

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	
Number of Logic Elements/Cells	-
Total RAM Bits	
Number of I/O	69
Number of Gates	6000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	80-TQFP
Supplier Device Package	80-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a40mx04-vq80m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figures

Figure 1	Ordering Information
Figure 2	42MX C-Module Implementation
Figure 3	42MX C-Module Implementation
Figure 4	42MX S-Module Implementation
Figure 5	A42MX24 and A42MX36 D-Module Implementation
Figure 6	A42MX36 Dual-Port SRAM Block
Figure 7	MX Routing Structure
Figure 8	Clock Networks of 42MX Devices
Figure 9	Quadrant Clock Network of A42MX36 Devices
Figure 10	42MX I/O Module
Figure 11	PCI Output Structure of A42MX24 and A42MX36 Devices
Figure 12	Silicon Explorer II Setup with 40MX
Figure 13	Silicon Explorer II Setup with 42MX
Figure 14	42MX IEEE 1149.1 Boundary Scan Circuitry
Figure 15	Device Selection Wizard
Figure 16	Typical Output Drive Characteristics (Based Upon Measured Data)
Figure 17	40MX Timing Model*
Figure 18	42MX Timing Model
Figure 19	42MX Timing Model (Logic Functions Using Quadrant Clocks)
Figure 20	42MX Timing Model (SRAM Functions)
Figure 21	Output Buffer Delays
Figure 22	AC Test Loads
Figure 23	Input Buffer Delays
Figure 24	Module Delays
Figure 25	Flip-Flops and Latches 34
Figure 26	Input Buffer Latches 34
Figure 27	Output Buffer Latches 35
Figure 28	Decode Module Timing 35
Figure 29	SRAM Timing Characteristics 35
Figure 30	42MX SRAM Write Operation 36
Figure 31	42MX SRAM Synchronous Read Operation 36
Figure 32	42MX SRAM Asynchronous Read Operation—Type 1 (Read Address Controlled)
Figure 33	42MX SRAM Asynchronous Read Operation—Type 2 (Write Address Controlled)
Figure 34	42MX Junction Temperature and Voltage Derating Curves
i iguio o i	(Normalized to $T_{L} = 25^{\circ}C$ VCCA = 5.0 V) 38
Figure 35	40MX Junction Temperature and Voltage Derating Curves
i iguio oo	(Normalized to $T_{L} = 25^{\circ}C$, VCC = 5.0 V) 39
Figure 36	42MX Junction Temperature and Voltage Derating Curves
i iguio oo	(Normalized to $T_{L} = 25^{\circ}C$ VCCA = 3.3 V) 39
Figure 37	40MX Junction Temperature and Voltage Derating Curves
i iguio or	(Normalized to $T_{L} = 25^{\circ}C$ VCC = 3.3 V) 40
Figure 38	PI 44
Figure 39	PI 68 88
Figure 40	PI 84 90
Figure 41	PQ100 93
Figure 42	PO144 97
Figure 43	PQ160 102
Figure 44	PQ208 107
Figure 45	PQ240 113
Figure 46	VQ80 120
Figure 47	VQ100 123
Figure 18	ΤΟ176
Figure 49	CO208 131
Figure 50	CQ256
99.0000	

Figure 22 • AC Test Loads

t_{INYH}

Figure 24 • Module Delays

t_{INYL}

Figure 33 • 42MX SRAM Asynchronous Read Operation—Type 2 (Write Address Controlled)

3.10.7 Predictable Performance: Tight Delay Distributions

Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases.

From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer routing tracks.

The MX FPGAs deliver a tight fanout delay distribution, which is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path.

Microsemi's patented antifuse offers a very low resistive/capacitive interconnect. The antifuses, fabricated in 0.45 μ m lithography, offer nominal levels of 100 Ω resistance and 7.0 fF capacitance per antifuse.

MX fanout distribution is also tight due to the low number of antifuses required for each interconnect path. The proprietary architecture limits the number of antifuses per path to a maximum of four, with 90 percent of interconnects using only two antifuses.

3.11 Timing Characteristics

Device timing characteristics fall into three categories: family-dependent, device-dependent, and designdependent. The input and output buffer characteristics are common to all MX devices. Internal routing delays are device-dependent; actual delays are not determined until after place-and-route of the user's design is complete. Delay values may then be determined by using the Designer software utility or by performing simulation with post-layout delays.

3.11.1 Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment in Microsemi's Designer software prior to placement and routing. Up to 6% of the nets in a design may be designated as critical.

3.11.2 Long Tracks

Some nets in the design use long tracks, which are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections, which increase capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks add

		–3 Sp	beed	–2 Sp	beed	–1 Sp	eed	Std S	Speed	–F Sp	peed	
Parameter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS O	utput Module Timing ⁴											
t _{DLH}	Data-to-Pad HIGH		5.5		6.4		7.2		8.5		11.9	ns
t _{DHL}	Data-to-Pad LOW		4.8		5.5		6.2		7.3		10.2	ns
t _{ENZH}	Enable Pad Z to HIGH		4.7		5.5		6.2		7.3		10.2	ns
t _{ENZL}	Enable Pad Z to LOW		6.8		7.9		8.9		10.5		14.7	ns
t _{ENHZ}	Enable Pad HIGH to Z		11.1		12.8		14.5		17.1		23.9	ns
t _{ENLZ}	Enable Pad LOW to Z		8.2		9.5		10.7		12.6		17.7	ns
d _{TLH}	Delta LOW to HIGH		0.05		0.05		0.06		0.07		0.10	ns/pF
d _{THL}	Delta HIGH to LOW		0.03		0.03		0.04		0.04		0.06	ns/pF

Table 37 • A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (continued)(Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70°C)

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.

3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro.

4. Delays based on 35 pF loading.

Table 38 •A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

		–3 Sp	beed	–2 S	peed	-1 Speed		Std S	Speed	–F Speed		
Paramet	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mo	odule Propagation Delays ¹											
t _{PD1}	Single Module		1.2		1.3		1.5		1.8		2.5	ns
t _{CO}	Sequential Clock-to-Q		1.3		1.4		1.6		1.9		2.7	ns
t _{GO}	Latch G-to-Q		1.2		1.4		1.6		1.8		2.6	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q		1.2		1.6		1.8		2.1		2.9	ns
Logic Mo	odule Predicted Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.7		0.8		0.9		1.0		1.4	ns
t _{RD2}	FO = 2 Routing Delay		0.9		1.0		1.2		1.4		1.9	ns
t _{RD3}	FO = 3 Routing Delay		1.2		1.3		1.5		1.7		2.4	ns
t _{RD4}	FO = 4 Routing Delay		1.4		1.5		1.7		2.0		2.9	ns
t _{RD8}	FO = 8 Routing Delay		2.3		2.6		2.9		3.4		4.8	ns
Logic Mo	odule Sequential Timing ^{3, 4}											
t _{SUD}	Flip-Flop (Latch) Data Input Set-Up	0.3		0.4		0.4		0.5		0.7		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.4		0.5		0.5		0.6		0.8		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	3.4		3.8		4.3		5.0		7.0		ns

		–3 S	peed	–2 Sj	peed	–1 S	peed	Std S	Speed	–F Sj	peed	
Parame	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS C	Dutput Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		3.4		3.8		5.5		6.4		9.0	ns
t _{DHL}	Data-to-Pad LOW		4.1		4.5		4.2		5.0		7.0	ns
t _{ENZH}	Enable Pad Z to HIGH		3.7		4.1		4.6		5.5		7.6	ns
t _{ENZL}	Enable Pad Z to LOW		4.1		4.5		5.1		6.1		8.5	ns
t _{ENHZ}	Enable Pad HIGH to Z		6.9		7.6		8.6		10.2		14.2	ns
t _{ENLZ}	Enable Pad LOW to Z		7.5		8.3		9.4		11.1		15.5	ns
t _{GLH}	G-to-Pad HIGH		5.8		6.5		7.3		8.6		12.0	ns
t _{GHL}	G-to-Pad LOW		5.8		6.5		7.3		8.6		12.0	ns
t _{LSU}	I/O Latch Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{LH}	I/O Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading		8.7		9.7		10.9		12.9		18.0	ns
t _{ACO}	Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading		12.2		13.5		15.4		18.1		25.3	ns
d _{TLH}	Capacity Loading, LOW to HIGH		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{THL}	Capacity Loading, HIGH to LOW		0.05		0.05		0.06		0.07		0.10	ns/pF

Table 39 • A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

5. Delays based on 35 pF loading.

Table 40 •A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

		-3 Speed	-2 Speed	-1 Speed	Std Speed	–F Speed	
Parame	eter / Description	Min. Max.	Units				
Logic N	Iodule Propagation Delays ¹						
t _{PD1}	Single Module	1.4	1.5	1.7	2.0	2.8	ns
t _{CO}	Sequential Clock-to-Q	1.4	1.6	1.8	2.1	3.0	ns
t _{GO}	Latch G-to-Q	1.4	1.5	1.7	2.0	2.8	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q	1.6	1.7	2.0	2.3	3.3	ns
Logic N	Nodule Predicted Routing Delays	2					
t _{RD1}	FO = 1 Routing Delay	0.8	0.9	1.0	1.2	1.6	ns
t _{RD2}	FO = 2 Routing Delay	1.0	1.2	1.3	1.5	2.1	ns

			–3 S	peed	–2 Sp	beed	-1 Speed		Std Speed		-F Speed		
Paramete	r / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PWL}	Minimum Pulse Width LOW	FO = 32 FO = 384	5.3 6.2		5.9 6.9		6.7 7.9		7.8 9.2		11.0 12.9		ns ns
t _{CKSW}	Maximum Skew	FO = 32 FO = 384		0.5 2.2		0.5 2.4		0.6 2.7		0.7 3.2		1.0 4.5	ns ns
t _{SUEXT}	Input Latch External Set-Up	FO = 32 FO = 384	0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		ns ns
t _{HEXT}	Input Latch External Hold	FO = 32 FO = 384	3.9 4.5		4.3 4.9		4.9 5.6		5.7 6.6		8.0 9.2		ns ns
t _P	Minimum Period	FO = 32 FO = 384	7.0 7.7		7.8 8.6		8.4 9.3		9.7 10.7		16.2 17.8		ns ns
f _{MAX}	Maximum Frequency	FO = 32 FO = 384		142 129		129 117		119 108		103 94		62 56	MHz MHz
TTL Outp	ut Module Timing ⁵												
t _{DLH}	Data-to-Pad HIGH			3.5		3.9		4.4		5.2		7.3	ns
t _{DHL}	Data-to-Pad LOW			4.1		4.6		5.2		6.1		8.6	ns
t _{ENZH}	Enable Pad Z to HIGH	4		3.8		4.2		4.8		5.6		7.8	ns
t _{ENZL}	Enable Pad Z to LOW			4.2		4.6		5.3		6.2		8.7	ns
t _{ENHZ}	Enable Pad HIGH to Z			7.6		8.4		9.5		11.2		15.7	ns
t _{ENLZ}	Enable Pad LOW to Z			7.0		7.8		8.8		10.4		14.5	ns
t _{GLH}	G-to-Pad HIGH			4.8		5.3		6.0		7.2		10.0	ns
t _{GHL}	G-to-Pad LOW			4.8		5.3		6.0		7.2		10.0	ns
t _{LCO}	I/O Latch Clock-to-Ou (Pad-to-Pad), 64 Cloc	it k Loading		8.0		8.9		10.1		11.9		16.7	ns
t _{ACO}	Array Clock-to-Out (Pad-to-Pad), 64 Cloc	k Loading		11.3		12.5		14.2		16.7		23.3	ns
d_{TLH}	Capacitive Loading, L HIGH	OW to		0.04		0.04		0.05		0.06		0.08	ns/pF
d_{THL}	Capacitive Loading, H	IIGH to		0.05		0.05		0.06		0.07		0.10	ns/pF
CMOS Ou	utput Module Timing ⁵												
t _{DLH}	Data-to-Pad HIGH			4.5		5.0		5.6		6.6		9.3	ns
t _{DHL}	Data-to-Pad LOW			3.4		3.8		4.3		5.1		7.1	ns
t _{ENZH}	Enable Pad Z to HIGH	4		3.8		4.2		4.8		5.6		7.8	ns
t _{ENZL}	Enable Pad Z to LOW	1		4.2		4.6		5.3		6.2		8.7	ns
t _{ENHZ}	Enable Pad HIGH to 2	Z		7.6		8.4		9.5		11.2		15.7	ns
t _{ENLZ}	Enable Pad LOW to Z			7.0		7.8		8.8		10.4		14.5	ns
t _{GLH}	G-to-Pad HIGH			7.1		7.9		8.9		10.5		14.7	ns
t _{GHL}	G-to-Pad LOW			7.1		7.9		8.9		10.5		14.7	ns
t _{LCO}	I/O Latch Clock-to-Ou (Pad-to-Pad), 64 Cloc	it k Loading		8.0		8.9		10.1		11.9		16.7	ns

Table 41 • A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

			–3 S	peed	–2 Sp	beed	-1 Speed		Std Speed		-F Speed		
Parameter	/ Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input Mod	ule Predicted Routing	Delays ²											
t _{IRD1}	FO = 1 Routing Delay			1.8		2.0		2.3		2.7		3.8	ns
t _{IRD2}	FO = 2 Routing Delay			2.1		2.3		2.6		3.1		4.3	ns
t _{IRD3}	FO = 3 Routing Delay			2.3		2.5		2.9		3.4		4.8	ns
t _{IRD4}	FO = 4 Routing Delay			2.5		2.8		3.2		3.7		5.2	ns
t _{IRD8}	FO = 8 Routing Delay			3.4		3.8		4.3		5.1		7.1	ns
Global Clo	ock Network												
t _{СКН}	Input LOW to HIGH	FO = 32 FO = 486		2.6 2.9		2.9 3.2		3.3 3.6		3.9 4.3		5.4 5.9	ns ns
t _{CKL}	Input HIGH to LOW	FO = 32 FO = 486		3.7 4.3		4.1 4.7		4.6 5.4		5.4 6.3		7.6 8.8	ns ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 32 FO = 486	2.2 2.4		2.4 2.6		2.7 3.0		3.2 3.5		4.5 4.9		ns ns
t _{PWL}	Minimum Pulse Width LOW	FO = 32 FO = 486	2.2 2.4		2.4 2.6		2.7 3.0		3.2 3.5		4.5 4.9		ns ns
t _{CKSW}	Maximum Skew	FO = 32 FO = 486		0.5 0.5		0.6 0.6		0.7 0.7		0.8 0.8		1.1 1.1	ns ns
t _{SUEXT}	Input Latch External Set-Up	FO = 32 FO = 486	0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		ns ns
t _{HEXT}	Input Latch External Hold	FO = 32 FO = 486	2.8 3.3		3.1 3.7		3.5 4.2		4.1 4.9		5.7 6.9		ns ns
t _P	Minimum Period (1/f _{MAX})	FO = 32 FO = 486	4.7 5.1		5.2 5.7		5.7 6.2		6.5 7.1		10.9 11.9		ns ns

Table 42 • A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T_J = 70°C)

	–3 Speed		peed	-2 Speed		–1 S	peed	Std S	peed	–F S	peed		
Paramet	ter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL Out	put Module Timing ⁵ (con	tinued)											
t _{LH}	I/O Latch Output Hold		0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O			7.7		8.5		9.6		11.3		15.9	ns
t _{ACO}	Array Latch Clock-to-Ou (Pad-to-Pad) 32 I/O	ut		14.8		16.5		18.7		22.0		30.8	ns
d _{TLH}	Capacitive Loading, LO	W to HIGH		0.05		0.05		0.06		0.07		0.10	ns/pF
d _{THL}	Capacitive Loading, HIC	GH to LOW		0.04		0.04		0.05		0.06		0.08	ns/pF
CMOS	Dutput Module Timing ⁵												
t _{DLH}	Data-to-Pad HIGH			4.8		5.3		5.5		6.4		9.0	ns
t _{DHL}	Data-to-Pad LOW			3.5		3.9		4.1		4.9		6.8	ns
t _{ENZH}	Enable Pad Z to HIGH			3.6		4.0		4.5		5.3		7.4	ns
t _{ENZL}	Enable Pad Z to LOW			3.4		4.0		5.0		5.8		8.2	ns
t _{ENHZ}	Enable Pad HIGH to Z			7.2		8.0		9.0		10.7		14.9	ns
t _{ENLZ}	Enable Pad LOW to Z			6.7		7.5		8.5		9.9		13.9	ns
t _{GLH}	G-to-Pad HIGH			6.8		7.6		8.6		10.1		14.2	ns
t _{GHL}	G-to-Pad LOW			6.8		7.6		8.6		10.1		14.2	ns
t _{LSU}	I/O Latch Set-Up		0.7		0.7		0.8		1.0		1.4		ns
t _{LH}	I/O Latch Hold		0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O			7.7		8.5		9.6		11.3		15.9	ns
t _{ACO}	Array Latch Clock-to-Ou (Pad-to-Pad) 32 I/O	ut		14.8		16.5		18.7		22.0		30.8	ns
d _{TLH}	Capacitive Loading, LO	W to HIGH		0.05		0.05		0.06		0.07		0.10	ns/pF
d _{THL}	Capacitive Loading, HIC	GH to LOW		0.04		0.04		0.05		0.06		0.08	ns/pF
t _{HEXT}	Input Latch External Hold	FO = 32 FO = 486	3.9 4.6		4.3 5.2		4.9 5.8		5.7 6.9		8.1 9.6		ns ns
t _P	Minimum Period (1/f _{MAX})	FO = 32 FO = 486	7.8 8.6		8.7 9.5		9.5 10.4		10.8 11.9		18.2 19.9		ns ns

Table 43 •A42MX24 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 3.0 V, T_J = 70°C)

1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

5. Delays based on 35 pF loading.

Clock signal to shift the Boundary Scan Test (BST) data into the device. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TDI, I/OTest Data In

Serial data input for BST instructions and data. Data is shifted in on the rising edge of TCK. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TDO, I/OTest Data Out

Serial data output for BST instructions and test data. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TMS, I/OTest Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI and TDO pins are boundary scan pins. Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications. IEEE JTAG specification recommends a $10k\Omega$ pull-up resistor on the pin. BST pins are only available in A42MX24 and A42MX36 devices.

VCC, Supply Voltage

Input supply voltage for 40MX devices

VCCA, Supply Voltage

Supply voltage for array in 42MX devices

VCCI, Supply Voltage

Supply voltage for I/Os in 42MX devices

WD, I/OWide Decode Output

When a wide decode module is used in a 42MX device this pin can be used as a dedicated output from the wide decode module. This direct connection eliminates additional interconnect delays associated with regular logic modules. To implement the direct I/O connection, connect an output buffer of any type to the output of the wide decode macro and place this output on one of the reserved WD pins.

PQ144	
Pin Number	A42MX09 Function
80	GNDI
81	NC
82	I/O
83	I/O
84	I/O
85	I/O
86	I/O
87	I/O
88	VKS
89	VPP
90	VCC
91	VCCI
92	NC
93	VSV
94	I/O
95	I/O
96	I/O
97	I/O
98	I/O
99	I/O
100	GND
101	GNDI
102	NC
103	I/O
104	I/O
105	I/O
106	I/O
107	I/O
108	I/O
109	I/O
110	SDI
111	I/O
112	I/O
113	I/O
114	I/O
115	I/O
116	GNDQ

Table 51 • PQ144

Table 52 • PQ160

PQ160			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
132	I/O	I/O	I/O
133	I/O	I/O	I/O
134	I/O	I/O	I/O
135	NC	VCCA	VCCA
136	I/O	I/O	I/O
137	I/O	I/O	I/O
138	NC	VCCA	VCCA
139	VCCI	VCCI	VCCI
140	GND	GND	GND
141	NC	I/O	I/O
142	I/O	I/O	I/O
143	I/O	I/O	I/O
144	I/O	I/O	I/O
145	GND	GND	GND
146	NC	I/O	I/O
147	I/O	I/O	I/O
148	I/O	I/O	I/O
149	I/O	I/O	I/O
150	NC	VCCA	VCCA
151	NC	I/O	I/O
152	NC	I/O	I/O
153	NC	I/O	I/O
154	NC	I/O	I/O
155	GND	GND	GND
156	I/O	I/O	I/O
157	I/O	I/O	I/O
158	I/O	I/O	I/O
159	MODE	MODE	MODE
160	GND	GND	GND

Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
58	I/O	WD, I/O	WD, I/O
59	I/O	I/O	I/O
60	VCCI	VCCI	VCCI
61	NC	I/O	I/O
62	NC	I/O	I/O
63	I/O	I/O	I/O
64	I/O	I/O	I/O
65	I/O	I/O	QCLKA, I/O
66	I/O	WD, I/O	WD, I/O
67	NC	WD, I/O	WD, I/O
68	NC	I/O	I/O
69	I/O	I/O	I/O
70	I/O	WD, I/O	WD, I/O
71	I/O	WD, I/O	WD, I/O
72	I/O	I/O	I/O
73	I/O	I/O	I/O
74	I/O	I/O	I/O
75	I/O	I/O	I/O
76	I/O	I/O	I/O
77	I/O	I/O	I/O
78	GND	GND	GND
79	VCCA	VCCA	VCCA
80	NC	VCCI	VCCI
81	I/O	I/O	I/O
82	I/O	I/O	I/O
83	I/O	I/O	I/O
84	I/O	I/O	I/O
85	I/O	WD, I/O	WD, I/O
86	I/O	WD, I/O	WD, I/O
87	I/O	I/O	I/O
88	I/O	I/O	I/O
89	NC	I/O	I/O
90	NC	I/O	I/O
91	I/O	I/O	QCLKB, I/O
92	I/O	I/O	I/O
93	I/O	WD, I/O	WD, I/O
94	I/O	WD, I/O	WD, I/O

Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
132	VCCI	VCCI	VCCI
133	VCCA	VCCA	VCCA
134	I/O	I/O	I/O
135	I/O	I/O	I/O
136	VCCA	VCCA	VCCA
137	I/O	I/O	I/O
138	I/O	I/O	I/O
139	I/O	I/O	I/O
140	I/O	I/O	I/O
141	NC	I/O	I/O
142	I/O	I/O	I/O
143	I/O	I/O	I/O
144	I/O	I/O	I/O
145	I/O	I/O	I/O
146	NC	I/O	I/O
147	NC	I/O	I/O
148	NC	I/O	I/O
149	NC	I/O	I/O
150	GND	GND	GND
151	I/O	I/O	I/O
152	I/O	I/O	I/O
153	I/O	I/O	I/O
154	I/O	I/O	I/O
155	I/O	I/O	I/O
156	I/O	I/O	I/O
157	GND	GND	GND
158	I/O	I/O	I/O
159	SDI, I/O	SDI, I/O	SDI, I/O
160	I/O	I/O	I/O
161	I/O	WD, I/O	WD, I/O
162	I/O	WD, I/O	WD, I/O
163	I/O	I/O	I/O
164	VCCI	VCCI	VCCI
165	NC	I/O	I/O
166	NC	I/O	I/O
167	I/O	I/O	I/O
168	I/O	WD, I/O	WD, I/O

Table 54 • PQ24	0
PQ240	
Pin Number	A42MX36 Function
52	VCCI
53	I/O
54	WD, I/O
55	WD, I/O
56	I/O
57	SDI, I/O
58	I/O
59	VCCA
60	GND
61	GND
62	I/O
63	I/O
64	I/O
65	I/O
66	I/O
67	I/O
68	I/O
69	I/O
70	I/O
71	VCCI
72	I/O
73	I/O
74	I/O
75	I/O
76	I/O
77	I/O
78	I/O
79	I/O
80	I/O
81	I/O
82	I/O
83	I/O
84	I/O
85	VCCA
86	I/O
87	I/O
88	VCCA

PQ240	
Pin Number	A42MX36 Function
89	VCCI
90	VCCA
91	LP
92	TCK, I/O
93	I/O
94	GND
95	I/O
96	I/O
97	I/O
98	I/O
99	I/O
100	I/O
101	I/O
102	I/O
103	I/O
104	I/O
105	I/O
106	I/O
107	I/O
108	VCCI
109	I/O
110	I/O
111	I/O
112	I/O
113	I/O
114	I/O
115	I/O
116	I/O
117	I/O
118	VCCA
119	GND
120	GND
121	GND
122	
122	
120	
124	
125	VVD, I/O

Table 54 • PQ24	40
PQ240	
Pin Number	A42MX36 Function
163	WD, I/O
164	WD, I/O
165	I/O
166	QCLKA, I/O
167	I/O
168	I/O
169	I/O
170	I/O
171	I/O
172	VCCI
173	I/O
174	WD, I/O
175	WD, I/O
176	I/O
177	I/O
178	TDI, I/O
179	TMS, I/O
180	GND
181	VCCA
182	GND
183	I/O
184	I/O
185	I/O
186	I/O
187	I/O
188	I/O
189	I/O
190	I/O
191	I/O
192	VCCI
193	I/O
194	I/O
195	I/O
196	I/O
197	I/O
198	I/O
199	I/O

VQ80		
Pin Number	A40MX02 Function	A40MX04 Function
13	VCC	VCC
14	I/O	I/O
15	I/O	I/O
16	I/O	I/O
17	NC	I/O
18	NC	I/O
19	NC	I/O
20	VCC	VCC
21	I/O	I/O
22	I/O	I/O
23	I/O	I/O
24	I/O	I/O
25	I/O	I/O
26	I/O	I/O
27	GND	GND
28	I/O	I/O
29	I/O	I/O
30	I/O	I/O
31	I/O	I/O
32	I/O	I/O
33	VCC	VCC
34	I/O	I/O
35	I/O	I/O
36	I/O	I/O
37	I/O	I/O
38	I/O	I/O
39	I/O	I/O
40	I/O	I/O
41	NC	I/O
42	NC	I/O
43	NC	I/O
44	I/O	I/O
45	I/O	I/O
46	I/O	I/O
47	GND	GND
48	I/O	I/O

VQ100		
Pin Number	A42MX09 Function	A42MX16 Function
21	I/O	I/O
22	I/O	I/O
23	I/O	I/O
24	I/O	I/O
25	I/O	I/O
26	I/O	I/O
27	I/O	I/O
28	I/O	I/O
29	I/O	I/O
30	I/O	I/O
31	I/O	I/O
32	GND	GND
33	I/O	I/O
34	I/O	I/O
35	I/O	I/O
36	I/O	I/O
37	I/O	I/O
38	VCCA	VCCA
39	I/O	I/O
10	I/O	I/O
11	I/O	I/O
12	I/O	I/O
13	I/O	I/O
14	GND	GND
45	I/O	I/O
16	I/O	I/O
47	I/O	I/O
48	I/O	I/O
49	I/O	I/O
50	SDO, I/O	SDO, I/O
51	I/O	I/O
52	I/O	I/O
53	I/O	I/O
54	I/O	I/O
55	GND	GND
56	I/O	I/O

PG132	
Pin Number	A42MX09 Function
B3	I/O
A2	I/O
C3	DCLK
B5	GNDA
E12	GNDA
J2	GNDA
M9	GNDA
В9	GNDI
C5	GNDI
E11	GNDI
F4	GNDI
J3	GNDI
J11	GNDI
L5	GNDI
L9	GNDI
C9	GNDQ
E3	GNDQ
K12	GNDQ
D7	VCCA
G3	VCCA
G10	VCCA
L7	VCCA
C7	VCCI
G2	VCCI
G11	VCCI
K7	VCCI

Table 62 •	CQ172
21	I/O
22	GND
23	VCCI
24	VSV
25	I/O
26	I/O
27	VCC
28	I/O
29	I/O
30	I/O
31	I/O
32	GND
33	I/O
34	I/O
35	I/O
36	I/O
37	GND
38	I/O
39	I/O
40	I/O
41	I/O
42	I/O
43	I/O
44	BININ
45	BINOUT
46	I/O
47	I/O
48	I/O
49	I/O
50	VCCI
51	I/O
52	I/O
53	I/O
54	I/O
55	GND
56	Ι/Ο
57	I/O
58	I/O
59	I/O