub>LPTMR_pin</sub>   | LPTMR clock                    | —    | 25   | MHz  |       |
| f <sub>LPTMR_ERCLK</sub> | LPTMR external reference clock | —    | 16   | MHz  |       |
| f <sub>I2S_MCLK</sub>    | I2S master clock               | —    | 12.5 | MHz  |       |
| f <sub>I2S_BCLK</sub>    | I2S bit clock                  | _    | 4    | MHz  |       |

![](_page_8_Picture_0.jpeg)

General

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

#### 5.3.2 General switching specifications

These general purpose specifications apply to all pins configured for:

- GPIO signaling
- Other peripheral module signaling not explicitly stated elsewhere

| Symbol | Description                                                                                                 | Min. | Max. | Unit                | Notes |
|--------|-------------------------------------------------------------------------------------------------------------|------|------|---------------------|-------|
|        | GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path                          | 1.5  | _    | Bus clock<br>cycles | 1, 2  |
|        | GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path  | 100  | _    | ns                  | 3     |
|        | GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path | 50   | _    | ns                  | 3     |
|        | External reset pulse width (digital glitch filter disabled)                                                 | 100  | —    | ns                  | 3     |
|        | Port rise and fall time (high drive strength)                                                               |      |      |                     | 4     |
|        | Slew disabled                                                                                               |      |      |                     |       |
|        | • $1.71 \le V_{DD} \le 2.7V$                                                                                | —    | 13   | ns                  |       |
|        | • $2.7 \le V_{DD} \le 3.6V$                                                                                 | _    | 7    | ns                  |       |
|        | Slew enabled                                                                                                |      |      |                     |       |
|        | • $1.71 \le V_{DD} \le 2.7V$                                                                                | _    | 36   | ns                  |       |
|        | • $2.7 \le V_{DD} \le 3.6V$                                                                                 | —    | 24   | ns                  |       |
|        | Port rise and fall time (low drive strength)                                                                |      |      |                     | 5     |
|        | Slew disabled                                                                                               |      |      |                     |       |
|        | • $1.71 \le V_{DD} \le 2.7V$                                                                                |      | 12   | ns                  |       |
|        | • $2.7 \le V_{DD} \le 3.6V$                                                                                 | —    | 6    | ns                  |       |
|        | Slew enabled                                                                                                |      |      |                     |       |
|        | • $1.71 \le V_{DD} \le 2.7V$                                                                                | _    | 36   | ns                  |       |
|        | • $2.7 \le V_{DD} \le 3.6V$                                                                                 | —    | 24   | ns                  |       |

 Table 10. General switching specifications

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. 75 pF load
- 5. 15 pF load

![](_page_9_Picture_0.jpeg)

#### rempheral operating requirements and behaviors

- 3. Determined according to JEDEC Standard JESD51-6, *Integrated Circuits Thermal Test Method Environmental Conditions Forced Convection (Moving Air)* with the board horizontal.
- 4. Determined according to JEDEC Standard JESD51-8, *Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board*. Board temperature is measured on the top surface of the board near the package.
- 5. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 6. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air).

# 6 Peripheral operating requirements and behaviors

### 6.1 Core modules

#### 6.1.1 JTAG electricals

Table 12. JTAG limited voltage range electricals

| Symbol | Description                                        | Min. | Max. | Unit |
|--------|----------------------------------------------------|------|------|------|
|        | Operating voltage                                  | 2.7  | 3.6  | V    |
| J1     | TCLK frequency of operation                        |      |      | MHz  |
|        | Boundary Scan                                      | 0    | 10   |      |
|        | JTAG and CJTAG                                     | 0    | 25   |      |
|        | Serial Wire Debug                                  | 0    | 50   |      |
| J2     | TCLK cycle period                                  | 1/J1 | _    | ns   |
| J3     | TCLK clock pulse width                             |      |      |      |
|        | Boundary Scan                                      | 50   | _    | ns   |
|        | JTAG and CJTAG                                     | 20   | _    | ns   |
|        | Serial Wire Debug                                  | 10   | _    | ns   |
| J4     | TCLK rise and fall times                           |      | 3    | ns   |
| J5     | Boundary scan input data setup time to TCLK rise   | 20   | _    | ns   |
| J6     | Boundary scan input data hold time after TCLK rise | 0    | —    | ns   |
| J7     | TCLK low to boundary scan output data valid        | —    | 25   | ns   |
| J8     | TCLK low to boundary scan output high-Z            | —    | 25   | ns   |
| J9     | TMS, TDI input data setup time to TCLK rise        | 8    | —    | ns   |
| J10    | TMS, TDI input data hold time after TCLK rise      | 1    | _    | ns   |
| J11    | TCLK low to TDO data valid                         |      | 17   | ns   |
| J12    | TCLK low to TDO high-Z                             | _    | 17   | ns   |
| J13    | TRST assert time                                   | 100  | _    | ns   |
| J14    | TRST setup time (negation) to TCLK high            | 8    | _    | ns   |

![](_page_10_Picture_0.jpeg)

| Symbol                       | Description                                                                                           | Min. | Тур.            | Max. | Unit | Notes |
|------------------------------|-------------------------------------------------------------------------------------------------------|------|-----------------|------|------|-------|
| IDDOSC                       | Supply current — high-gain mode (HGO=1)                                                               |      |                 |      |      | 1     |
|                              | • 32 kHz                                                                                              | —    | 25              | —    | μA   |       |
|                              | • 4 MHz                                                                                               | —    | 400             | _    | μA   |       |
|                              | • 8 MHz (RANGE=01)                                                                                    | —    | 500             | _    | μA   |       |
|                              | • 16 MHz                                                                                              | —    | 2.5             | _    | mA   |       |
|                              | • 24 MHz                                                                                              | —    | 3               | _    | mA   |       |
|                              | • 32 MHz                                                                                              | —    | 4               | _    | mA   |       |
| C <sub>x</sub>               | EXTAL load capacitance                                                                                | _    | _               | _    |      | 2, 3  |
| Cy                           | XTAL load capacitance                                                                                 |      |                 | _    |      | 2, 3  |
| $R_F$                        | Feedback resistor — low-frequency, low-power mode (HGO=0)                                             |      |                 | _    | MΩ   | 2, 4  |
|                              | Feedback resistor — low-frequency, high-gain mode (HGO=1)                                             | _    | 10              | _    | MΩ   |       |
|                              | Feedback resistor — high-frequency, low-power mode (HGO=0)                                            | —    | —               | _    | MΩ   |       |
|                              | Feedback resistor — high-frequency, high-gain mode (HGO=1)                                            | —    | 1               | _    | MΩ   |       |
| R <sub>S</sub>               | Series resistor — low-frequency, low-power<br>mode (HGO=0)                                            | _    | —               | _    | kΩ   |       |
|                              | Series resistor — low-frequency, high-gain mode<br>(HGO=1)                                            | —    | 200             | _    | kΩ   |       |
|                              | Series resistor — high-frequency, low-power<br>mode (HGO=0)                                           | —    | _               | _    | kΩ   |       |
|                              | Series resistor — high-frequency, high-gain<br>mode (HGO=1)                                           |      |                 |      |      |       |
|                              |                                                                                                       | _    | 0               | _    | kΩ   |       |
| V <sub>pp</sub> <sup>5</sup> | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, low-power mode<br>(HGO=0) | _    | 0.6             |      | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode               | _    | V <sub>DD</sub> | _    | V    |       |

#### Table 15. Oscillator DC electrical specifications (continued)

1.  $V_{DD}$ =3.3 V, Temperature =25 °C

(HGO=1)

(HGO=1)

(HGO=0)

2. See crystal or resonator manufacturer's recommendation

Peak-to-peak amplitude of oscillation (oscillator

Peak-to-peak amplitude of oscillation (oscillator

mode) — high-frequency, low-power mode

mode) — high-frequency, high-gain mode

- 3.  $C_x$  and  $C_y$  can be provided by using either integrated capacitors or external components.
- 4. When low-power mode is selected,  $R_F$  is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device.

V

٧

0.6

 $V_{DD}$ 

![](_page_11_Picture_0.jpeg)

| Symbol                  | Description                                              | Min.       | Тур.         | Max. | Unit | Notes |
|-------------------------|----------------------------------------------------------|------------|--------------|------|------|-------|
|                         | Byte-write to FlexRAM execution time:                    |            |              |      |      |       |
| t <sub>eewr8b32k</sub>  | 32 KB EEPROM backup                                      | _          | 385          | 1800 | μs   |       |
| t <sub>eewr8b64k</sub>  | 64 KB EEPROM backup                                      |            | 475          | 2000 | μs   |       |
|                         | Word-write to FlexRAM                                    | for EEPRON | I operation  | •    | •    | •     |
| t <sub>eewr16bers</sub> | Word-write to erased FlexRAM location execution time     | _          | 175          | 260  | μs   |       |
|                         | Word-write to FlexRAM execution time:                    |            |              |      |      |       |
| t <sub>eewr16b32k</sub> | 32 KB EEPROM backup                                      | —          | 385          | 1800 | μs   |       |
| t <sub>eewr16b64k</sub> | 64 KB EEPROM backup                                      | _          | 475          | 2000 | μs   |       |
|                         | Longword-write to FlexRA                                 | M for EEPR | OM operatior | ו    | •    |       |
| t <sub>eewr32bers</sub> | Longword-write to erased FlexRAM location execution time |            | 360          | 540  | μs   |       |
|                         | Longword-write to FlexRAM execution time:                |            |              |      |      |       |
| t <sub>eewr32b32k</sub> | 32 KB EEPROM backup                                      | _          | 630          | 2050 | μs   |       |
| t <sub>eewr32b64k</sub> | 64 KB EEPROM backup                                      | _          | 810          | 2250 | μs   |       |

#### Table 20. Flash command timing specifications (continued)

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

#### 6.4.1.3 Flash high voltage current behaviors Table 21. Flash high voltage current behaviors

| Symbol              | Description                                                           | Min. | Тур. | Max. | Unit |
|---------------------|-----------------------------------------------------------------------|------|------|------|------|
| I <sub>DD_PGM</sub> | Average current adder during high voltage flash programming operation | —    | 2.5  | 6.0  | mA   |
| I <sub>DD_ERS</sub> | Average current adder during high voltage flash erase operation       | —    | 1.5  | 4.0  | mA   |

# 6.4.1.4 Reliability specifications

#### Table 22. NVM reliability specifications

| Symbol                  | Description                            | Min.    | Typ. <sup>1</sup> | Max. | Unit   | Notes |  |  |
|-------------------------|----------------------------------------|---------|-------------------|------|--------|-------|--|--|
|                         | Program                                | n Flash |                   | -    |        | -     |  |  |
| t <sub>nvmretp10k</sub> | Data retention after up to 10 K cycles | 5       | 50                | —    | years  |       |  |  |
| t <sub>nvmretp1k</sub>  | Data retention after up to 1 K cycles  | 20      | 100               | —    | years  |       |  |  |
| n <sub>nvmcycp</sub>    | Cycling endurance                      | 10 K    | 50 K              | —    | cycles | 2     |  |  |
| Data Flash              |                                        |         |                   |      |        |       |  |  |
| t <sub>nvmretd10k</sub> | Data retention after up to 10 K cycles | 5       | 50                |      | years  |       |  |  |

Table continues on the next page...

![](_page_12_Figure_1.jpeg)

Figure 8. EzPort Timing Diagram

# 6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

# 6.6 Analog

## 6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 24 and Table 25 are achievable on the differential pins ADCx\_DP0, ADCx\_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

#### 6.6.1.1 16-bit ADC operating conditions Table 24. 16-bit ADC operating conditions

| Symbol           | Description    | Conditions                               | Min. | Typ. <sup>1</sup> | Max. | Unit | Notes |
|------------------|----------------|------------------------------------------|------|-------------------|------|------|-------|
| V <sub>DDA</sub> | Supply voltage | Absolute                                 | 1.71 |                   | 3.6  | V    |       |
| $\Delta V_{DDA}$ | Supply voltage | Delta to $V_{DD}$ ( $V_{DD} - V_{DDA}$ ) | -100 | 0                 | +100 | mV   | 2     |
| $\Delta V_{SSA}$ | Ground voltage | Delta to $V_{SS}$ ( $V_{SS} - V_{SSA}$ ) | -100 | 0                 | +100 | mV   | 2     |

Table continues on the next page ...

![](_page_13_Picture_0.jpeg)

## 6.6.2 CMP and 6-bit DAC electrical specifications

 Table 26.
 Comparator and 6-bit DAC electrical specifications

| Symbol             | Description                                         | Min.                  | Тур. | Max.            | Unit             |
|--------------------|-----------------------------------------------------|-----------------------|------|-----------------|------------------|
| V <sub>DD</sub>    | Supply voltage                                      | 1.71                  | —    | 3.6             | V                |
| I <sub>DDHS</sub>  | Supply current, High-speed mode (EN=1, PMODE=1)     | _                     | _    | 200             | μA               |
| I <sub>DDLS</sub>  | Supply current, low-speed mode (EN=1, PMODE=0)      | _                     | —    | 20              | μA               |
| V <sub>AIN</sub>   | Analog input voltage                                | V <sub>SS</sub> – 0.3 | _    | V <sub>DD</sub> | V                |
| V <sub>AIO</sub>   | Analog input offset voltage                         | _                     | _    | 20              | mV               |
| V <sub>H</sub>     | Analog comparator hysteresis <sup>1</sup>           |                       |      |                 |                  |
|                    | <ul> <li>CR0[HYSTCTR] = 00</li> </ul>               | _                     | 5    | —               | mV               |
|                    | <ul> <li>CR0[HYSTCTR] = 01</li> </ul>               | _                     | 10   | _               | mV               |
|                    | • CR0[HYSTCTR] = 10                                 | _                     | 20   | _               | mV               |
|                    | CR0[HYSTCTR] = 11                                   | _                     | 30   | _               | mV               |
| V <sub>CMPOh</sub> | Output high                                         | V <sub>DD</sub> – 0.5 |      |                 | V                |
| V <sub>CMPOI</sub> | Output low                                          | _                     |      | 0.5             | V                |
| t <sub>DHS</sub>   | Propagation delay, high-speed mode (EN=1, PMODE=1)  | 20                    | 50   | 200             | ns               |
| t <sub>DLS</sub>   | Propagation delay, low-speed mode (EN=1, PMODE=0)   | 80                    | 250  | 600             | ns               |
|                    | Analog comparator initialization delay <sup>2</sup> | _                     | _    | 40              | μs               |
| I <sub>DAC6b</sub> | 6-bit DAC current adder (enabled)                   | —                     | 7    | —               | μA               |
| INL                | 6-bit DAC integral non-linearity                    | -0.5                  | _    | 0.5             | LSB <sup>3</sup> |
| DNL                | 6-bit DAC differential non-linearity                | -0.3                  | —    | 0.3             | LSB              |

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V<sub>DD</sub>-0.6 V.

 Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP\_DACCR[DACEN], CMP\_DACCR[VRSEL], CMP\_DACCR[VOSEL], CMP\_MUXCR[PSEL], and CMP\_MUXCR[MSEL]) and the comparator output settling to a stable level.

3. 1 LSB =  $V_{reference}/64$ 

NP

rempheral operating requirements and behaviors

![](_page_14_Figure_2.jpeg)

Figure 12. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

![](_page_15_Picture_0.jpeg)

Peripheral operating requirements and behaviors

![](_page_15_Figure_2.jpeg)

Figure 14. Typical INL error vs. digital code

![](_page_16_Picture_0.jpeg)

Peripheral operating requirements and behaviors

![](_page_16_Figure_2.jpeg)

Figure 21. I2S/SAI timing — slave modes

# 6.8.6 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 39. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes(full voltage range)

| Num. | Characteristic                                                    | Min. | Max. | Unit        |
|------|-------------------------------------------------------------------|------|------|-------------|
|      | Operating voltage                                                 | 1.71 | 3.6  | V           |
| S1   | I2S_MCLK cycle time                                               | 62.5 | _    | ns          |
| S2   | I2S_MCLK pulse width high/low                                     | 45%  | 55%  | MCLK period |
| S3   | I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)                       | 250  | —    | ns          |
| S4   | I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low                      | 45%  | 55%  | BCLK period |
| S5   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output valid   | _    | 45   | ns          |
| S6   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output invalid | 0    | -    | ns          |
| S7   | I2S_TX_BCLK to I2S_TXD valid                                      | —    | 45   | ns          |
| S8   | I2S_TX_BCLK to I2S_TXD invalid                                    | 0    | —    | ns          |
| S9   | I2S_RXD/I2S_RX_FS input setup before<br>I2S_RX_BCLK               | 75   | _    | ns          |
| S10  | I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK                    | 0    | —    | ns          |

![](_page_17_Picture_0.jpeg)

![](_page_17_Figure_2.jpeg)

Figure 23. I2S/SAI timing — slave modes

# 7 Dimensions

## 7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

| If you want the drawing for this package | Then use this document number |
|------------------------------------------|-------------------------------|
| 80-pin LQFP                              | 98ASS23174W                   |

# 8 Pinout

# 8.1 K12 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

#### NOTE

• The analog input signals ADC0\_SE10, ADC0\_SE11, ADC0\_DP1, and ADC0\_DM1 are available only for K11,

|  | 7 |  |
|--|---|--|
|  | 7 |  |
|  |   |  |
|  |   |  |

| 80<br>LQFP | Default                             | ALTO                                | ALT1              | ALT2                        | ALT3                        | ALT4       | ALT5 | ALT6         | ALT7                   | EzPort   |
|------------|-------------------------------------|-------------------------------------|-------------------|-----------------------------|-----------------------------|------------|------|--------------|------------------------|----------|
| 20         | VSSA                                | VSSA                                |                   |                             |                             |            |      |              |                        |          |
| 21         | VREF_OUT/<br>CMP1_IN5/<br>CMP0_IN5  | VREF_OUT/<br>CMP1_IN5/<br>CMP0_IN5  |                   |                             |                             |            |      |              |                        |          |
| 22         | DAC0_OUT/<br>CMP1_IN3/<br>ADC0_SE23 | DAC0_OUT/<br>CMP1_IN3/<br>ADC0_SE23 |                   |                             |                             |            |      |              |                        |          |
| 23         | XTAL32                              | XTAL32                              |                   |                             |                             |            |      |              |                        |          |
| 24         | EXTAL32                             | EXTAL32                             |                   |                             |                             |            |      |              |                        |          |
| 25         | VBAT                                | VBAT                                |                   |                             |                             |            |      |              |                        |          |
| 26         | JTAG_TCLK/<br>SWD_CLK/<br>EZP_CLK   |                                     | PTA0              | UART0_CTS_b/<br>UART0_COL_b | FTM0_CH5                    |            |      |              | JTAG_TCLK/<br>SWD_CLK  | EZP_CLK  |
| 27         | JTAG_TDI/<br>EZP_DI                 |                                     | PTA1              | UARTO_RX                    | FTM0_CH6                    |            |      |              | JTAG_TDI               | EZP_DI   |
| 28         | JTAG_TDO/<br>TRACE_SWO/<br>EZP_DO   |                                     | PTA2              | UARTO_TX                    | FTM0_CH7                    |            |      |              | JTAG_TDO/<br>TRACE_SWO | EZP_DO   |
| 29         | JTAG_TMS/<br>SWD_DIO                |                                     | PTA3              | UART0_RTS_b                 | FTM0_CH0                    |            |      |              | JTAG_TMS/<br>SWD_DIO   |          |
| 30         | NMI_b/<br>EZP_CS_b                  |                                     | PTA4/<br>LLWU_P3  |                             | FTM0_CH1                    |            |      |              | NMI_b                  | EZP_CS_b |
| 31         | DISABLED                            |                                     | PTA5              |                             | FTM0_CH2                    |            |      | I2S0_TX_BCLK | JTAG_TRST_b            |          |
| 32         | DISABLED                            |                                     | PTA12             |                             | FTM1_CH0                    |            |      | I2S0_TXD0    | FTM1_QD_PHA            |          |
| 33         | DISABLED                            |                                     | PTA13/<br>LLWU_P4 |                             | FTM1_CH1                    |            |      | I2S0_TX_FS   | FTM1_QD_PHB            |          |
| 34         | DISABLED                            |                                     | PTA14             | SPI0_PCS0                   | UART0_TX                    |            |      | I2S0_RX_BCLK | I2S0_TXD1              |          |
| 35         | DISABLED                            |                                     | PTA15             | SPI0_SCK                    | UART0_RX                    |            |      | I2S0_RXD0    |                        |          |
| 36         | DISABLED                            |                                     | PTA16             | SPI0_SOUT                   | UART0_CTS_b/<br>UART0_COL_b |            |      | I2S0_RX_FS   | I2S0_RXD1              |          |
| 37         | DISABLED                            |                                     | PTA17             | SPI0_SIN                    | UART0_RTS_b                 |            |      | I2S0_MCLK    |                        |          |
| 38         | VDD                                 | VDD                                 |                   |                             |                             |            |      |              |                        |          |
| 39         | VSS                                 | VSS                                 |                   |                             |                             |            |      |              |                        |          |
| 40         | EXTALO                              | EXTAL0                              | PTA18             |                             | FTM0_FLT2                   | FTM_CLKIN0 |      |              |                        |          |
| 41         | XTALO                               | XTALO                               | PTA19             |                             | FTM1_FLT0                   | FTM_CLKIN1 |      | LPTMR0_ALT1  |                        |          |
| 42         | RESET_b                             | RESET_b                             |                   |                             |                             |            |      |              |                        |          |
| 43         | ADC0_SE8                            | ADC0_SE8                            | PTB0/<br>LLWU_P5  | I2C0_SCL                    | FTM1_CH0                    |            |      | FTM1_QD_PHA  |                        |          |
| 44         | ADC0_SE9                            | ADC0_SE9                            | PTB1              | I2C0_SDA                    | FTM1_CH1                    |            |      | FTM1_QD_PHB  |                        |          |
| 45         | ADC0_SE12                           | ADC0_SE12                           | PTB2              | I2C0_SCL                    | UART0_RTS_b                 |            |      | FTM0_FLT3    |                        |          |
| 46         | ADC0_SE13                           | ADC0_SE13                           | PTB3              | I2C0_SDA                    | UART0_CTS_b/<br>UART0_COL_b |            |      | FTM0_FLT0    |                        |          |
| 47         | DISABLED                            |                                     | PTB10             | SPI1_PCS0                   | UART3_RX                    |            |      | FTM0_FLT1    |                        |          |
| 48         | DISABLED                            |                                     | PTB11             | SPI1_SCK                    | UART3_TX                    |            |      | FTM0_FLT2    |                        |          |
| 49         | DISABLED                            |                                     | PTB12             | UART3_RTS_b                 | FTM1_CH0                    | FTM0_CH4   |      | FTM1_QD_PHA  |                        |          |

![](_page_19_Picture_0.jpeg)

![](_page_19_Figure_1.jpeg)

# 9 Revision History

The following table provides a revision history for this document.

![](_page_20_Picture_0.jpeg)

| Rev. No. | Date    | Substantial Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 6/2012  | Alpha customer release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.1      | 6/2012  | In Table 6, "Power consumption operating behaviors", changed the units of $I_{DD_VLLS2}$ , $I_{DD_VLLS1}$ , $I_{DD_VLLS0}$ , and $I_{DD_VBAT}$ from nA to $\mu$ A.                                                                                                                                                                                                                                                                                                                                 |
| 2        | 7/2012  | <ul> <li>Updated section "Power consumption operating behaviors".</li> <li>Updated section "Flash timing specifications — program and erase".</li> <li>Updated section "Flash timing specifications — commands".</li> <li>Removed the 32K ratio from "Write endurance" in section "Reliability specifications".</li> <li>Updated IDDstby maximum value in section "VREG electrical specifications".</li> <li>Added the charts in section "Diagram: Typical IDD_RUN operating behavior".</li> </ul> |
| 3        | 8/2012  | <ul> <li>Updated section "Power consumption operating behaviors".</li> <li>Updated section "EMC radiated emissions operating behaviors".</li> <li>Updated section "MCG specifications".</li> <li>Added applicable notes in section "Signal Multiplexing and Pin Assignments".</li> </ul>                                                                                                                                                                                                           |
| 4        | 12/2012 | <ul> <li>Updated section "Power consumption operating behaviors"</li> <li>Updated section "MCG specifications"</li> <li>Updated section "16-bit ADC operating conditions"</li> </ul>                                                                                                                                                                                                                                                                                                               |
| 4.1      | 08/2013 | <ul> <li>Added section "Small package marking"</li> <li>To section "MCG Specifications", added row for "Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C"</li> </ul>                                                                                                                                                                                                                                                                     |

#### Table 41. Revision History