

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	72
Number of Gates	14000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a42mx09-1pl84m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.4.11	Boundary Scan Description Language (BSDL) File
3.5	Develo	oment Tool Support
3.6	Related	I Documents
	3.6.1	Application Notes
	3.6.2	User Guides and Manuals
	3.6.3	Miscellaneous
3.7	5.0 V O	perating Conditions
	3.7.1	5 V TTL Electrical Specifications
3.8	3.3 V O	perating Conditions
	3.8.1	3.3 V LVTTL Electrical Specifications
3.9	Mixed 5	5.0 V / 3.3 V Operating Conditions (for 42MX Devices Only)
	3.9.1	Mixed 5.0V/3.3V Electrical Specifications
	3.9.2	Output Drive Characteristics for 5.0 V PCI Signaling
	3.9.3	Output Drive Characteristics for 3.3 V PCI Signaling
	3.9.4	Junction Temperature (T _J)
	3.9.5	Package Thermal Characteristics
3.10	Timing	Models
	3.10.1	Parameter Measurement
	3.10.2	Sequential Module Timing Characteristics
	3.10.3	Sequential Timing Characteristics
	3.10.4	Decode Module Timing
	3.10.5	SRAM Liming Characteristics
	3.10.6	Dual-Port SRAM Timing Waveforms
	3.10.7	
3.11	Timing	
	3.11.1	
	3.11.Z	Long Tracks
	2 11 /	Temperature and Voltage Derating Eactors
	3 11 5	PCI System Timing Specification 40
	3 11 6	PCI Models 40
3 1 2	Pin Deg	acrintions 83
0.12	i ili Des	Jonpiono
Packa	age Pin	Assignments

4

Figure 51	BG272	145
Figure 52	PG132	153
Figure 53	CQ172	158

2.3 Ordering Information

The following figure shows ordering information.All the following tables show plastic and ceramic device resources, temperature and speed grade offerings.

Figure 1 • Ordering Information

Figure 4 • 42MX S-Module Implementation

Up to 7-Input Function Plus D-Type Flip-Flop with Clear

Up to 7-Input Function Plus Latch

Up to 4-Input Function Plus Latch with Clear

Up to 8-Input Function (Same as C-Module)

A42MX24 and A42MX36 devices contain D-modules, which are arranged around the periphery of the device. D-modules contain wide-decode circuitry, providing a fast, wide-input AND function similar to that found in CPLD architectures (Figure 5, page 9). The D-module allows A42MX24 and A42MX36 devices to perform wide-decode functions at speeds comparable to CPLDs and PALs. The output of the D-module has a programmable inverter for active HIGH or LOW assertion. The D-module output is hardwired to an output pin, and can also be fed back into the array to be incorporated into other logic.

3.2.2 Dual-Port SRAM Modules

The A42MX36 device contains dual-port SRAM modules that have been optimized for synchronous or asynchronous applications. The SRAM modules are arranged in 256-bit blocks that can be configured as 32x8 or 64x4. SRAM modules can be cascaded together to form memory spaces of user-definable width and depth. A block diagram of the A42MX36 dual-port SRAM block is shown in Figure 6, page 9.

The A42MX36 SRAM modules are true dual-port structures containing independent read and write ports. Each SRAM module contains six bits of read and write addressing (RDAD[5:0] and WRAD[5:0], respectively) for 64x4-bit blocks. When configured in byte mode, the highest order address bits (RDAD5 and WRAD5) are not used. The read and write ports of the SRAM block contain independent clocks (RCLK and WCLK) with programmable polarities offering active HIGH or LOW implementation. The SRAM block contains eight data inputs (WD[7:0]), and eight outputs (RD[7:0]), which are connected to segmented vertical routing tracks.

The A42MX36 dual-port SRAM blocks provide an optimal solution for high-speed buffered applications requiring FIFO and LIFO queues. The ACTgen Macro Builder within Microsemi's designer software provides capability to quickly design memory functions with the SRAM blocks. Unused SRAM blocks can be used to implement registers for other user logic within the design.

3.3.7 Low Power Mode

42MX devices have been designed with a Low Power Mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when exiting Low Power Mode. I/Os can be driven during LP mode, and clock pins should be driven HIGH or LOW and should not float to avoid drawing current. To exit LP mode, the LP pin must be pulled LOW for over 200 µs to allow for charge pumps to power up, and device initialization will begin.

3.4 **Power Dissipation**

The general power consumption of MX devices is made up of static and dynamic power and can be expressed with the following equation.

3.4.1 General Power Equation

P = [ICCstandby + ICCactive]*VCCI + IOL*VOL*N + IOH*(VCCI - VOH)*M

EQ 1

where:

- ICCstandby is the current flowing when no inputs or outputs are changing.
- ICCactive is the current flowing due to CMOS switching.
- IOL, IOH are TTL sink/source currents.
- VOL, VOH are TTL level output voltages.
- N equals the number of outputs driving TTL loads to VOL.
- M equals the number of outputs driving TTL loads to VOH.

Accurate values for N and M are difficult to determine because they depend on the family type, on design details, and on the system I/O. The power can be divided into two components: static and active.

3.4.2 Static Power Component

The static power due to standby current is typically a small component of the overall power consumption. Standby power is calculated for commercial, worst-case conditions. The static power dissipation by TTL loads depends on the number of outputs driving, and on the DC load current. For instance, a 32-bit bus sinking 4mA at 0.33V will generate 42mW with all outputs driving LOW, and 140mW with all outputs driving HIGH. The actual dissipation will average somewhere in between, as I/Os switch states with time.

3.4.3 Active Power Component

Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. Dynamic power consumption is frequency-dependent and is a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitances due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation.

The power dissipated by a CMOS circuit can be expressed by the equation:

$$Power(\mu W) = C_{EO}^* VCCA2^* F(1)$$

where:

C_{EQ} = Equivalent capacitance expressed in picofarads (pF)

EQ 2

Figure 13 • Silicon Explorer II Setup with 42MX

Table 8 • Device Configuration Options for Probe Capability

Security Fuse(s) Programmed	Mode	PRA, PRB ¹	SDI, SDO, DCLK ¹
No	LOW	User I/Os ²	User I/Os ²
No	HIGH	Probe Circuit Outputs	Probe Circuit Inputs
Yes	_	Probe Circuit Secured	Probe Circuit Secured

1. Avoid using SDI, SDO, DCLK, PRA and PRB pins as input or bidirectional ports. Since these pins are active during probing, input signals will not pass through these pins and may cause contention.

2. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. See the Pin Descriptions, page 83 for information on unused I/O pins

3.4.7 Design Consideration

It is recommended to use a series 70Ω termination resistor on every probe connector (SDI, SDO, MODE, DCLK, PRA and PRB). The 70 Ω series termination is used to prevent data transmission corruption during probing and reading back the checksum.

3.4.8 IEEE Standard 1149.1 Boundary Scan Test (BST) Circuitry

42MX24 and 42MX36 devices are compatible with IEEE Standard 1149.1 (informally known as Joint Testing Action Group Standard or JTAG), which defines a set of hardware architecture and mechanisms for cost-effective board-level testing. The basic MX boundary-scan logic circuit is composed of the TAP (test access port), TAP controller, test data registers and instruction register (Figure 14, page 18). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD and BYPASS) and some optional instructions. Table 9, page 18 describes the ports that control JTAG testing, while Table 10, page 18 describes the test instructions supported by these MX devices.

Each test section is accessed through the TAP, which has four associated pins: TCK (test clock input), TDI and TDO (test data input and output), and TMS (test mode selector).

The TAP controller is a four-bit state machine. The '1's and '0's represent the values that must be present at TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state.

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain high for five TCK cycles.

42MX24 and 42MX36 devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (lowest significant byte (LSB), ID number, part number and version). The boundary-scan register observes and controls the state of each I/O pin.

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions.

Table 14 •	Recommended	Operating	Conditions
------------	-------------	-----------	------------

Parameter	Commercial	Industrial	Military	Units
Temperature Range*	0 to +70	-40 to +85	-55 to +125	°C
VCC (40MX)	4.75 to 5.25	4.5 to 5.5	4.5 to 5.5	V
VCCA (42MX)	4.75 to 5.25	4.5 to 5.5	4.5 to 5.5	V
VCCI (42MX)	4.75 to 5.25	4.5 to 5.5	4.5 to 5.5	V

Note: * Ambient temperature (T_A) is used for commercial and industrial grades; case temperature (T_C) is used for military grades.

3.7.1 5 V TTL Electrical Specifications

The following tables show 5 V TTL electrical specifications.

Table 15 • 5V TTL Electrical Specifications

		Comr	nercial	Comr	nercial -F	Indu	strial	Milita	iry	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
VOH ¹	IOH = -10 mA	2.4		2.4						V
	IOH = -4 mA					3.7		3.7		V
VOL ¹	IOL = 10 mA		0.5		0.5					V
	IOL = 6 mA						0.4		0.4	V
VIL		-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
VIH (40MX)		2.0	VCC + 0.3	2.0	VCC + 0.3	2.0	VCC + 0.3	2.0	VCC + 0.3	V
VIH (42MX) ²		2.0	VCCI + 0.3	2.0	VCCI + 0.3	2.0	VCCI + 0.3	2.0	VCCI + 0.3	V
IIL	VIN = 0.5 V		-10		-10		-10		-10	μA
IIH	VIN = 2.7 V		-10		-10		-10		-10	μA
Input Transition Time, T_R and T_F			500		500		500		500	ns
C _{IO} I/O Capacitance			10		10		10		10	pF
Standby Current, ICC ³	A40MX02, A40MX04		3		25		10		25	mA
	A42MX09		5		25		25		25	mA
	A42MX16		6		25		25		25	mA
	A42MX24, A42MX36		20		25		25		25	mA
Low power mode Standby Current	42MX devices only		0.5		ICC - 5.0		ICC - 5.0		ICC – 5.0	mA
IIO, I/O source sink current	Can be derived	d from	the IBIS mod	<i>del</i> (http	o://www.micr	rosemi	.com/soc/te	chdocs	s/models/ibis	.html)

1. Only one output tested at a time. VCC/VCCI = min

2. VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V

		–3 Sp	beed	–2 Sp	beed	–1 Sp	eed	Std S	Speed	–F Sp	peed	
Paramete	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS O	utput Module Timing ⁴											
t _{DLH}	Data-to-Pad HIGH		5.5		6.4		7.2		8.5		11.9	ns
t _{DHL}	Data-to-Pad LOW		4.8		5.5		6.2		7.3		10.2	ns
t _{ENZH}	Enable Pad Z to HIGH		4.7		5.5		6.2		7.3		10.2	ns
t _{ENZL}	Enable Pad Z to LOW		6.8		7.9		8.9		10.5		14.7	ns
t _{ENHZ}	Enable Pad HIGH to Z		11.1		12.8		14.5		17.1		23.9	ns
t _{ENLZ}	Enable Pad LOW to Z		8.2		9.5		10.7		12.6		17.7	ns
d _{TLH}	Delta LOW to HIGH		0.05		0.05		0.06		0.07		0.10	ns/pF
d _{THL}	Delta HIGH to LOW		0.03		0.03		0.04		0.04		0.06	ns/pF

Table 37 • A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (continued)(Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70°C)

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.

3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro.

4. Delays based on 35 pF loading.

Table 38 •A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

		–3 Sp	beed	–2 S	peed	–1 Sp	eed	Std S	Speed	–F S	peed	
Paramet	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mo	odule Propagation Delays ¹											
t _{PD1}	Single Module		1.2		1.3		1.5		1.8		2.5	ns
t _{CO}	Sequential Clock-to-Q		1.3		1.4		1.6		1.9		2.7	ns
t _{GO}	Latch G-to-Q		1.2		1.4		1.6		1.8		2.6	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q		1.2		1.6		1.8		2.1		2.9	ns
Logic Mo	odule Predicted Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.7		0.8		0.9		1.0		1.4	ns
t _{RD2}	FO = 2 Routing Delay		0.9		1.0		1.2		1.4		1.9	ns
t _{RD3}	FO = 3 Routing Delay		1.2		1.3		1.5		1.7		2.4	ns
t _{RD4}	FO = 4 Routing Delay		1.4		1.5		1.7		2.0		2.9	ns
t _{RD8}	FO = 8 Routing Delay		2.3		2.6		2.9		3.4		4.8	ns
Logic Mo	odule Sequential Timing ^{3, 4}											
t _{SUD}	Flip-Flop (Latch) Data Input Set-Up	0.3		0.4		0.4		0.5		0.7		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.4		0.5		0.5		0.6		0.8		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	3.4		3.8		4.3		5.0		7.0		ns

		–3 Sp	beed	–2 S	peed	–1 Sp	beed	Std S	Speed	–F S	peed	
Parame	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS C	Dutput Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		2.4		2.7		3.1		3.6		5.1	ns
t _{DHL}	Data-to-Pad LOW		2.9		3.2		3.6		4.3		6.0	ns
t _{ENZH}	Enable Pad Z to HIGH		2.7		2.9		3.3		3.9		5.5	ns
t _{ENZL}	Enable Pad Z to LOW		2.9		3.2		3.7		4.3		6.1	ns
t _{ENHZ}	Enable Pad HIGH to Z		4.9		5.4		6.2		7.3		10.2	ns
t _{ENLZ}	Enable Pad LOW to Z		5.3		5.9		6.7		7.9		11.1	ns
t _{GLH}	G-to-Pad HIGH		4.2		4.6		5.2		6.1		8.6	ns
t _{GHL}	G-to-Pad LOW		4.2		4.6		5.2		6.1		8.6	ns
t _{LSU}	I/O Latch Set-Up	0.5		0.5		0.6		0.7		1.0		ns
t _{LH}	I/O Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading		5.2		5.8		6.6		7.7		10.8	ns
t _{ACO}	Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading		7.4		8.2		9.3		10.9		15.3	ns
d _{TLH}	Capacity Loading, LOW to HIGH		0.03		0.03		0.03		0.04		0.06	ns/pF
d _{THL}	Capacity Loading, HIGH to LOW		0.04		0.04		0.04		0.05		0.07	ns/pF

Table 38 • A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (continued)(Worst-Case Commercial Conditions, VCCA = 4.75 V, $T_J = 70^{\circ}$ C)

 For dual-module macros, use t_{PD1} + t_{RD1} + t_{PDn}, t_{CO} + t_{RD1} + t_{PDn}, or t_{PD1} + t_{RD1} + t_{SUD}, whichever is appropriate.
 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External 4. setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

Delays based on 35 pF loading 5.

Table 39 •	A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions,
	VCCA = 3.0 V, T _J = 70°C)

		-3 Speed -2 Speed		-1 Speed	Std Speed	–F Speed	
Parameter / Description		Min. Max.	Min. Max.	Min. Max.	Min. Max.	Min. Max.	Units
Logic Mo	odule Propagation Delays ¹						
t _{PD1}	Single Module	1.6	1.8	2.1	2.5	3.5	ns
t _{CO}	Sequential Clock-to-Q	1.8	2.0	2.3	2.7	3.8	ns
t _{GO}	Latch G-to-Q	1.7	1.9	2.1	2.5	3.5	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q	2.0	2.2	2.5	2.9	4.1	ns
Logic Mo	odule Predicted Routing Delays ²						
t _{RD1}	FO = 1 Routing Delay	1.0	1.1	1.2	1.4	2.0	ns
t _{RD2}	FO = 2 Routing Delay	1.3	1.4	1.6	1.9	2.7	ns
t _{RD3}	FO = 3 Routing Delay	1.6	1.8	2.0	2.4	3.3	ns

		–3 S	peed	–2 Sj	peed	–1 S	peed	Std S	Speed	–F Sj	peed	
Parame	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS C	Dutput Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		3.4		3.8		5.5		6.4		9.0	ns
t _{DHL}	Data-to-Pad LOW		4.1		4.5		4.2		5.0		7.0	ns
t _{ENZH}	Enable Pad Z to HIGH		3.7		4.1		4.6		5.5		7.6	ns
t _{ENZL}	Enable Pad Z to LOW		4.1		4.5		5.1		6.1		8.5	ns
t _{ENHZ}	Enable Pad HIGH to Z		6.9		7.6		8.6		10.2		14.2	ns
t _{ENLZ}	Enable Pad LOW to Z		7.5		8.3		9.4		11.1		15.5	ns
t _{GLH}	G-to-Pad HIGH		5.8		6.5		7.3		8.6		12.0	ns
t _{GHL}	G-to-Pad LOW		5.8		6.5		7.3		8.6		12.0	ns
t _{LSU}	I/O Latch Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{LH}	I/O Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading		8.7		9.7		10.9		12.9		18.0	ns
t _{ACO}	Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading		12.2		13.5		15.4		18.1		25.3	ns
d _{TLH}	Capacity Loading, LOW to HIGH		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{THL}	Capacity Loading, HIGH to LOW		0.05		0.05		0.06		0.07		0.10	ns/pF

Table 39 • A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

5. Delays based on 35 pF loading.

Table 40 •A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

		-3 Speed	-2 Speed	-1 Speed	Std Speed	–F Speed	
Parame	eter / Description	Min. Max.	Units				
Logic N	Iodule Propagation Delays ¹						
t _{PD1}	Single Module	1.4	1.5	1.7	2.0	2.8	ns
t _{CO}	Sequential Clock-to-Q	1.4	1.6	1.8	2.1	3.0	ns
t _{GO}	Latch G-to-Q	1.4	1.5	1.7	2.0	2.8	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q	1.6	1.7	2.0	2.3	3.3	ns
Logic N	Nodule Predicted Routing Delays	2					
t _{RD1}	FO = 1 Routing Delay	0.8	0.9	1.0	1.2	1.6	ns
t _{RD2}	FO = 2 Routing Delay	1.0	1.2	1.3	1.5	2.1	ns

		-3 Speed	-2 Speed	-1 Speed	Std Speed	-F Speed	
Parame	eter / Description	Min. Max.	Units				
TTL Ou	tput Module Timing ⁴						
t _{DLH}	Data-to-Pad HIGH	2.5	2.8	3.2	3.7	5.2	ns
t _{DHL}	Data-to-Pad LOW	3.0	3.3	3.7	4.4	6.1	ns
t _{ENZH}	Enable Pad Z to HIGH	2.7	3.0	3.4	4.0	5.6	ns
t _{ENZL}	Enable Pad Z to LOW	3.0	3.3	3.8	4.4	6.2	ns
t _{ENHZ}	Enable Pad HIGH to Z	5.4	6.0	6.8	8.0	11.2	ns
t _{ENLZ}	Enable Pad LOW to Z	5.0	5.6	6.3	7.4	10.4	ns
t _{GLH}	G-to-Pad HIGH	2.9	3.2	3.6	4.3	6.0	ns
t _{GHL}	G-to-Pad LOW	2.9	3.2	3.6	4.3	6.0	ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading	5.7	6.3	7.1	8.4	11.9	ns
t _{ACO}	Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading	8.0	8.9	10.1	11.9	16.7	ns
d _{TLH}	Capacitive Loading, LOW to HIGH	0.03	0.03	0.03	0.04	0.06	ns/pF
d _{THL}	Capacitive Loading, HIGH to LOW	0.04	0.04	0.04	0.05	0.07	ns/pF

Table 40 •A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

		–3 SI	peed	–2 S	peed	–1 S	beed	Std S	speed	–F S	beed	
Paramete	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{ACO}	Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O		10.9		12.1		13.7		16.1		22.5	ns
d _{TLH}	Capacitive Loading, LOW to HIGH		0.10		0.11		0.12		0.14		0.20	ns/pF
d _{THL}	Capacitive Loading, HIGH to LOW		0.10		0.11		0.12		0.14		0.20	ns/pF
CMOS O	utput Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		4.9		5.5		6.2		7.3		10.3	ns
t _{DHL}	Data-to-Pad LOW		3.4		3.8		4.3		5.1		7.1	ns
t _{ENZH}	Enable Pad Z to HIGH		3.7		4.1		4.7		5.5		7.7	ns
t _{ENZL}	Enable Pad Z to LOW		4.1		4.6		5.2		6.1		8.5	ns
t _{ENHZ}	Enable Pad HIGH to Z		7.4		8.2		9.3		10.9		15.3	ns
t _{ENLZ}	Enable Pad LOW to Z		6.9		7.6		8.7		10.2		14.3	ns
t _{GLH}	G-to-Pad HIGH		7.0		7.8		8.9		10.4		14.6	ns
t _{GHL}	G-to-Pad LOW		7.0		7.8		8.9		10.4		14.6	ns
t _{LSU}	I/O Latch Set-Up	0.7		0.7		0.8		1.0		1.4		ns
t _{LH}	I/O Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O		7.9		8.8		10.0		11.8		16.5	ns

Table 45 • A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (continued)(Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

1. For dual-module macros, use $t_{PD1} + t_{RD1} + t_{PDn}$, $t_{CO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

4. Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

5. Delays based on 35 pF loading.

3.12 Pin Descriptions

This section lists the pin descriptions for 40MX and 42MX series FPGAs.

CLK/A/B, I/O Global Clock

Clock inputs for clock distribution networks. CLK is for 40MX while CLKA and CLKB are for 42MX devices. The clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

DCLK, I/ODiagnostic Clock

Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

GND, Ground

Input LOW supply voltage.

I/O, Input/Output

Table 49 • PL84

PL84				
Pin Number	A40MX04 Function	A42MX09 Function	A42MX16 Function	A42MX24 Function
10	I/O	DCLK, I/O	DCLK, I/O	DCLK, I/O
11	I/O	I/O	I/O	I/O
12	NC	MODE	MODE	MODE
13	I/O	I/O	I/O	I/O
14	I/O	I/O	I/O	I/O
15	I/O	I/O	I/O	I/O
16	I/O	I/O	I/O	I/O
17	I/O	I/O	I/O	I/O
18	GND	I/O	I/O	I/O
19	GND	I/O	I/O	I/O
20	I/O	I/O	I/O	I/O
21	I/O	I/O	I/O	I/O
22	I/O	VCCA	VCCI	VCCI
23	I/O	VCCI	VCCA	VCCA
24	I/O	I/O	I/O	I/O
25	VCC	I/O	I/O	I/O
26	VCC	I/O	I/O	I/O
27	I/O	I/O	I/O	I/O
28	I/O	GND	GND	GND
29	I/O	I/O	I/O	I/O
30	I/O	I/O	I/O	I/O
31	I/O	I/O	I/O	I/O
32	I/O	I/O	I/O	I/O
33	VCC	I/O	I/O	I/O
34	I/O	I/O	I/O	TMS, I/O
35	I/O	I/O	I/O	TDI, I/O
36	I/O	I/O	I/O	WD, I/O
37	I/O	I/O	I/O	I/O
38	I/O	I/O	I/O	WD, I/O
39	I/O	I/O	I/O	WD, I/O
40	GND	I/O	I/O	I/O
41	I/O	I/O	I/O	I/O
42	I/O	I/O	I/O	I/O
43	I/O	VCCA	VCCA	VCCA
44	I/O	I/O	I/O	WD, I/O
45	I/O	I/O	I/O	WD, I/O
46	VCC	I/O	I/O	WD, I/O

Table 50 • PQ 100

PQ100				
Pin Number	A40MX02 Function	A40MX04 Function	A42MX09 Function	A42MX16 Function
93	VCC	VCC	I/O	I/O
94	VCC	VCC	PRB, I/O	PRB, I/O
95	NC	I/O	I/O	I/O
96	NC	I/O	GND	GND
97	NC	I/O	I/O	I/O
98	SDI, I/O	SDI, I/O	I/O	I/O
99	DCLK, I/O	DCLK, I/O	I/O	I/O
100	PRA, I/O	PRA, I/O	I/O	I/O

Table 52 • PQ160

PQ160			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
1	I/O	I/O	I/O
2	DCLK, I/O	DCLK, I/O	DCLK, I/O
3	NC	I/O	I/O
4	I/O	I/O	WD, I/O
5	I/O	I/O	WD, I/O
6	NC	VCCI	VCCI
7	I/O	I/O	I/O
8	I/O	I/O	I/O
9	I/O	I/O	I/O
10	NC	I/O	I/O
11	GND	GND	GND
12	NC	I/O	I/O
13	I/O	I/O	WD, I/O
14	I/O	I/O	WD, I/O
15	I/O	I/O	I/O
16	PRB, I/O	PRB, I/O	PRB, I/O
17	I/O	I/O	I/O
18	CLKB, I/O	CLKB, I/O	CLKB, I/O
19	I/O	I/O	I/O
20	VCCA	VCCA	VCCA

Table 54 •	PQ240	

PQ240					
Pin Number	A42MX36 Function				
237	GND				
238	MODE				
239	VCCA				
240	GND				

Figure 46 • VQ80

Table 55 • VQ80

VQ80		
Pin Number	A40MX02 Function	A40MX04 Function
1	I/O	I/O
2	NC	I/O
3	NC	I/O
4	NC	I/O
5	I/O	I/O
6	I/O	I/O
7	GND	GND
8	I/O	I/O
9	I/O	I/O
10	I/O	I/O
11	I/O	I/O
12	I/O	I/O

Table	57•	TQ176
	-	

TQ176			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
158	CLKB, I/O	CLKB, I/O	CLKB, I/O
159	I/O	I/O	I/O
160	PRB, I/O	PRB, I/O	PRB, I/O
161	NC	I/O	WD, I/O
162	I/O	I/O	WD, I/O
163	I/O	I/O	I/O
164	I/O	I/O	I/O
165	NC	NC	WD, I/O
166	NC	I/O	WD, I/O
167	I/O	I/O	I/O
168	NC	I/O	I/O
169	I/O	I/O	I/O
170	NC	VCCI	VCCI
171	I/O	I/O	WD, I/O
172	I/O	I/O	WD, I/O
173	NC	I/O	I/O
174	I/O	I/O	I/O
175	DCLK, I/O	DCLK, I/O	DCLK, I/O
176	I/O	I/O	I/O

Figure 49 • CQ208

Table 60 • BG272		
BG272		
Pin Number	A42MX36 Function	
A6	I/O	
A7	WD, I/O	
A8	WD, I/O	
A9	I/O	
A10	I/O	
A11	CLKA	
A12	I/O	
A13	I/O	
A14	I/O	
A15	I/O	
A16	WD, I/O	
A17	I/O	
A18	I/O	
A19	GND	
A20	GND	
B1	GND	
B2	GND	
B3	DCLK, I/O	
B4	I/O	
B5	I/O	
B6	I/O	
B7	WD, I/O	
B8	I/O	
B9	PRB, I/O	
B10	I/O	
B11	I/O	
B12	WD, I/O	
B13	I/O	
B14	I/O	
B15	WD, I/O	
B16	I/O	
B17	WD, I/O	
B18	I/O	
B19	GND	
B20	GND	
C1	I/O	
C2	MODE	

Table 60 • BG272		
BG272		
Pin Number	A42MX36 Function	
M10	GND	
M11	GND	
M12	GND	
M17	I/O	
M18	I/O	
M19	I/O	
M20	I/O	
N1	I/O	
N2	I/O	
N3	I/O	
N4	VCCI	
N17	VCCI	
N18	I/O	
N19	I/O	
N20	I/O	
P1	I/O	
P2	I/O	
P3	I/O	
P4	VCCA	
P17	I/O	
P18	I/O	
P19	I/O	
P20	I/O	
R1	I/O	
R2	I/O	
R3	I/O	
R4	VCCI	
R17	VCCI	
R18	I/O	
R19	I/O	
R20	I/O	
T1	I/O	
T2	I/O	
T3	Ι/Ο	
T4	I/O	
T17	VCCA	
T18	I/O	

Figure 53 • CQ172

Table 62 • CQ172

CQ172		
Pin Number	A42MX16 Function	
1	MODE	
2	I/O	
3	I/O	
4	I/O	
5	I/O	
6	I/O	
7	GND	
8	I/O	
9	I/O	
10	I/O	
11	I/O	
12	VCC	
13	I/O	
14	I/O	
15	I/O	
16	I/O	
17	GND	
18	I/O	
19	I/O	
20	I/O	