

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Obsolete
Number of LABs/CLBs	· ·
Number of Logic Elements/Cells	·
Total RAM Bits	
Number of I/O	69
Number of Gates	6000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a40mx04-1pl84m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

$VCCA = 3.0 V, T_J = 70^{\circ}C)$	79
Configuration of Unused I/Os	84
PL44	86
PL68	88
PL84	90
PQ 100	93
PQ144	97
PQ160	. 102
PQ208	. 107
PQ240	. 113
VQ80	. 120
VQ100	. 123
TQ176	. 126
CQ208	. 132
CQ256	. 138
BG272	. 145
PG132	. 153
CQ172	. 158
	VCCA = 3.0 V, T _J = 70°C) Configuration of Unused I/Os PL44 PL68 PL84 PQ 100 PQ144 PQ160 PQ208 PQ240 VQ80 VQ80 VQ100 TQ176 CQ208 BG272 PG132 CQ172

Figure 5 • A42MX24 and A42MX36 D-Module Implementation

Figure 6 • A42MX36 Dual-Port SRAM Block

3.2.3 Routing Structure

The MX architecture uses vertical and horizontal routing tracks to interconnect the various logic and I/O modules. These routing tracks are metal interconnects that may be continuous or split into segments. Varying segment lengths allow the interconnect of over 90% of design tracks to occur with only two antifuse connections. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track. All interconnects can be accomplished with a maximum of four antifuses.

3.2.3.1 Horizontal Routing

Horizontal routing tracks span the whole row length or are divided into multiple segments and are located in between the rows of modules. Any segment that spans more than one-third of the row length is considered a long horizontal segment. A typical channel is shown in Figure 7, page 10. Within horizontal routing, dedicated routing tracks are used for global clock networks and for power and ground tie-off tracks. Non-dedicated tracks are used for signal nets.

3.2.3.2 Vertical Routing

Another set of routing tracks run vertically through the module. There are three types of vertical tracks: input, output, and long. Long tracks span the column length of the module, and can be divided into multiple segments. Each segment in an input track is dedicated to the input of a particular module; each segment in an output track is dedicated to the output of a particular module. Long segments are uncommitted and can be assigned during routing.

Each output segment spans four channels (two above and two below), except near the top and bottom of the array, where edge effects occur. Long vertical tracks contain either one or two segments. An example of vertical routing tracks and segments is shown in Figure 7, page 10.

Figure 8 • Clock Networks of 42MX Devices

Figure 9 • Quadrant Clock Network of A42MX36 Devices

Note: *QCLK1IN, QCLK2IN, QCLK3IN, and QCLK4IN are internally-generated signals.

3.2.5 MultiPlex I/O Modules

42MX devices feature Multiplex I/Os and support 5.0 V, 3.3 V, and mixed 3.3 V/5.0 V operations.

The MultiPlex I/O modules provide the interface between the device pins and the logic array. Figure 10, page 12 is a block diagram of the 42MX I/O module. A variety of user functions, determined by a library macro selection, can be implemented in the module. (See the *Antifuse Macro Library Guide* for more information.) All 42MX I/O modules contain tristate buffers, with input and output latches that can be configured for input, output, or bidirectional operation.

All 42MX devices contain flexible I/O structures, where each output pin has a dedicated output-enable control (Figure 10, page 12). The I/O module can be used to latch input or output data, or both, providing fast set-up time. In addition, the Designer software tools can build a D-type flip-flop using a C-module combined with an I/O module to register input and output signals. See the *Antifuse Macro Library Guide* for more details.

A42MX24 and A42MX36 devices also offer selectable PCI output drives, enabling 100% compliance with version 2.1 of the PCI specification. For low-power systems, all inputs and outputs are turned off to reduce current consumption to below 500 μ A.

To achieve 5.0 V or 3.3 V PCI-compliant output drives on A42MX24 and A42MX36 devices, a chip-wide PCI fuse is programmed via the Device Selection Wizard in the Designer software (Figure 11, page 12). When the PCI fuse is not programmed, the output drive is standard.

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions.

Table 14 •	Recommended	Operating	Conditions
------------	-------------	-----------	------------

Parameter	Commercial	Industrial	Military	Units
Temperature Range*	0 to +70	-40 to +85	-55 to +125	°C
VCC (40MX)	4.75 to 5.25	4.5 to 5.5	4.5 to 5.5	V
VCCA (42MX)	4.75 to 5.25	4.5 to 5.5	4.5 to 5.5	V
VCCI (42MX)	4.75 to 5.25	4.5 to 5.5	4.5 to 5.5	V

Note: * Ambient temperature (T_A) is used for commercial and industrial grades; case temperature (T_C) is used for military grades.

3.7.1 5 V TTL Electrical Specifications

The following tables show 5 V TTL electrical specifications.

Table 15 • 5V TTL Electrical Specifications

		Comr	nercial	Comr	nercial -F	Indu	strial	Milita	iry	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
VOH ¹	IOH = -10 mA	2.4		2.4						V
	IOH = -4 mA					3.7		3.7		V
VOL ¹	IOL = 10 mA		0.5		0.5					V
	IOL = 6 mA						0.4		0.4	V
VIL		-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
VIH (40MX)		2.0	VCC + 0.3	2.0	VCC + 0.3	2.0	VCC + 0.3	2.0	VCC + 0.3	V
VIH (42MX) ²		2.0	VCCI + 0.3	2.0	VCCI + 0.3	2.0	VCCI + 0.3	2.0	VCCI + 0.3	V
IIL	VIN = 0.5 V		-10		-10		-10		-10	μA
IIH	VIN = 2.7 V		-10		-10		-10		-10	μA
Input Transition Time, T_R and T_F			500		500		500		500	ns
C _{IO} I/O Capacitance			10		10		10		10	pF
Standby Current, ICC ³	A40MX02, A40MX04		3		25		10		25	mA
	A42MX09		5		25		25		25	mA
	A42MX16		6		25		25		25	mA
	A42MX24, A42MX36		20		25		25		25	mA
Low power mode Standby Current	42MX devices only		0.5		ICC - 5.0		ICC - 5.0		ICC – 5.0	mA
IIO, I/O source sink current	Can be derived	d from	the IBIS mod	<i>del</i> (http	o://www.micr	rosemi	.com/soc/te	chdocs	s/models/ibis	.html)

1. Only one output tested at a time. VCC/VCCI = min

2. VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V

Figure 27 • Output Buffer Latches

3.10.4 Decode Module Timing

The following figure shows decode module timing.

Figure 28 • Decode Module Timing

3.10.5 SRAM Timing Characteristics

The following figure shows SRAM timing characteristics.

Figure 29 • SRAM Timing Characteristics

Write Port		Read Port	
 WRAD [5:0] BLKEN WEN WCLK WD [7:0]	RAM Array 32x8 or 64x4 (256 Bits)	RDAD [5:0] LEW REN RCLK RD [7:0]	

3.10.6 Dual-Port SRAM Timing Waveforms

The following figures show dual-port SRAM timing waveforms.

Figure 30 • 42MX SRAM Write Operation

Note: Identical timing for falling edge clock

Figure 33 • 42MX SRAM Asynchronous Read Operation—Type 2 (Write Address Controlled)

3.10.7 Predictable Performance: Tight Delay Distributions

Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases.

From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer routing tracks.

The MX FPGAs deliver a tight fanout delay distribution, which is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path.

Microsemi's patented antifuse offers a very low resistive/capacitive interconnect. The antifuses, fabricated in 0.45 μ m lithography, offer nominal levels of 100 Ω resistance and 7.0 fF capacitance per antifuse.

MX fanout distribution is also tight due to the low number of antifuses required for each interconnect path. The proprietary architecture limits the number of antifuses per path to a maximum of four, with 90 percent of interconnects using only two antifuses.

3.11 Timing Characteristics

Device timing characteristics fall into three categories: family-dependent, device-dependent, and designdependent. The input and output buffer characteristics are common to all MX devices. Internal routing delays are device-dependent; actual delays are not determined until after place-and-route of the user's design is complete. Delay values may then be determined by using the Designer software utility or by performing simulation with post-layout delays.

3.11.1 Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment in Microsemi's Designer software prior to placement and routing. Up to 6% of the nets in a design may be designated as critical.

3.11.2 Long Tracks

Some nets in the design use long tracks, which are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections, which increase capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks add

Table 35 •A40MX02 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70° C)

			-3 Speed		–2 Sp	beed	–1 Sp	beed	Std S	speed	-F Speed		
Paramete	r / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{RD1}	FO = 1 Routing Dela	ıy		2.0		2.2		2.5		3.0		4.2	ns
t _{RD2}	FO = 2 Routing Dela	ıy		2.7		3.1		3.5		4.1		5.7	ns
t _{RD3}	FO = 3 Routing Dela	ıy		3.4		3.9		4.4		5.2		7.3	ns
t _{RD4}	FO = 4 Routing Dela	ıy		4.2		4.8		5.4		6.3		8.9	ns
t _{RD8}	FO = 8 Routing Dela	ıy		7.1		8.2		9.2		10.9		15.2	ns
Logic Mo	dule Sequential Timi	ng²											
t _{SUD}	Flip-Flop (Latch) Data Input Set-Up		4.3		4.9		5.6		6.6		9.2		ns
t _{HD} ³	Flip-Flop (Latch) Data Input Hold		0.0		0.0		0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Ena	able Set-Up	4.3		4.9		5.6		6.6		9.2		ns
t _{HENA}	Flip-Flop (Latch) Ena	able Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse V	Vidth	4.6		5.3		6.0		7.0		9.8		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse	Width	4.6		5.3		6.0		7.0		9.8		ns
t _A	Flip-Flop Clock Input	t Period	6.8		7.8		8.9		10.4		14.6		ns
f _{MAX}	Flip-Flop (Latch) Clo Frequency (FO = 12	ck 8)		109		101		92		80		48	MHz
Input Mod	dule Propagation Del	lays											
t _{INYH}	Pad-to-Y HIGH			1.0		1.1		1.3		1.5		2.1	ns
t _{INYL}	Pad-to-Y LOW			0.9		1.0		1.1		1.3		1.9	ns
Input Mod	ule Predicted Routin	ng Delays ¹											
t _{IRD1}	FO = 1 Routing Dela	ıy		2.9		3.4		3.8		4.5		6.3	ns
t _{IRD2}	FO = 2 Routing Dela	ıy		3.6		4.2		4.8		5.6		7.8	ns
t _{IRD3}	FO = 3 Routing Dela	ıy		4.4		5.0		5.7		6.7		9.4	ns
t _{IRD4}	FO = 4 Routing Dela	ıy		5.1		5.9		6.7		7.8		11.0	ns
t _{IRD8}	FO = 8 Routing Dela	ıy		8.0		9.26		10.5		12.6		17.3	ns
Global Cl	ock Network												
^t скн	Input LOW to HIGH	FO = 16 FO = 128		6.4 6.4		7.4 7.4		8.3 8.3		9.8 9.8		13.7 13.7	ns
t _{CKL}	Input HIGH to LOW	FO = 16 FO = 128		6.7 6.7		7.8 7.8		8.8 8.8		10.4 10.4		14.5 14.5	ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 16 FO = 128	3.1 3.3		3.6 3.8		4.1 4.3		4.8 5.1		6.7 7.1		ns
t _{PWL}	Minimum Pulse Width LOW	FO = 16 FO = 128	3.1 3.3		3.6 3.8		4.1 4.3		4.8 5.1		6.7 7.1		ns
t _{CKSW}	Maximum Skew	FO = 16 FO = 128		0.6 0.8		0.6 0.9		0.7 1.0		0.8 1.2		1.2 1.6	ns

		–3 S	peed	–2 Sj	peed	–1 S	peed	Std S	Speed	–F Sj	peed	
Parame	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS C	Dutput Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		3.4		3.8		5.5		6.4		9.0	ns
t _{DHL}	Data-to-Pad LOW		4.1		4.5		4.2		5.0		7.0	ns
t _{ENZH}	Enable Pad Z to HIGH		3.7		4.1		4.6		5.5		7.6	ns
t _{ENZL}	Enable Pad Z to LOW		4.1		4.5		5.1		6.1		8.5	ns
t _{ENHZ}	Enable Pad HIGH to Z		6.9		7.6		8.6		10.2		14.2	ns
t _{ENLZ}	Enable Pad LOW to Z		7.5		8.3		9.4		11.1		15.5	ns
t _{GLH}	G-to-Pad HIGH		5.8		6.5		7.3		8.6		12.0	ns
t _{GHL}	G-to-Pad LOW		5.8		6.5		7.3		8.6		12.0	ns
t _{LSU}	I/O Latch Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{LH}	I/O Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading		8.7		9.7		10.9		12.9		18.0	ns
t _{ACO}	Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading		12.2		13.5		15.4		18.1		25.3	ns
d _{TLH}	Capacity Loading, LOW to HIGH		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{THL}	Capacity Loading, HIGH to LOW		0.05		0.05		0.06		0.07		0.10	ns/pF

Table 39 • A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

5. Delays based on 35 pF loading.

Table 40 •A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

		-3 Speed	-2 Speed	-1 Speed	Std Speed	–F Speed	
Parame	eter / Description	Min. Max.	Units				
Logic N	Iodule Propagation Delays ¹						
t _{PD1}	Single Module	1.4	1.5	1.7	2.0	2.8	ns
t _{CO}	Sequential Clock-to-Q	1.4	1.6	1.8	2.1	3.0	ns
t _{GO}	Latch G-to-Q	1.4	1.5	1.7	2.0	2.8	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q	1.6	1.7	2.0	2.3	3.3	ns
Logic N	Nodule Predicted Routing Delays	2					
t _{RD1}	FO = 1 Routing Delay	0.8	0.9	1.0	1.2	1.6	ns
t _{RD2}	FO = 2 Routing Delay	1.0	1.2	1.3	1.5	2.1	ns

			–3 S	peed	-2 Speed		–1 Sp	beed	Std Speed		–F Speed		
Parameter	/ Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input Mod	ule Predicted Routing	Delays ²											
t _{IRD1}	FO = 1 Routing Delay			1.8		2.0		2.3		2.7		3.8	ns
t _{IRD2}	FO = 2 Routing Delay			2.1		2.3		2.6		3.1		4.3	ns
t _{IRD3}	FO = 3 Routing Delay			2.3		2.5		2.9		3.4		4.8	ns
t _{IRD4}	FO = 4 Routing Delay			2.5		2.8		3.2		3.7		5.2	ns
t _{IRD8}	FO = 8 Routing Delay			3.4		3.8		4.3		5.1		7.1	ns
Global Clo	ock Network												
t _{СКН}	Input LOW to HIGH	FO = 32 FO = 486		2.6 2.9		2.9 3.2		3.3 3.6		3.9 4.3		5.4 5.9	ns ns
t _{CKL}	Input HIGH to LOW	FO = 32 FO = 486		3.7 4.3		4.1 4.7		4.6 5.4		5.4 6.3		7.6 8.8	ns ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 32 FO = 486	2.2 2.4		2.4 2.6		2.7 3.0		3.2 3.5		4.5 4.9		ns ns
t _{PWL}	Minimum Pulse Width LOW	FO = 32 FO = 486	2.2 2.4		2.4 2.6		2.7 3.0		3.2 3.5		4.5 4.9		ns ns
t _{CKSW}	Maximum Skew	FO = 32 FO = 486		0.5 0.5		0.6 0.6		0.7 0.7		0.8 0.8		1.1 1.1	ns ns
t _{SUEXT}	Input Latch External Set-Up	FO = 32 FO = 486	0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		ns ns
t _{HEXT}	Input Latch External Hold	FO = 32 FO = 486	2.8 3.3		3.1 3.7		3.5 4.2		4.1 4.9		5.7 6.9		ns ns
t _P	Minimum Period (1/f _{MAX})	FO = 32 FO = 486	4.7 5.1		5.2 5.7		5.7 6.2		6.5 7.1		10.9 11.9		ns ns

Table 42 • A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T_J = 70°C)

		-3 Speed		–2 S	beed	–1 Sp	beed	Std S	peed	-F Speed		
Paramet	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mo	odule Combinatorial Functions ¹											
t _{PD}	Internal Array Module Delay		1.3		1.5		1.7		2.0		2.7	ns
t _{PDD}	Internal Decode Module Delay		1.6		1.8		2.0		2.4		3.3	ns
Logic Mo	odule Predicted Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.2		1.4		2.0	ns
t _{RD2}	FO = 2 Routing Delay		1.3		1.4		1.6		1.9		2.7	ns
t _{RD3}	FO =3 Routing Delay		1.6		1.8		2.0		2.4		3.4	ns
t _{RD4}	FO = 4 Routing Delay		2.0		2.2		2.5		2.9		4.1	ns
t _{RD5}	FO = 8 Routing Delay		3.3		3.7		4.2		4.9		6.9	ns
t _{RDD}	Decode-to-Output Routing Delay		0.3		0.4		0.4		0.5		0.7	ns
Logic Mo	odule Sequential Timing ^{3, 4}											
t _{CO}	Flip-Flop Clock-to-Output		1.3		1.4		1.6		1.9		2.7	ns
t _{GO}	Latch Gate-to-Output		1.3		1.4		1.6		1.9		2.7	ns
t _{SUD}	Flip-Flop (Latch) Set-Up Time	0.3		0.3		0.4		0.5		0.7		ns
t _{HD}	Flip-Flop (Latch) Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RO}	Flip-Flop (Latch) Reset-to-Output		1.6		1.7		2.0		2.3		3.2	ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	3.3		3.7		4.2		4.9		6.9		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.4		4.8		5.5		6.4		9.0		ns
Synchro	nous SRAM Operations											
t _{RC}	Read Cycle Time	6.8		7.5		8.5		10.0		14.0		ns
t _{WC}	Write Cycle Time	6.8		7.5		8.5		10.0		14.0		ns
t _{RCKHL}	Clock HIGH/LOW Time	3.4		3.8		4.3		5.0		7.0		ns
t _{RCO}	Data Valid After Clock HIGH/LOW		3.4		3.8		4.3		5.0		7.0	ns
t _{ADSU}	Address/Data Set-Up Time	1.6		1.8		2.0		2.4		3.4		ns
Synchro	nous SRAM Operations (continu	ed)										
t _{ADH}	Address/Data Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RENSU}	Read Enable Set-Up	0.6		0.7		0.8		0.9		1.3		ns
t _{RENH}	Read Enable Hold	3.4		3.8		4.3		5.0		7.0		ns
t _{WENSU}	Write Enable Set-Up	2.7		3.0		3.4		4.0		5.6		ns
t _{WENH}	Write Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{BENS}	Block Enable Set-Up	2.8		3.1		3.5		4.1		5.7		ns
t _{BENH}	Block Enable Hold	0.0		0.0		0.0		0.0		0.0		ns

Table 44 •A42MX36 Timing Characteristics (Nominal 5.0 V Operation)(Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

			-3 Speed -2 Speed -		-1 Speed Std Speed			–F Sp					
Parame	ter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{SUEXT}	Input Latch External	FO = 32	0.0		0.0		0.0		0.0		0.0		ns
	Set-Up	FO = 635	0.0		0.0		0.0		0.0		0.0		ns
t _{HEXT}	Input Latch External	FO = 32	2.8		3.2		3.6		4.2		5.9		ns
	Hold	FO = 635	3.3		3.7		4.2		4.9		6.9		ns
t _P	Minimum Period	FO = 32	5.5		6.1		6.6		7.6		12.7		ns
	(1/f _{MAX})	FO = 635	6.0		6.6		7.2		8.3		13.8		ns
f _{MAX}	Maximum Datapath	FO = 32		180		164		151		131		79	MHz
	Frequency	FO = 635		166		151		139		121		73	MHz
TTL Out	put Module Timing ⁵												
t _{DLH}	Data-to-Pad HIGH			2.6		2.8		3.2		3.8		5.3	ns
t _{DHL}	Data-to-Pad LOW			3.0		3.3		3.7		4.4		6.2	ns
t _{ENZH}	Enable Pad Z to HIG	Н		2.7		3.0		3.3		3.9		5.5	ns
t _{ENZL}	Enable Pad Z to LOV	V		3.0		3.3		3.7		4.3		6.1	ns
t _{ENHZ}	Enable Pad HIGH to	Z		5.3		5.8		6.6		7.8		10.9	ns

Table 44 •A42MX36 Timing Characteristics (Nominal 5.0 V Operation)(Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

4 Package Pin Assignments

The following figures and tables give the details of the package pin assignments.

Figure 38 • PL44

Table 47 • PL44

PL44		
Pin Number	A40MX02 Function	A40MX04 Function
1	I/O	I/O
2	I/O	I/O
3	VCC	VCC
4	I/O	I/O
5	I/O	I/O
6	I/O	I/O
7	I/O	I/O
8	I/O	I/O
9	I/O	I/O
10	GND	GND
11	I/O	I/O
12	I/O	I/O
13	I/O	I/O
14	VCC	VCC
15	I/O	I/O
16	VCC	VCC
17	I/O	I/O
18	I/O	I/O
19	I/O	I/O
20	I/O	I/O

Table 54 • PQ24	0
PQ240	
Pin Number	A42MX36 Function
200	I/O
201	I/O
202	I/O
203	I/O
204	I/O
205	I/O
206	VCCA
207	I/O
208	I/O
209	VCCA
210	VCCI
211	I/O
212	I/O
213	I/O
214	I/O
215	I/O
216	I/O
217	I/O
218	I/O
219	VCCA
220	I/O
221	I/O
222	I/O
223	I/O
224	I/O
225	I/O
226	I/O
227	VCCI
228	I/O
229	I/O
230	I/O
231	I/O
232	I/O
233	I/O
234	I/O
235	I/O
236	I/O

Table 58 • CQ2	08
CQ208	
Pin Number	A42MX36 Function
37	I/O
38	I/O
39	I/O
40	I/O
41	I/O
12	I/O
43	I/O
14	I/O
15	I/O
46	I/O
47	I/O
48	I/O
19	I/O
50	I/O
51	I/O
52	GND
53	GND
54	TMS. I/O
55	TDI. I/O
56	I/O
57	WD. I/O
58	WD. I/O
59	1/0
50	VCCI
\$1	
32	1/O
33	
34	
о т 35	
36	
50 67	
20	1/0
20	
/1	WD, I/O
(2	1/0
73	I/O

Figure 50 • CQ256

A42MX36 Function
NC
GND
I/O
GND
I/O

CQ256	
Pin Number	A42MX36 Function
59	I/O
60	VCCA
61	GND
62	GND
63	NC
64	NC
65	NC
66	I/O
67	SDO, TDO, I/O
68	I/O
69	WD, I/O
70	WD, I/O
71	I/O
72	VCCI
73	I/O
74	I/O
75	I/O
76	WD, I/O
77	GND
78	WD, I/O
79	I/O
80	QCLKB, I/O
81	I/O
82	I/O
83	I/O
84	I/O
85	I/O
86	I/O
87	WD, I/O
88	WD, I/O
89	I/O
90	I/O
91	I/O
92	I/O
93	I/O
94	I/O
95	VCCI

CQ256	
Pin Number	A42MX36 Function
96	VCCA
97	GND
98	GND
99	I/O
100	I/O
101	I/O
102	I/O
103	I/O
104	I/O
105	WD, I/O
106	WD, I/O
107	I/O
108	I/O
109	WD, I/O
110	WD, I/O
111	I/O
112	QCLKA, I/O
113	I/O
114	GND
115	I/O
116	I/O
117	I/O
118	I/O
119	VCCI
120	I/O
121	WD, I/O
122	WD, I/O
123	I/O
124	I/O
125	I/O
126	I/O
127	GND
128	NC
129	NC
130	NC
131	GND
132	I/O

Table 59 • CQ	256
CQ256	
Pin Number	A42MX36 Function
244	WD, I/O
245	I/O
246	I/O
247	I/O
248	VCCI
249	I/O
250	WD, I/O
251	WD, I/O
252	I/O
253	SDI, I/O
254	I/O
255	GND
256	NC

Figure 51 • BG272

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	ı
в	Ō	ō	Ō	Ō	Ō	õ	Ō	Ō	Ō	õ	ō	õ	Ō	Ō	Õ	Õ	Ō	Ō	Õ	Ō	
с	Õ	õ	Õ	Õ	Õ	õ	Õ	Õ	Õ	õ	Õ	õ	Õ	Õ	Õ	Õ	Õ	õ	Õ	Õ	
D	Ó	Ō	Ō	Ō	Ô	Ô	Ô	Ō	Ô	Ô	Ō	Ô	Ô	Ô	Ō	Ō	Ō	Ô	Ō	Ō	
Е	0	0	0	0													0	0	0	0	
F	0	0	Ο	0													0	0	0	0	
G	0	0	0	0				2	72	Din			、				0	0	0	0	
н	0	0	Ο	0				2	.12	T III		507	`				0	0	0	0	
J	0	0	Ο	0					0	0	0	0					0	0	Ο	0	
к	0	Ο	Ο	0					0	Ο	0	Ο					0	Ο	Ο	0	
L	0	0	0	0					0	0	0	0					0	0	0	0	
М	0	0	Ο	0					0	0	0	0					0	0	Ο	0	
Ν	0	0	Ο	0													0	0	Ο	0	
Р	0	0	0	0													0	0	Ο	0	
R	0	0	0	0													0	0	Ο	0	
Т	0	0	0	0													0	0	0	0	
U	0	0	Ο	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ο	0	
V	0	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	
W	0	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	
Y	्०	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
																				(

Table 60 •	BG272

BG272	
Pin Number	A42MX36 Function
A1	GND
A2	GND
A3	I/O
A4	WD, I/O
A5	I/O

Table 60 • BG	272
BG272	
Pin Number	A42MX36 Function
M10	GND
M11	GND
M12	GND
M17	I/O
M18	I/O
M19	I/O
M20	I/O
N1	I/O
N2	I/O
N3	I/O
N4	VCCI
N17	VCCI
N18	I/O
N19	I/O
N20	I/O
P1	I/O
P2	I/O
P3	I/O
P4	VCCA
P17	I/O
P18	I/O
P19	I/O
P20	I/O
R1	I/O
R2	I/O
R3	I/O
R4	VCCI
R17	VCCI
R18	I/O
R19	I/O
R20	I/O
T1	I/O
T2	I/O
T3	I/O
T4	I/O
T17	VCCA
T18	I/O