

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	57
Number of Gates	3000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a40mx02-1pl68m

Email: info@E-XFL.COM

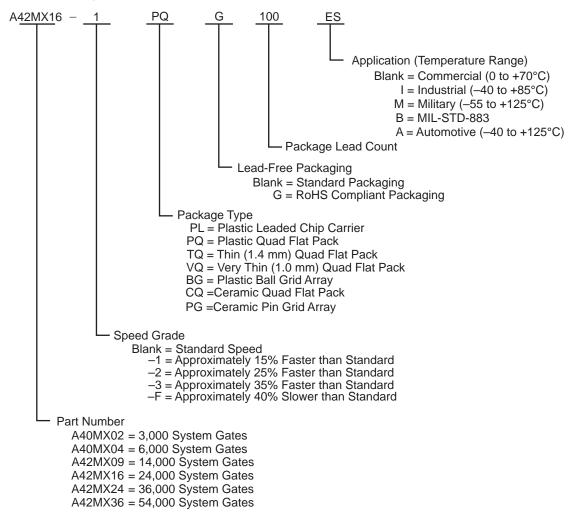
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power Matters."

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document or to any products and services at any time without notice.

About Microsemi


Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

2.3 Ordering Information

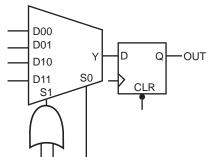
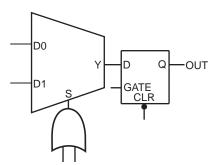
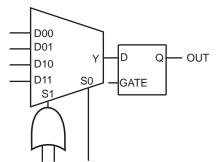
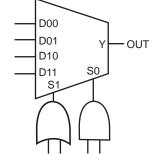

The following figure shows ordering information.All the following tables show plastic and ceramic device resources, temperature and speed grade offerings.

Figure 1 • Ordering Information







Up to 7-Input Function Plus D-Type Flip-Flop with Clear

Up to 7-Input Function Plus Latch

Up to 4-Input Function Plus Latch with Clear

Up to 8-Input Function (Same as C-Module)

A42MX24 and A42MX36 devices contain D-modules, which are arranged around the periphery of the device. D-modules contain wide-decode circuitry, providing a fast, wide-input AND function similar to that found in CPLD architectures (Figure 5, page 9). The D-module allows A42MX24 and A42MX36 devices to perform wide-decode functions at speeds comparable to CPLDs and PALs. The output of the D-module has a programmable inverter for active HIGH or LOW assertion. The D-module output is hardwired to an output pin, and can also be fed back into the array to be incorporated into other logic.

3.2.2 Dual-Port SRAM Modules

The A42MX36 device contains dual-port SRAM modules that have been optimized for synchronous or asynchronous applications. The SRAM modules are arranged in 256-bit blocks that can be configured as 32x8 or 64x4. SRAM modules can be cascaded together to form memory spaces of user-definable width and depth. A block diagram of the A42MX36 dual-port SRAM block is shown in Figure 6, page 9.

The A42MX36 SRAM modules are true dual-port structures containing independent read and write ports. Each SRAM module contains six bits of read and write addressing (RDAD[5:0] and WRAD[5:0], respectively) for 64x4-bit blocks. When configured in byte mode, the highest order address bits (RDAD5 and WRAD5) are not used. The read and write ports of the SRAM block contain independent clocks (RCLK and WCLK) with programmable polarities offering active HIGH or LOW implementation. The SRAM block contains eight data inputs (WD[7:0]), and eight outputs (RD[7:0]), which are connected to segmented vertical routing tracks.

The A42MX36 dual-port SRAM blocks provide an optimal solution for high-speed buffered applications requiring FIFO and LIFO queues. The ACTgen Macro Builder within Microsemi's designer software provides capability to quickly design memory functions with the SRAM blocks. Unused SRAM blocks can be used to implement registers for other user logic within the design.

Silicon Sculptor programs devices independently to achieve the fastest programming times possible. After being programmed, each fuse is verified to insure that it has been programmed correctly. Furthermore, at the end of programming, there are integrity tests that are run to ensure no extra fuses have been programmed. Not only does it test fuses (both programmed and non-programmed), Silicon Sculptor also allows self-test to verify its own hardware extensively.

The procedure for programming an MX device using Silicon Sculptor is as follows:

- 1. Load the *.AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Microsemi offers device volume-programming services either through distribution partners or via In-House Programming from the factory.

For more details on programming MX devices, see the *AC225: Programming Antifuse Devices* application note and the *Silicon Sculptor 3 Programmers User Guide*.

3.3.4 Power Supply

MX devices are designed to operate in both 5.0V and 3.3V environments. In particular, 42MX devices can operate in mixed 5.0 V/3.3 V systems. The following table describes the voltage support of MX devices.

Device	VCC	VCCA	VCCI	Maximum Input Tolerance	Nominal Output Voltage
40MX	5.0 V	-	-	5.5 V	5.0 V
	3.3 V	_	-	3.6 V	3.3 V
42MX	_	5.0 V	5.0 V	5.5 V	5.0 V
	_	3.3 V	3.3 V	3.6 V	3.3 V
	_	5.0 V	3.3 V	5.5 V	3.3 V

Table 6 • Voltage Support of MX Devices

For A42MX24 and A42MX36 devices the VCCA supply has to be monotonic during power up in order for the POR to issue reset to the JTAG state machine correctly. For more information, see the AC291: 42MX Family Devices Power-Up Behavior.

3.3.5 Power-Up/Down in Mixed-Voltage Mode

When powering up 42MX in mixed voltage mode (VCCA = 5.0 V and VCCI = 3.3 V), VCCA must be greater than or equal to VCCI throughout the power-up sequence. If VCCI exceeds VCCA during power-up, one of two things will happen:

- The input protection diode on the I/Os will be forward biased
- The I/Os will be at logical High

In either case, ICC rises to high levels. For power-down, any sequence with VCCA and VCCI can be implemented.

3.3.6 Transient Current

Due to the simultaneous random logic switching activity during power-up, a transient current may appear on the core supply (VCC). Customers must use a regulator for the VCC supply that can source a minimum of 100 mA for transient current during power-up. Failure to provide enough power can prevent the system from powering up properly and result in functional failure. However, there are no reliability concerns, since transient current is distributed across the die instead of confined to a localized spot.

Since the transient current is not due to I/O switching, its value and duration are independent of the VCCI.

 $f_{\alpha 2}$ = Average second routed array clock rate in MHz)

Device Type	r1 routed_Clk1	r2 routed_Clk2
A40MX02	41.4	N/A
A40MX04	68.6	N/A
A42MX09	118	118
A42MX16	165	165
A42MX24	185	185
A42MX36	220	220

 Table 7 •
 Fixed Capacitance Values for MX FPGAs (pF)

3.4.6 Test Circuitry and Silicon Explorer II Probe

MX devices contain probing circuitry that provides built-in access to every node in a design, via the use of Silicon Explorer II. Silicon Explorer II is an integrated hardware and software solution that, in conjunction with the Designer software, allow users to examine any of the internal nets of the device while it is operating in a prototyping or a production system. The user can probe into an MX device without changing the placement and routing of the design and without using any additional resources. Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle and providing a true representation of the device under actual functional situations.

Silicon Explorer II samples data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

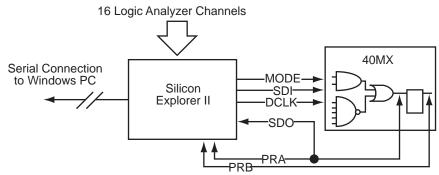

Silicon Explorer II is used to control the MODE, DCLK, SDI and SDO pins in MX devices to select the desired nets for debugging. The user simply assigns the selected internal nets in the Silicon Explorer II software to the PRA/PRB output pins for observation. Probing functionality is activated when the MODE pin is held HIGH.

Figure 12, page 16 illustrates the interconnection between Silicon Explorer II and 40MX devices, while Figure 13, page 17 illustrates the interconnection between Silicon Explorer II and 42MX devices

To allow for probing capabilities, the security fuses must not be programmed. (See User Security, page 12 for the security fuses of 40MX and 42MX devices). Table 8, page 17 summarizes the possible device configurations for probing.

PRA and PRB pins are dual-purpose pins. When the "Reserve Probe Pin" is checked in the Designer software, PRA and PRB pins are reserved as dedicated outputs for probing. If PRA and PRB pins are required as user I/Os to achieve successful layout and "Reserve Probe Pin" is checked, the layout tool will override the option and place user I/Os on PRA and PRB pins.

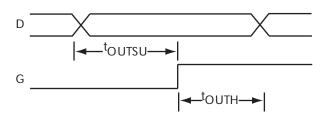
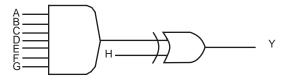
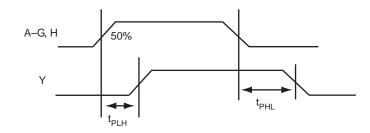

Figure 12 • Silicon Explorer II Setup with 40MX

Figure 27 • Output Buffer Latches





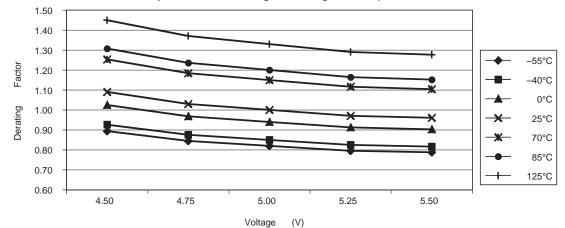
3.10.4 Decode Module Timing

The following figure shows decode module timing.

Figure 28 • Decode Module Timing

3.10.5 SRAM Timing Characteristics

The following figure shows SRAM timing characteristics.

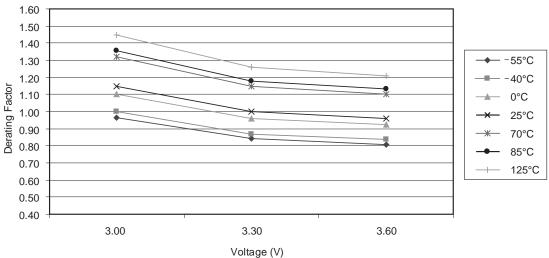

Figure 29 • SRAM Timing Characteristics

Write Port		Read Port	
 WRAD [5:0] BLKEN WEN WCLK WD [7:0]	RAM Array 32x8 or 64x4 (256 Bits)	RDAD [5:0] LEW REN RCLK RD [7:0]	

3.10.6 Dual-Port SRAM Timing Waveforms

The following figures show dual-port SRAM timing waveforms.

Figure 35 • 40MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25°C, VCC = 5.0 V)


Note: This derating factor applies to all routing and propagation delays

	Temperature											
42MX Voltage	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C					
3.00	0.97	1.00	1.10	1.15	1.32	1.36	1.45					
3.30	0.84	0.87	0.96	1.00	1.15	1.18	1.26					
3.60	0.81	0.84	0.92	0.96	1.10	1.13	1.21					

Figure 36 • 42MX Junction Temperature and Voltage Derating Curves

(Normalized to $TJ = 25^{\circ}C$, VCCA = 3.3 V)

Note: This derating factor applies to all routing and propagation delays

Table 31 • 40MX Temperature and Voltage Derating Factors (Normalized to TJ = 25°C, VCC = 3.3 V)

	Temperature											
40MX Voltage	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C					
3.00	1.08	1.12	1.21	1.26	1.50	1.64	2.00					
3.30	0.86	0.89	0.96	1.00	1.19	1.30	1.59					

Table 35 •A40MX02 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70° C)

			–3 Sp	beed	–2 Sp	beed	–1 Sp	beed	Std S	Speed	–F S	peed	
Paramet	ter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _P	Minimum Period	FO = 16	6.5		7.5		8.5		10.1		14.1		ns
		FO = 128	6.8		7.8		8.9		10.4		14.6		
f _{MAX}	Maximum	FO = 16		113		105		96		83		50	MHz
	Frequency	FO = 128		109		101		92		80		48	
TTL Out	put Module Timing ⁴												
t _{DLH}	Data-to-Pad HIGH			4.7		5.4		6.1		7.2		10.0	ns
t _{DHL}	Data-to-Pad LOW			5.6		6.4		7.3		8.6		12.0	ns
t _{ENZH}	Enable Pad Z to H	IGH		5.2		6.0		6.8		8.1		11.3	ns
t _{ENZL}	Enable Pad Z to LO	WC		6.6		7.6		8.6		10.1		14.1	ns
t _{ENHZ}	Enable Pad HIGH	to Z		11.1		12.8		14.5		17.1		23.9	ns
t _{ENLZ}	Enable Pad LOW t	o Z		8.2		9.5		10.7		12.6		17.7	ns
d _{TLH}	Delta LOW to HIG	4		0.03		0.03		0.04		0.04		0.06	ns/pF
d _{THL}	Delta HIGH to LOV	V		0.04		0.04		0.05		0.06		0.08	ns/pF

Table 35 •A40MX02 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70°C)

		–3 Sp	beed	–2 Sp	beed	–1 S	beed	Std S	Speed	–F S	peed	
Parame	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS (Dutput Module Timing ⁴											
t _{DLH}	Data-to-Pad HIGH		5.5		6.4		7.2		8.5		11.9	ns
t _{DHL}	Data-to-Pad LOW		4.8		5.5		6.2		7.3		10.2	ns
t _{ENZH}	Enable Pad Z to HIGH		4.7		5.5		6.2		7.3		10.2	ns
t _{ENZL}	Enable Pad Z to LOW		6.8		7.9		8.9		10.5		14.7	ns
t _{ENHZ}	Enable Pad HIGH to Z		11.1		12.8		14.5		17.1		23.9	ns
t _{ENLZ}	Enable Pad LOW to Z		8.2		9.5		10.7		12.6		17.7	ns
d _{TLH}	Delta LOW to HIGH		0.05		0.05		0.06		0.07		0.10	ns/pF
d _{THL}	Delta HIGH to LOW		0.03		0.03		0.04		0.04		0.06	ns/pF

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.

3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro

4. Delays based on 35 pF loading

Table 36 •A40MX04 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions,
VCC = 4.75 V, T_J = 70°C)

		–3 S	peed	–2 Sp	beed	–1 S	peed	Std S	Speed	–F Sj	peed	
Parame	eter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic N	Iodule Propagation Delays											
t _{PD1}	Single Module		1.2		1.4		1.6		1.9		2.7	ns
t _{PD2}	Dual-Module Macros		2.3		3.1		3.5		4.1		5.7	ns
t _{CO}	Sequential Clock-to-Q		1.2		1.4		1.6		1.9		2.7	ns
t _{GO}	Latch G-to-Q		1.2		1.4		1.6		1.9		2.7	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q		1.2		1.4		1.6		1.9		2.7	ns
Logic N	Iodule Predicted Routing Delay	ys ¹										
t _{RD1}	FO = 1 Routing Delay		1.2		1.6		1.8		2.1		3.0	ns
t _{RD2}	FO = 2 Routing Delay		1.9		2.2		2.5		2.9		4.1	ns
t _{RD3}	FO = 3 Routing Delay		2.4		2.8		3.2		3.7		5.2	ns
t _{RD4}	FO = 4 Routing Delay		2.9		3.4		3.9		4.5		6.3	ns
t _{RD8}	FO = 8 Routing Delay		5.0		5.8		6.6		7.8		10.9	ns
Logic N	Iodule Sequential Timing ²											
t _{SUD}	Flip-Flop (Latch) Data Input Set-Up	3.1		3.5		4.0		4.7		6.6		ns
t _{HD} ³	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	3.1		3.5		4.0		4.7		6.6		ns

		-3 S	peed	–2 S	beed	–1 S	peed	Std S	Speed	–F Sp	peed	
Parame	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS C	Dutput Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		3.4		3.8		5.5		6.4		9.0	ns
t _{DHL}	Data-to-Pad LOW		4.1		4.5		4.2		5.0		7.0	ns
t _{ENZH}	Enable Pad Z to HIGH		3.7		4.1		4.6		5.5		7.6	ns
t _{ENZL}	Enable Pad Z to LOW		4.1		4.5		5.1		6.1		8.5	ns
t _{ENHZ}	Enable Pad HIGH to Z		6.9		7.6		8.6		10.2		14.2	ns
t _{ENLZ}	Enable Pad LOW to Z		7.5		8.3		9.4		11.1		15.5	ns
t _{GLH}	G-to-Pad HIGH		5.8		6.5		7.3		8.6		12.0	ns
t _{GHL}	G-to-Pad LOW		5.8		6.5		7.3		8.6		12.0	ns
t _{LSU}	I/O Latch Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{LH}	I/O Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading		8.7		9.7		10.9		12.9		18.0	ns
t _{ACO}	Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading		12.2		13.5		15.4		18.1		25.3	ns
d _{TLH}	Capacity Loading, LOW to HIGH		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{THL}	Capacity Loading, HIGH to LOW		0.05		0.05		0.06		0.07		0.10	ns/pF

Table 39 • A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (continued)(Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

5. Delays based on 35 pF loading.

Table 40 •A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

		–3 Spee	ed	-2 Speed	-1 Speed		Std Speed		-F Speed			
Param	Parameter / Description		ax.	Min. Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units	
Logic I	Module Propagation Delays ¹											
t _{PD1}	Single Module	1	.4	1.5		1.7		2.0		2.8	ns	
t _{CO}	Sequential Clock-to-Q	1	.4	1.6		1.8		2.1		3.0	ns	
t _{GO}	Latch G-to-Q	1	.4	1.5		1.7		2.0		2.8	ns	
t _{RS}	Flip-Flop (Latch) Reset-to-Q	1	.6	1.7		2.0		2.3		3.3	ns	
Logic I	Module Predicted Routing Delays	s ²										
t _{RD1}	FO = 1 Routing Delay	0).8	0.9		1.0		1.2		1.6	ns	
t _{RD2}	FO = 2 Routing Delay	1	.0	1.2		1.3		1.5		2.1	ns	

Table 40 •A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

		–3 S	peed	–2 S	peed	–1 S	beed	Std S	speed	-F Speed		
Parame	ter / Description	Min.	Max.	Units								
t _{RD3}	FO = 3 Routing Delay		1.3		1.4		1.6		1.9		2.7	ns
t _{RD4}	FO = 4 Routing Delay		1.6		1.7		2.0		2.3		3.2	ns
t _{RD8}	FO = 8 Routing Delay		2.6		2.9		3.2		3.8		5.3	ns
Logic M	odule Sequential Timing ^{3,4}											
t _{SUD}	Flip-Flop (Latch) Data Input Set-Up	0.3		0.4		0.4		0.5		0.7		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	3.4		3.8		4.3		5.0		7.1		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.5		5.0		5.6		6.6		9.2		ns
t _A	Flip-Flop Clock Input Period	6.8		7.6		8.6		10.1		14.1		ns
t _{INH}	Input Buffer Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Set-Up	0.5		0.5		0.6		0.7		1.0		ns
t _{OUTH}	Output Buffer Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{OUTSU}	Output Buffer Latch Set-Up	0.5		0.5		0.6		0.7		1.0		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency	/	215		195		179		156		94	MHz
Input M	odule Propagation Delays											
t _{INYH}	Pad-to-Y HIGH		1.1		1.2		1.3		1.6		2.2	ns
t _{INYL}	Pad-to-Y LOW		0.8		0.9		1.0		1.2		1.7	ns
t _{INGH}	G to Y HIGH		1.4		1.6		1.8		2.1		2.9	ns
t _{INGL}	G to Y LOW		1.4		1.6		1.8		2.1		2.9	ns
Input M	odule Predicted Routing Delays ²											
t _{IRD1}	FO = 1 Routing Delay		1.8		2.0		2.3		2.7		4.0	ns
t _{IRD2}	FO = 2 Routing Delay		2.1		2.3		2.6		3.1		4.3	ns
t _{IRD3}	FO = 3 Routing Delay		2.3		2.6		3.0		3.5		4.9	ns
t _{IRD4}	FO = 4 Routing Delay		2.6		3.0		3.3		3.9		5.4	ns
t _{IRD8}	FO = 8 Routing Delay		3.6		4.0		4.6		5.4		7.5	ns
Global (Clock Network											
t _{CKH}	Input LOW to HIGH FO = 32 FO = 384		2.6 2.9		2.9 3.2		3.3 3.6		3.9 4.3		5.4 6.0	ns ns
t _{CKL}	Input HIGH to LOW FO = 32 FO = 384		3.8 4.5		4.2 5.0		4.8 5.6		5.6 6.6		7.8 9.2	ns ns
t _{PWH}	Minimum Pulse Width FO = 32 HIGH FO = 384	3.2 3.7		3.5 4.1		4.0 4.6		4.7 5.4		6.6 7.6		ns ns

Table 40 •A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

			–3 S	peed	–2 SI	beed	–1 Sp	beed	Std S	peed	–F Sp	beed	
Parameter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units	
t _{PWL}	Minimum Pulse Width LOW	FO = 32 FO = 384	3.2 3.7		3.5 4.1		4.0 4.6		4.7 5.4		6.6 7.6		ns ns
t _{CKSW}	Maximum Skew	FO = 32 FO = 384		0.3 0.3		0.4 0.4		0.4 0.4		0.5 0.5		0.7 0.7	ns ns
t _{SUEXT}	Input Latch External Set-Up	FO = 32 FO = 384	0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		ns ns
t _{HEXT}	Input Latch External Hold	FO = 32 FO = 384	2.8 3.2		3.1 3.5		5.5 4.0		4.1 4.7		5.7 6.6		ns ns
t _P	Minimum Period	FO = 32 FO = 384	4.2 4.6		4.67 5.1		5.1 5.6		5.8 6.4		9.7 10.7		ns ns
f _{MAX}	Maximum Frequency	FO = 32 FO = 384		237 215		215 195		198 179		172 156		103 94	MHz MHz

Table 41 • A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

			–3 S	peed	–2 Sp	beed	–1 Sj	beed	Std S	Speed	–F Sp	beed	
Paramet	er / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mo	odule Sequential Timin	g ^{3, 4}											
t _{SUD}	Flip-Flop (Latch) Data Input Set-Up		0.5		0.5		0.6		0.7		0.9		ns
t _{HD}	Flip-Flop (Latch) Data	Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enat	ole Set-Up	1.0		1.1		1.2		1.4		2.0		ns
t _{HENA}	Flip-Flop (Latch) Enat	ole Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Wi	dth	4.8		5.3		6.0		7.1		9.9		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse	Nidth	6.2		6.9		7.9		9.2		12.9		ns
t _A	Flip-Flop Clock Input	Period	9.5		10.6		12.0		14.1		19.8		ns
t _{INH}	Input Buffer Latch Hol	d	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Set	-Up	0.7		0.8		0.9		1.01		1.4		ns
t _{OUTH}	Output Buffer Latch H	old	0.0		0.0		0.0		0.0		0.0		ns
t _{outsu}	Output Buffer Latch S	et-Up	0.7		0.8		0.89		1.01		1.4		ns
f _{MAX}	Flip-Flop (Latch) Cloc Frequency	k		129		117		108		94		56	MHz
Input Mo	dule Propagation Dela	iys											
t _{INYH}	Pad-to-Y HIGH			1.5		1.6		1.9		2.2		3.1	ns
t _{INYL}	Pad-to-Y LOW			1.1		1.3		1.4		1.7		2.4	ns
t _{INGH}	G to Y HIGH			2.0		2.2		2.5		2.9		4.1	ns
t _{INGL}	G to Y LOW			2.0		2.2		2.5		2.9		4.1	ns
Input Mo	dule Predicted Routin	g Delays ²											
t _{IRD1}	FO = 1 Routing Delay			2.6		2.9		3.2		3.8		5.3	ns
t _{IRD2}	FO = 2 Routing Delay			2.9		3.2		3.7		4.3		6.1	ns
t _{IRD3}	FO = 3 Routing Delay			3.3		3.6		4.1		4.9		6.8	ns
t _{IRD4}	FO = 4 Routing Delay			3.6		4.0		4.6		5.4		7.6	ns
t _{IRD8}	FO = 8 Routing Delay			5.1		5.6		6.4		7.5		10.5	ns
Global C	lock Network												
t _{CKH}	Input LOW to HIGH	FO = 32 FO = 384		4.4 4.8		4.8 5.3		5.5 6.0		6.5 7.1		9.0 9.9	ns ns
t _{CKL}	Input HIGH to LOW	FO = 32 FO = 384		5.3 6.2		5.9 6.9		6.7 7.9		7.8 9.2		11.0 12.9	ns ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 32 FO = 384	5.7 6.6		6.3 7.4		7.1 8.3		8.4 9.8		11.8 13.7		ns ns

Table 44 •A42MX36 Timing Characteristics (Nominal 5.0 V Operation)(Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

		–3 S	peed	–2 S	beed	–1 Sj	beed	Std S	peed	–F Sp	beed	
Paramet	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic M	odule Combinatorial Functions ¹											
t _{PD}	Internal Array Module Delay		1.3		1.5		1.7		2.0		2.7	ns
t _{PDD}	Internal Decode Module Delay		1.6		1.8		2.0		2.4		3.3	ns
Logic M	odule Predicted Routing Delays ²	2										
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.2		1.4		2.0	ns
t _{RD2}	FO = 2 Routing Delay		1.3		1.4		1.6		1.9		2.7	ns
t _{RD3}	FO =3 Routing Delay		1.6		1.8		2.0		2.4		3.4	ns
t _{RD4}	FO = 4 Routing Delay		2.0		2.2		2.5		2.9		4.1	ns
t _{RD5}	FO = 8 Routing Delay		3.3		3.7		4.2		4.9		6.9	ns
t _{RDD}	Decode-to-Output Routing Delay		0.3		0.4		0.4		0.5		0.7	ns
Logic M	odule Sequential Timing ^{3, 4}											
t _{CO}	Flip-Flop Clock-to-Output		1.3		1.4		1.6		1.9		2.7	ns
t _{GO}	Latch Gate-to-Output		1.3		1.4		1.6		1.9		2.7	ns
t _{SUD}	Flip-Flop (Latch) Set-Up Time	0.3		0.3		0.4		0.5		0.7		ns
t _{HD}	Flip-Flop (Latch) Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RO}	Flip-Flop (Latch) Reset-to-Output		1.6		1.7		2.0		2.3		3.2	ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	3.3		3.7		4.2		4.9		6.9		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.4		4.8		5.5		6.4		9.0		ns
Synchro	onous SRAM Operations											
t _{RC}	Read Cycle Time	6.8		7.5		8.5		10.0		14.0		ns
t _{WC}	Write Cycle Time	6.8		7.5		8.5		10.0		14.0		ns
t _{RCKHL}	Clock HIGH/LOW Time	3.4		3.8		4.3		5.0		7.0		ns
t _{RCO}	Data Valid After Clock HIGH/LOW		3.4		3.8		4.3		5.0		7.0	ns
t _{ADSU}	Address/Data Set-Up Time	1.6		1.8		2.0		2.4		3.4		ns
Synchro	onous SRAM Operations (continu	ied)										
t _{ADH}	Address/Data Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RENSU}	Read Enable Set-Up	0.6		0.7		0.8		0.9		1.3		ns
t _{RENH}	Read Enable Hold	3.4		3.8		4.3		5.0		7.0		ns
t _{WENSU}	Write Enable Set-Up	2.7		3.0		3.4		4.0		5.6		ns
t _{WENH}	Write Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{BENS}	Block Enable Set-Up	2.8		3.1		3.5		4.1		5.7		ns
t _{BENH}	Block Enable Hold	0.0		0.0		0.0		0.0		0.0		ns

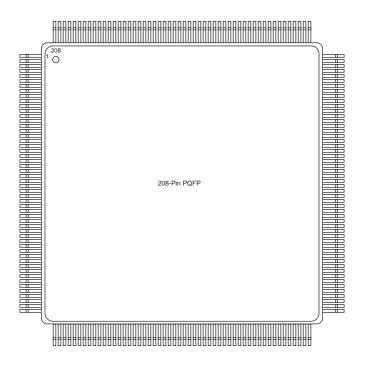


Table 45 • A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (continued)(Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

		–3 SI	beed	–2 S	peed	-1 Speed		Std Speed		-F Speed		
Parameter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Synchronous SRAM Operations (continue		ed)										
t _{ADH}	Address/Data Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RENSU}	Read Enable Set-Up	0.9		1.0		1.1		1.3		1.8		ns
t _{RENH}	Read Enable Hold	4.8		5.3		6.0		7.0		9.8		ns
t _{WENSU}	Write Enable Set-Up	3.8		4.2		4.8		5.6		7.8		ns
t _{WENH}	Write Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{BENS}	Block Enable Set-Up	3.9		4.3		4.9		5.7		8.0		ns
t _{BENH}	Block Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
Asynchr	onous SRAM Operations											
t _{RPD}	Asynchronous Access Time		11.3		12.6		14.3		16.8		23.5	ns
t _{RDADV}	Read Address Valid	12.3		13.7		15.5		18.2		25.5		ns
t _{ADSU}	Address/Data Set-Up Time	2.3		2.5		2.8		3.4		4.8		ns
t _{ADH}	Address/Data Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RENSUA}	Read Enable Set-Up to Address Valid	0.9		1.0		1.1		1.3		1.8		ns
t _{RENHA}	Read Enable Hold	4.8		5.3		6.0		7.0		9.8		ns
t _{WENSU}	Write Enable Set-Up	3.8		4.2		4.8		5.6		7.8		ns
t _{WENH}	Write Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{DOH}	Data Out Hold Time		1.8		2.0		2.1		2.5		3.5	ns
Input Mo	dule Propagation Delays											
t _{INPY}	Input Data Pad-to-Y		1.4		1.6		1.8		2.1		3.0	ns
t _{INGO}	Input Latch Gate-to-Output		2.0		2.2		2.5		2.9		4.1	ns
t _{INH}	Input Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Latch Set-Up	0.7		0.7		0.8		1.0		1.4		ns
t _{ILA}	Latch Active Pulse Width	6.5		7.3		8.2		9.7		13.5		ns

Figure 44 • PQ208

Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
1	GND	GND	GND
2	NC	VCCA	VCCA
3	MODE	MODE	MODE
4	I/O	I/O	I/O
5	I/O	I/O	I/O
6	I/O	I/O	I/O
7	I/O	I/O	I/O
8	I/O	I/O	I/O
9	NC	I/O	I/O
10	NC	I/O	I/O
11	NC	I/O	I/O
12	I/O	I/O	I/O
13	I/O	I/O	I/O
14	I/O	I/O	I/O
15	I/O	I/O	I/O
16	NC	I/O	I/O
17	VCCA	VCCA	VCCA
18	I/O	I/O	I/O
19	I/O	I/O	I/O
20	I/O	I/O	I/O

Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
132	VCCI	VCCI	VCCI
133	VCCA	VCCA	VCCA
134	I/O	I/O	I/O
135	I/O	I/O	I/O
136	VCCA	VCCA	VCCA
137	I/O	I/O	I/O
138	I/O	I/O	I/O
139	I/O	I/O	I/O
140	I/O	I/O	I/O
141	NC	I/O	I/O
142	I/O	I/O	I/O
143	I/O	I/O	I/O
144	I/O	I/O	I/O
145	I/O	I/O	I/O
146	NC	I/O	I/O
147	NC	I/O	I/O
148	NC	I/O	I/O
149	NC	I/O	I/O
150	GND	GND	GND
151	I/O	I/O	I/O
152	I/O	I/O	I/O
153	I/O	I/O	I/O
154	I/O	I/O	I/O
155	I/O	I/O	I/O
156	I/O	I/O	I/O
157	GND	GND	GND
158	I/O	I/O	I/O
159	SDI, I/O	SDI, I/O	SDI, I/O
160	I/O	I/O	I/O
161	I/O	WD, I/O	WD, I/O
162	I/O	WD, I/O	WD, I/O
163	I/O	I/O	I/O
164	VCCI	VCCI	VCCI
165	NC	I/O	I/O
166	NC	I/O	I/O
167	I/O	I/O	I/O
168	I/O	WD, I/O	WD, I/O

PQ240	
Pin Number	A42MX36 Function
200	I/O
201	I/O
202	I/O
203	I/O
204	I/O
205	I/O
206	VCCA
207	I/O
208	I/O
209	VCCA
210	VCCI
211	I/O
212	I/O
213	I/O
214	I/O
215	I/O
216	I/O
217	I/O
218	I/O
219	VCCA
220	I/O
221	I/O
222	I/O
223	I/O
224	I/O
225	I/O
226	I/O
227	VCCI
228	I/O
229	I/O
230	I/O
231	I/O
232	I/O
233	I/O
234	I/O
235	I/O

VQ80		
Pin Number	A40MX02 Function	A40MX04 Function
13	VCC	VCC
14	I/O	I/O
15	I/O	I/O
16	I/O	I/O
17	NC	I/O
18	NC	I/O
19	NC	I/O
20	VCC	VCC
21	I/O	I/O
22	I/O	I/O
23	I/O	I/O
24	I/O	I/O
25	I/O	I/O
26	I/O	I/O
27	GND	GND
28	I/O	I/O
29	I/O	I/O
30	I/O	I/O
31	I/O	I/O
32	I/O	I/O
33	VCC	VCC
34	I/O	I/O
35	I/O	I/O
36	I/O	I/O
37	I/O	I/O
38	I/O	I/O
39	I/O	I/O
40	I/O	I/O
41	NC	I/O
42	NC	I/O
43	NC	I/O
44	I/O	I/O
45	I/O	I/O
46	I/O	I/O
47	GND	GND
48	I/O	I/O

Table 62 • CQ172	1/0
99	I/O
100	I/O
101	I/O
102	I/O
103	GND
104	I/O
105	I/O
106	VKS
107	VPP
108	GND
109	VCCI
110	VSV
111	I/O
112	I/O
113	VCC
114	I/O
115	I/O
116	I/O
117	I/O
118	GND
119	I/O
120	I/O
121	I/O
122	I/O
123	GNDI
124	I/O
125	I/O
126	I/O
127	I/O
128	I/O
129	I/O
130	I/O
131	SDI
132	I/O
133	I/O
134	I/O
135	I/O
136	VCCI
137	I/O
	~ ~