

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	69
Number of Gates	6000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	80-TQFP
Supplier Device Package	80-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a40mx04-1vqg80i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.3.3 Antifuse Structures

An antifuse is a "normally open" structure. The use of antifuses to implement a programmable logic device results in highly testable structures as well as efficient programming algorithms. There are no pre-existing connections; temporary connections can be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed and individual circuit structures to be tested, which can be done before and after programming. For instance, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified.

Figure 7 • MX Routing Structure

3.2.4 Clock Networks

The 40MX devices have one global clock distribution network (CLK). A signal can be put on the CLK network by being routed through the CLKBUF buffer.

In 42MX devices, there are two low-skew, high-fanout clock distribution networks, referred to as CLKA and CLKB. Each network has a clock module (CLKMOD) that can select the source of the clock signal from any of the following (Figure 8, page 11):

- Externally from the CLKA pad, using CLKBUF buffer
- Externally from the CLKB pad, using CLKBUF buffer
- Internally from the CLKINTA input, using CLKINT buffer
- Internally from the CLKINTB input, using CLKINT buffer

The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel.

Clock input pads in both 40MX and 42MX devices can also be used as normal I/Os, bypassing the clock networks.

The A42MX36 device has four additional register control resources, called quadrant clock networks (Figure 9, page 11). Each quadrant clock provides a local, high-fanout resource to the contiguous logic modules within its quadrant of the device. Quadrant clock signals can originate from specific I/O pins or from the internal array and can be used as a secondary register clock, register clear, or output enable.

Device Type	r1 routed_Clk1	r2 routed_Clk2
A40MX02	41.4	N/A
A40MX04	68.6	N/A
A42MX09	118	118
A42MX16	165	165
A42MX24	185	185
A42MX36	220	220

Fixed Capacitance Values for MX FPGAs (pF)

 f_{a2} = Average second routed array clock rate in MHz)

Table 7 •

3.4.6 Test Circuitry and Silicon Explorer II Probe

MX devices contain probing circuitry that provides built-in access to every node in a design, via the use of Silicon Explorer II. Silicon Explorer II is an integrated hardware and software solution that, in conjunction with the Designer software, allow users to examine any of the internal nets of the device while it is operating in a prototyping or a production system. The user can probe into an MX device without changing the placement and routing of the design and without using any additional resources. Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle and providing a true representation of the device under actual functional situations.

Silicon Explorer II samples data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

Silicon Explorer II is used to control the MODE, DCLK, SDI and SDO pins in MX devices to select the desired nets for debugging. The user simply assigns the selected internal nets in the Silicon Explorer II software to the PRA/PRB output pins for observation. Probing functionality is activated when the MODE pin is held HIGH.

Figure 12, page 16 illustrates the interconnection between Silicon Explorer II and 40MX devices, while Figure 13, page 17 illustrates the interconnection between Silicon Explorer II and 42MX devices

To allow for probing capabilities, the security fuses must not be programmed. (See User Security, page 12 for the security fuses of 40MX and 42MX devices). Table 8, page 17 summarizes the possible device configurations for probing.

PRA and PRB pins are dual-purpose pins. When the "Reserve Probe Pin" is checked in the Designer software, PRA and PRB pins are reserved as dedicated outputs for probing. If PRA and PRB pins are required as user I/Os to achieve successful layout and "Reserve Probe Pin" is checked, the layout tool will override the option and place user I/Os on PRA and PRB pins.

Figure 12 • Silicon Explorer II Setup with 40MX

3.4.9 JTAG Mode Activation

The JTAG test logic circuit is activated in the Designer software by selecting **Tools > Device Selection**. This brings up the Device Selection dialog box as shown in the following figure. The JTAG test logic circuit can be enabled by clicking the "Reserve JTAG Pins" check box. The following table explains the pins' behavior in either mode.

Figure 15 • Device Selection Wizard

Table 11 • Boundary Scan Pin Configuration and Functionality

Reserve JTAG	Checked	Unchecked
ТСК	BST input; must be terminated to logical HIGH or LOW to avoid floating	User I/O
TDI, TMS	BST input; may float or be tied to HIGH	User I/O
TDO	BST output; may float or be connected to TDI of another device	User I/O

3.4.10 TRST Pin and TAP Controller Reset

An active reset (TRST) pin is not supported; however, MX devices contain power-on circuitry that resets the boundary scan circuitry upon power-up. Also, the TMS pin is equipped with an internal pull-up resistor. This allows the TAP controller to remain in or return to the Test-Logic-Reset state when there is no input or when a logical 1 is on the TMS pin. To reset the controller, TMS must be HIGH for at least five TCK cycles.

3.4.11 Boundary Scan Description Language (BSDL) File

Conforming to the IEEE Standard 1149.1 requires that the operation of the various JTAG components be documented. The BSDL file provides the standard format to describe the JTAG components that can be used by automatic test equipment software. The file includes the instructions that are supported, instruction bit pattern, and the boundary-scan chain order. For an in-depth discussion on BSDL files, see the BSDL Files Format Description application note.

BSDL files are grouped into two categories - generic and device-specific. The generic files assign all user I/Os as inouts. Device-specific files assign user I/Os as inputs, outputs or inouts.

Generic files for MX devices are available on the Microsemi SoC Product Group's website:

http://www.microsemi.com/soc/techdocs/models/bsdl.html.

3.5 Development Tool Support

The MX family of FPGAs is fully supported by Libero[®] Integrated Design Environment (IDE). Libero IDE is a design management environment, seamlessly integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes SynplifyPro from Synopsys, ModelSim[®] HDL Simulator from Mentor Graphics[®] and Viewdraw.

Libero IDE includes place-and-route and provides a comprehensive suite of backend support tools for FPGA development, including timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor.

Figure 16 • Typical Output Drive Characteristics (Based Upon Measured Data)

3.9.4 Junction Temperature (T_J)

The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. The following equation can be used to calculate junction temperature.

Junction Temperature = $\Delta T + T_a(1)$

EQ 4

where:

- T_a = Ambient Temperature
- ΔT = Temperature gradient between junction (silicon) and ambient
- $\Delta T = \theta_{ia} * P(2)$
- P = Power
- θ_{ia} = Junction to ambient of package. θ_{ia} numbers are located in Table 27, page 29.

3.9.5 Package Thermal Characteristics

The device junction-to-case thermal characteristic is θ_{jc} , and the junction-to-ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates.

The maximum junction temperature is 150°C.

Maximum power dissipation for commercial- and industrial-grade devices is a function of θ_{ia} .

Figure 22 • AC Test Loads

t_{INYH}

Figure 24 • Module Delays

t_{INYL}

	Temperat	ure					
40MX Voltage	–55°C	-40°C	0°C	25°C	70°C	85°C	125°C
3.60	0.83	0.85	0.92	0.96	1.14	1.25	1.53

Table 31 • 40MX Temperature and Voltage Derating Factors (Normalized to TJ = 25°C, VCC = 3.3 V)

Figure 37 • 40MX Junction Temperature and Voltage Derating Curves (Normalized to T_J = 25°C, VCC = 3.3 V)

Voltage (V)

Note: This derating factor applies to all routing and propagation delays

3.11.5 PCI System Timing Specification

The following tables list the critical PCI timing parameters and the corresponding timing parameters for the MX PCI-compliant devices.

3.11.6 PCI Models

Microsemi provides synthesizable VHDL and Verilog-HDL models for a PCI Target interface, a PCI Target and Target+DMA Master interface. Contact the Microsemi sales representative for more details.

Table 32 • Clock Specification for 33 MHz PCI

		PCI		A42MX	24	A42MX	(36	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{CYC}	CLK Cycle Time	30	-	4.0	-	4.0	-	ns
t _{HIGH}	CLK High Time	11	-	1.9	-	1.9	-	ns
t _{LOW}	CLK Low Time	11	-	1.9	-	1.9	-	ns

Table 33 • Timing Parameters for 33 MHz PCI

		PCI		A42N	IX24	A42N	IX36	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{VAL}	CLK to Signal Valid—Bused Signals	2	11	2.0	9.0	2.0	9.0	ns
t _{VAL(PTP)}	CLK to Signal Valid—Point-to-Point	2 ²	12	2.0	9.0	2.0	9.0	ns
t _{ON}	Float to Active	2	_	2.0	4.0	2.0	4.0	ns
t _{OFF}	Active to Float	-	28	-	8.3 ¹	-	8.3 ¹	ns
t _{SU}	Input Set-Up Time to CLK—Bused Signals	7	_	1.5	-	1.5	-	ns

			–3 S	peed	–2 Sj	beed	–1 S	peed	Std S	Speed	–F Sj	peed	
Paramet	er / Description		Min.	Max.	Units								
Input Mo	dule Propagation Dela	ys											
t _{INYH}	Pad-to-Y HIGH			1.5		1.6		1.8		2.17		3.0	ns
t _{INYL}	Pad-to-Y LOW			1.2		1.3		1.4		1.7		2.4	ns
t _{INGH}	G to Y HIGH			1.8		2.0		2.3		2.7		3.7	ns
t _{INGL}	G to Y LOW			1.8		2.0		2.3		2.7		3.7	ns
Input Mo	dule Predicted Routing	g Delays ²											
t _{IRD1}	FO = 1 Routing Delay			2.8		3.2		3.6		4.2		5.9	ns
t _{IRD2}	FO = 2 Routing Delay			3.2		3.5		4.0		4.7		6.6	ns
t _{IRD3}	FO = 3 Routing Delay			3.5		3.9		4.4		5.2		7.3	ns
t _{IRD4}	FO = 4 Routing Delay			3.9		4.3		4.9		5.7		8.0	ns
t _{IRD8}	FO = 8 Routing Delay			5.2		5.8		6.6		7.7		10.8	ns
Global C	lock Network												
t _{CKH}	Input LOW to HIGH	FO = 32		4.1		4.5		5.1		6.0		8.4	ns
		FO = 256		4.5		5.0		5.6		6.7		9.3	ns
^t CKL	Input HIGH to LOW	FO = 32 FO = 256		5.0 5.4		5.5 6.0		6.2 6.8		7.3 8.0		10.2 11.2	ns ns
t _{PWH}	Minimum Pulse Width	FO = 32 FO = 256	1.7 1 0		1.9 2 1		2.1		2.5		3.5 3.8		ns
+	Minimum Bulso Width	FO = 230	1.3		1.0		2.0		2.1		2.5		nc
PWL	LOW	FO = 32 FO = 256	1.9		2.1		2.1		2.5		3.8		ns
t _{CKSW}	Maximum Skew	FO = 32		0.4		0.5		0.5		0.6		0.9	ns
		FO = 256		0.4		0.5		0.5		0.6		0.9	ns
t _{SUEXT}	Input Latch External	FO = 32	0.0		0.0		0.0		0.0		0.0		ns
	Set-Up	FO = 256	0.0		0.0		0.0		0.0		0.0		ns
t _{HEXT}	Input Latch External	FO = 32 FO = 256	3.3		3.7 4 1		4.2 4.6		4.9 5.5		6.9 7.6		ns ns
	Minimum Dariad	FO 200	5.7				+.0		7.0		10		
ι _Ρ	Minimum Period	FO = 32 FO = 256	5.6 6.1		6.2 6.8		6.7 7.4		7.8 8.5		12.9		ns ns
f _{MAX}	Maximum Frequency	FO = 32		177		161		148		129		77	MHz
		FO = 256		161		146		135		117		70	MHz

Table 39 • A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

		–3 S	peed	–2 S	peed	–1 S	peed	Std S	Speed	–F S	peed	
Parame	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL Ou	tput Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		3.4		3.8		4.3		5.1		7.1	ns
t _{DHL}	Data-to-Pad LOW		4.0		4.5		5.1		6.1		8.3	ns
t _{ENZH}	Enable Pad Z to HIGH		3.7		4.1		4.6		5.5		7.6	ns
t _{ENZL}	Enable Pad Z to LOW		4.1		4.5		5.1		6.1		8.5	ns
t _{ENHZ}	Enable Pad HIGH to Z		6.9		7.6		8.6		10.2		14.2	ns
t _{ENLZ}	Enable Pad LOW to Z		7.5		8.3		9.4		11.1		15.5	ns
t _{GLH}	G-to-Pad HIGH		5.8		6.5		7.3		8.6		12.0	ns
t _{GHL}	G-to-Pad LOW		5.8		6.5		7.3		8.6		12.0	ns
t _{LSU}	I/O Latch Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{LH}	I/O Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading		8.7		9.7		10.9		12.9		18.0	ns
t _{ACO}	Array Clock-to-Out (Pad-to-Pad),64 Clock Loading		12.2		13.5		15.4		18.1		25.3	ns
d _{TLH}	Capacity Loading, LOW to HIGH		0.00		0.00		0.00		0.10		0.01	ns/pF
d _{THL}	Capacity Loading, HIGH to LOW		0.09		0.10		0.10		0.10		0.10	ns/pF

Table 39 • A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

			–3 S	peed	–2 Sp	beed	–1 Sj	beed	Std S	Speed	–F Sp	beed	
Paramete	er / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mo	odule Sequential Timi	ng ^{3, 4}											
t _{SUD}	Flip-Flop (Latch) Data Input Set-Up		0.5		0.5		0.6		0.7		0.9		ns
t _{HD}	Flip-Flop (Latch) Data	a Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Ena	ble Set-Up	1.0		1.1		1.2		1.4		2.0		ns
t _{HENA}	Flip-Flop (Latch) Ena	ble Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse W	/idth	4.8		5.3		6.0		7.1		9.9		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse	Width	6.2		6.9		7.9		9.2		12.9		ns
t _A	Flip-Flop Clock Input	Period	9.5		10.6		12.0		14.1		19.8		ns
t _{INH}	Input Buffer Latch Ho	old	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Se	et-Up	0.7		0.8		0.9		1.01		1.4		ns
t _{OUTH}	Output Buffer Latch H	lold	0.0		0.0		0.0		0.0		0.0		ns
t _{OUTSU}	Output Buffer Latch S	Set-Up	0.7		0.8		0.89		1.01		1.4		ns
f _{MAX}	Flip-Flop (Latch) Cloo Frequency	ck		129		117		108		94		56	MHz
Input Mo	dule Propagation Del	ays											
t _{INYH}	Pad-to-Y HIGH			1.5		1.6		1.9		2.2		3.1	ns
t _{INYL}	Pad-to-Y LOW			1.1		1.3		1.4		1.7		2.4	ns
t _{INGH}	G to Y HIGH			2.0		2.2		2.5		2.9		4.1	ns
t _{INGL}	G to Y LOW			2.0		2.2		2.5		2.9		4.1	ns
Input Mo	dule Predicted Routir	ng Delays ²											
t _{IRD1}	FO = 1 Routing Delay			2.6		2.9		3.2		3.8		5.3	ns
t _{IRD2}	FO = 2 Routing Delay			2.9		3.2		3.7		4.3		6.1	ns
t _{IRD3}	FO = 3 Routing Delay			3.3		3.6		4.1		4.9		6.8	ns
t _{IRD4}	FO = 4 Routing Delay			3.6		4.0		4.6		5.4		7.6	ns
t _{IRD8}	FO = 8 Routing Delay			5.1		5.6		6.4		7.5		10.5	ns
Global C	lock Network												
t _{СКН}	Input LOW to HIGH	FO = 32 FO = 384		4.4 4.8		4.8 5.3		5.5 6.0		6.5 7.1		9.0 9.9	ns ns
t _{CKL}	Input HIGH to LOW	FO = 32 FO = 384		5.3 6.2		5.9 6.9		6.7 7.9		7.8 9.2		11.0 12.9	ns ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 32 FO = 384	5.7 6.6		6.3 7.4		7.1 8.3		8.4 9.8		11.8 13.7		ns ns

Table 41 • A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

		–3 Sj	beed	–2 S	peed	–1 S	beed	Std S	peed	–F Sp	beed	
Paramete	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{RD5}	FO = 8 Routing Delay		4.6		5.2		5.8		6.9		9.6	ns
t _{RDD}	Decode-to-Output Routing Delay		0.5		0.5		0.6		0.7		1.0	ns
Logic Mo	odule Sequential Timing ^{3, 4}											
t _{CO}	Flip-Flop Clock-to-Output		1.8		2.0		2.3		2.7		3.7	ns
t _{GO}	Latch Gate-to-Output		1.8		2.0		2.3		2.7		3.7	ns
t _{SUD}	Flip-Flop (Latch) Set-Up Time	0.4		0.5		0.6		0.7		0.9		ns
t _{HD}	Flip-Flop (Latch) Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RO}	Flip-Flop (Latch) Reset-to-Output		2.2		2.4		2.7		3.2		4.5	ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	1.0		1.1		1.2		1.4		2.0		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	4.6		5.2		5.8		6.9		9.6		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	6.1		6.8		7.7		9.0		12.6		ns
Synchro	nous SRAM Operations											
t _{RC}	Read Cycle Time	9.5		10.5		11.9		14.0		19.6		ns
t _{WC}	Write Cycle Time	9.5		10.5		11.9		14.0		19.6		ns
t _{RCKHL}	Clock HIGH/LOW Time	4.8		5.3		6.0		7.0		9.8		ns
t _{RCO}	Data Valid After Clock HIGH/LOW		4.8		5.3		6.0		7.0		9.8	ns
t _{ADSU}	Address/Data Set-Up Time	2.3		2.5		2.8		3.4		4.8		ns

Table 45 •A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 3.0 V, T_J = 70°C)

Clock signal to shift the Boundary Scan Test (BST) data into the device. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TDI, I/OTest Data In

Serial data input for BST instructions and data. Data is shifted in on the rising edge of TCK. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TDO, I/OTest Data Out

Serial data output for BST instructions and test data. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TMS, I/OTest Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI and TDO pins are boundary scan pins. Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications. IEEE JTAG specification recommends a $10k\Omega$ pull-up resistor on the pin. BST pins are only available in A42MX24 and A42MX36 devices.

VCC, Supply Voltage

Input supply voltage for 40MX devices

VCCA, Supply Voltage

Supply voltage for array in 42MX devices

VCCI, Supply Voltage

Supply voltage for I/Os in 42MX devices

WD, I/OWide Decode Output

When a wide decode module is used in a 42MX device this pin can be used as a dedicated output from the wide decode module. This direct connection eliminates additional interconnect delays associated with regular logic modules. To implement the direct I/O connection, connect an output buffer of any type to the output of the wide decode macro and place this output on one of the reserved WD pins.

4 Package Pin Assignments

The following figures and tables give the details of the package pin assignments.

Figure 38 • PL44

Table 47 • PL44

PL44		
Pin Number	A40MX02 Function	A40MX04 Function
1	I/O	I/O
2	I/O	I/O
3	VCC	VCC
4	I/O	I/O
5	I/O	I/O
6	I/O	I/O
7	I/O	I/O
8	I/O	I/O
9	I/O	I/O
10	GND	GND
11	I/O	I/O
12	I/O	I/O
13	I/O	I/O
14	VCC	VCC
15	I/O	I/O
16	VCC	VCC
17	I/O	I/O
18	I/O	I/O
19	I/O	I/O
20	I/O	I/O

PL68		
Pin Number	A40MX02 Function	A40MX04 Function
24	I/O	I/O
25	VCC	VCC
26	I/O	I/O
27	I/O	I/O
28	I/O	I/O
29	I/O	I/O
30	I/O	I/O
31	I/O	I/O
32	GND	GND
33	I/O	I/O
34	I/O	I/O
35	I/O	I/O
36	I/O	I/O
37	I/O	I/O
38	VCC	VCC
39	I/O	I/O
40	I/O	I/O
41	I/O	I/O
42	I/O	I/O
43	I/O	I/O
44	I/O	I/O
45	I/O	I/O
46	I/O	I/O
47	I/O	I/O
48	I/O	I/O
49	GND	GND
50	I/O	I/O
51	I/O	I/O
52	CLK, I/O	CLK, I/O
53	I/O	I/O
54	MODE	MODE
55	VCC	VCC
56	SDI, I/O	SDI, I/O
57	DCLK, I/O	DCLK, I/O
58	PRA, I/O	PRA, I/O
59	PRB, I/O	PRB, I/O
60	I/O	I/O

Table 48 • PL68

Table 50 • PQ 100

PQ100				
Pin Number	A40MX02 Function	A40MX04 Function	A42MX09 Function	A42MX16 Function
56	VCC	VCC	I/O	I/O
57	I/O	I/O	GND	GND
58	I/O	I/O	I/O	I/O
59	I/O	I/O	I/O	I/O
60	I/O	I/O	I/O	I/O
61	I/O	I/O	I/O	I/O
62	I/O	I/O	I/O	I/O
63	GND	GND	I/O	I/O
64	I/O	I/O	LP	LP
65	I/O	I/O	VCCA	VCCA
66	I/O	I/O	VCCI	VCCI
67	I/O	I/O	VCCA	VCCA
68	I/O	I/O	I/O	I/O
69	VCC	VCC	I/O	I/O
70	I/O	I/O	I/O	I/O
71	I/O	I/O	I/O	I/O
72	I/O	I/O	GND	GND
73	I/O	I/O	I/O	I/O
74	I/O	I/O	I/O	I/O
75	I/O	I/O	I/O	I/O
76	I/O	I/O	I/O	I/O
77	NC	NC	I/O	I/O
78	NC	NC	I/O	I/O
79	NC	NC	SDI, I/O	SDI, I/O
80	NC	I/O	I/O	I/O
81	NC	I/O	I/O	I/O
82	NC	I/O	I/O	I/O
83	I/O	I/O	I/O	I/O
84	I/O	I/O	GND	GND
85	I/O	I/O	I/O	I/O
86	GND	GND	I/O	I/O
87	GND	GND	PRA, I/O	PRA, I/O
88	I/O	I/O	I/O	I/O
89	I/O	I/O	CLKA, I/O	CLKA, I/O
90	CLK, I/O	CLK, I/O	VCCA	VCCA
91	I/O	I/O	I/O	I/O
92	MODE	MODE	CLKB, I/O	CLKB, I/O

Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
21	I/O	I/O	I/O
22	GND	GND	GND
23	I/O	I/O	I/O
24	I/O	I/O	I/O
25	I/O	I/O	I/O
26	I/O	I/O	I/O
27	GND	GND	GND
28	VCCI	VCCI	VCCI
29	VCCA	VCCA	VCCA
30	I/O	I/O	I/O
31	I/O	I/O	I/O
32	VCCA	VCCA	VCCA
33	I/O	I/O	I/O
34	I/O	I/O	I/O
35	I/O	I/O	I/O
36	I/O	I/O	I/O
37	I/O	I/O	I/O
38	I/O	I/O	I/O
39	I/O	I/O	I/O
40	I/O	I/O	I/O
41	NC	I/O	I/O
42	NC	I/O	I/O
43	NC	I/O	I/O
44	I/O	I/O	I/O
45	I/O	I/O	I/O
46	I/O	I/O	I/O
47	I/O	I/O	I/O
48	I/O	I/O	I/O
49	I/O	I/O	I/O
50	NC	I/O	I/O
51	NC	I/O	I/O
52	GND	GND	GND
53	GND	GND	GND
54	I/O	TMS, I/O	TMS, I/O
55	I/O	TDI, I/O	TDI, I/O
56	I/O	I/O	I/O
57	I/O	WD, I/O	WD, I/O

<i>Table 54</i> • PQ240	
PQ240	
Pin Number	A42MX36 Function
126	WD, I/O
127	I/O
128	VCCI
129	I/O
130	I/O
131	I/O
132	WD, I/O
133	WD, I/O
134	I/O
135	QCLKB, I/O
136	I/O
137	I/O
138	I/O
139	I/O
140	I/O
141	I/O
142	WD, I/O
143	WD, I/O
144	I/O
145	I/O
146	I/O
147	I/O
148	I/O
149	I/O
150	VCCI
151	VCCA
152	GND
153	I/O
154	I/O
155	I/O
156	I/O
157	I/O
158	I/O
159	WD, I/O
160	WD, I/O
161	I/O
162	I/O

Table 54 • PQ24	0
PQ240	
Pin Number	A42MX36 Function
200	I/O
201	I/O
202	I/O
203	I/O
204	I/O
205	I/O
206	VCCA
207	I/O
208	I/O
209	VCCA
210	VCCI
211	I/O
212	I/O
213	I/O
214	I/O
215	I/O
216	I/O
217	I/O
218	I/O
219	VCCA
220	I/O
221	I/O
222	I/O
223	I/O
224	I/O
225	I/O
226	I/O
227	VCCI
228	I/O
229	I/O
230	I/O
231	I/O
232	I/O
233	I/O
234	I/O
235	I/O
236	I/O

Table 57 • TQ176

TQ176			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
10	NC	I/O	I/O
11	NC	I/O	I/O
12	I/O	I/O	I/O
13	NC	VCCA	VCCA
14	I/O	I/O	I/O
15	I/O	I/O	I/O
16	I/O	I/O	I/O
17	I/O	I/O	I/O
18	GND	GND	GND
19	NC	I/O	I/O
20	NC	I/O	I/O
21	I/O	I/O	I/O
22	NC	I/O	I/O
23	GND	GND	GND
24	NC	VCCI	VCCI
25	VCCA	VCCA	VCCA
26	NC	I/O	I/O
27	NC	I/O	I/O
28	VCCI	VCCA	VCCA
29	NC	I/O	I/O
30	I/O	I/O	I/O
31	I/O	I/O	I/O
32	I/O	I/O	I/O
33	NC	NC	I/O
34	I/O	I/O	I/O
35	I/O	I/O	I/O
36	I/O	I/O	I/O
37	NC	I/O	I/O
38	NC	NC	I/O
39	I/O	I/O	I/O
40	I/O	I/O	I/O
41	I/O	I/O	I/O
42	I/O	I/O	I/O
43	I/O	I/O	Ι/Ο
44	I/O	I/O	I/O
45	GND	GND	GND
46	I/O	I/O	TMS, I/O

Table 58 • CQ2	08
CQ208	
Pin Number	A42MX36 Function
37	I/O
38	I/O
39	I/O
40	I/O
41	I/O
12	I/O
13	I/O
44	I/O
15	I/O
46	I/O
47	I/O
48	I/O
49	I/O
50	I/O
51	I/O
52	GND
53	GND
54	TMS, I/O
55	TDI, I/O
56	I/O
57	WD, I/O
58	WD, I/O
59	I/O
60	VCCI
61	I/O
62	I/O
63	I/O
64	I/O
65	QCLKA, I/O
66	WD, I/O
67	WD, I/O
58	I/O
69	I/O
70	WD, I/O
71	WD, I/O
72	I/O
73	I/O

<i>Table 59</i> • CQ256						
CQ256						
Pin Number	A42MX36 Function					
244	WD, I/O					
245	I/O					
246	I/O					
247	I/O					
248	VCCI					
249	I/O					
250	WD, I/O					
251	WD, I/O					
252	I/O					
253	SDI, I/O					
254	I/O					
255	GND					
256	NC					

Figure 51 • BG272

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	1
в	Ō	Ō	Ō	Ō	Ō	õ	Ō	Ō	Ō	õ	ō	õ	Ō	Ō	Õ	Õ	Ō	Ō	Õ	Ō	
с	Õ	Õ	õ	Õ	Õ	õ	Õ	Õ	õ	õ	Õ	õ	Õ	Õ	Õ	Õ	Õ	õ	Õ	Õ	
D	Ó	Ô	Ô	Ō	Ô	Ô	Ō	Ō	Ō	Ô	Ō	Ô	Ô	Ô	Ō	Ō	Ō	Ô	Ō	Ō	
Е	0	0	0	0													0	0	0	0	
F	0	0	0	0													0	0	0	0	
G	0	0	0	0				2	72	Din			、				0	0	0	0	
н	0	0	0	0				2	.12	T III		507	`				0	0	0	0	
J	0	0	0	0					0	0	0	0					0	0	Ο	0	
к	0	0	Ο	0					0	0	0	Ο					Ο	Ο	Ο	0	
L	0	0	0	0					0	0	0	0					0	0	0	0	
М	0	0	0	0					0	0	0	0					0	0	Ο	0	
Ν	0	0	0	0													0	0	Ο	0	
Р	0	0	0	0													0	0	Ο	0	
R	0	0	0	0													0	0	Ο	0	
Т	0	0	0	0													0	0	0	0	
U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ο	0	
V	0	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	
W	0	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	
Y	्०	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
																				(

Table 60 •	BG272

BG272	
Pin Number	A42MX36 Function
A1	GND
A2	GND
A3	I/O
A4	WD, I/O
A5	I/O