

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	83
Number of Gates	14000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a42mx09-1pq100m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 15.0

The following is a summary of the changes in revision 15.0 of this document.

- Table 15, page 21 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V
- Table 22, page 25 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V
- Table 23, page 25 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V

1.2 Revision 14.0

The following is a summary of the changes in revision 14.0 of this document.

- Added CQFP package information for A42MX16 device in Product Profile, page 1 and Ceramic Device Resources, page 4 (SAR 79522).
- Added Military (M) and MIL-STD-883 Class B (B) grades for CPGA 132 Package and added Commercial (C), Military (M), and MIL-STD-883 Class B (B) grades for CQFP 172 Package in Temperature Grade Offerings, page 5 (SAR 79519)
- Changed Silicon Sculptor II to Silicon Sculptor in Programming, page 12 (SAR 38754)
- Added Figure 53, page 158 CQ172 package (SAR 79522).

1.3 **Revision 13.0**

The following is a summary of the changes in revision 13.0 of this document.

- Added Figure 42, page 97 PQ144 Package for A42MX09 device (SAR 69776)
- Added Figure 52, page 153 PQ132 Package for A42MX09 device (SAR 69776)

1.4 **Revision 12.0**

The following is a summary of the changes in revision 12.0 of this document.

- Added information on power-up behavior for A42MX24 and A42MX36 devices to the Power Supply, page 13 (SAR 42096
- Corrected the inadvertent mistake in the naming of the PL68 pin assignment table (SARs 48999, 49793)

1.5 Revision 11.0

The following is a summary of the changes in revision 11.0 of this document.

- The FuseLock logo and accompanying text was removed from the User Security, page 12. This marking is no longer used on Microsemi devices (PCN 0915)
- The Development Tool Support, page 19 was updated (SAR 38512)

1.6 Revision 10.0

The following is a summary of the changes in revision 10.0 of this document.

- Ordering Information, page 3 was updated to include lead-free package ordering codes (SAR 21968)
- The User Security, page 12 was revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34673)

Table 1 • Product profile

Device	A40MX02	A40MX04	A42MX09	A42MX16	A42MX24	A42MX36
Maximum Flip-Flops	147	273	516	928	1,410	1,822
Clocks	1	1	2	2	2	6
User I/O (maximum)	57	69	104	140	176	202
PCI	_	-	_	_	Yes	Yes
Boundary Scan Test (BST)	_	_	_	_	Yes	Yes
Packages (by pin count)						
PLCC	44, 68	44, 68, 84	84	84	84	_
PQFP	100	100	100, 144, 160	100, 160, 208	160, 208	208, 240
VQFP	80	80	100	100	_	_
TQFP	_	_	176	176	176	_
CQFP	_	_	_	172	_	208, 256
PBGA	_	_	_	-	_	272
CPGA	_	_	132	_	_	_

Silicon Sculptor programs devices independently to achieve the fastest programming times possible. After being programmed, each fuse is verified to insure that it has been programmed correctly. Furthermore, at the end of programming, there are integrity tests that are run to ensure no extra fuses have been programmed. Not only does it test fuses (both programmed and non-programmed), Silicon Sculptor also allows self-test to verify its own hardware extensively.

The procedure for programming an MX device using Silicon Sculptor is as follows:

- 1. Load the *.AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Microsemi offers device volume-programming services either through distribution partners or via In-House Programming from the factory.

For more details on programming MX devices, see the AC225: Programming Antifuse Devices application note and the Silicon Sculptor 3 Programmers User Guide.

3.3.4 Power Supply

MX devices are designed to operate in both 5.0V and 3.3V environments. In particular, 42MX devices can operate in mixed 5.0 V/3.3 V systems. The following table describes the voltage support of MX devices.

Device	VCC	VCCA	VCCI	Maximum Input Tolerance	Nominal Output Voltage
40MX	5.0 V	-	-	5.5 V	5.0 V
	3.3 V	-	-	3.6 V	3.3 V
42MX	_	5.0 V	5.0 V	5.5 V	5.0 V
	_	3.3 V	3.3 V	3.6 V	3.3 V
	_	5.0 V	3.3 V	5.5 V	3.3 V

Table 6 • Voltage Support of MX Devices

For A42MX24 and A42MX36 devices the VCCA supply has to be monotonic during power up in order for the POR to issue reset to the JTAG state machine correctly. For more information, see the AC291: 42MX Family Devices Power-Up Behavior.

3.3.5 Power-Up/Down in Mixed-Voltage Mode

When powering up 42MX in mixed voltage mode (VCCA = 5.0 V and VCCI = 3.3 V), VCCA must be greater than or equal to VCCI throughout the power-up sequence. If VCCI exceeds VCCA during power-up, one of two things will happen:

- The input protection diode on the I/Os will be forward biased
- The I/Os will be at logical High

In either case, ICC rises to high levels. For power-down, any sequence with VCCA and VCCI can be implemented.

3.3.6 Transient Current

Due to the simultaneous random logic switching activity during power-up, a transient current may appear on the core supply (VCC). Customers must use a regulator for the VCC supply that can source a minimum of 100 mA for transient current during power-up. Failure to provide enough power can prevent the system from powering up properly and result in functional failure. However, there are no reliability concerns, since transient current is distributed across the die instead of confined to a localized spot.

Since the transient current is not due to I/O switching, its value and duration are independent of the VCCI.

Each I/O cell has three boundary-scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin. The serial pins are used to serially connect all the boundary-scan register cells in a device into a boundary-scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic tile and the input, output and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O.

Figure 14 • 42MX IEEE 1149.1 Boundary Scan Circuitry

Table 9 • Test Access Port Descriptions

Port	Description
TMS (Test Mode Select)	Serial input for the test logic control bits. Data is captured on the rising edge of the test logic clock (TCK).
TCK (Test Clock Input)	Dedicated test logic clock used serially to shift test instruction, test data, and control inputs on the rising edge of the clock, and serially to shift the output data on the falling edge of the clock. The maximum clock frequency for TCK is 20 MHz.
TDI (Test Data Input)	Serial input for instruction and test data. Data is captured on the rising edge of the test logic clock.
TDO (Test Data Output)	Serial output for test instruction and data from the test logic. TDO is set to an Inactive Drive state (high impedance) when data scanning is not in progress.

Table 10 • Supported BST Public Instructions

Instruction	IR Code (IR2.IR0)	Instruction Type	Description
EXTEST	000	Mandatory	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
SAMPLE/PRELOAD	001	Mandatory	Allows a snapshot of the signals at the device pins to be captured and examined during operation
HIGH Z	101	Optional	Tristates all I/Os to allow external signals to drive pins. See the IEEE Standard 1149.1 specification.
CLAMP	110	Optional	Allows state of signals driven from component pins to be determined from the Boundary-Scan Register. See the IEEE Standard 1149.1 specification for details.
BYPASS	111	Mandatory	Enables the bypass register between the TDI and TDO pins. The test data passes through the selected device to adjacent devices in the test chain.

3.9.1 Mixed 5.0V/3.3V Electrical Specifications

		Com	mercial	Com	mercial –F	Indu	strial	Milit	ary	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
VOH ¹	IOH = -10 mA	2.4		2.4						V
	IOH = -4 mA					2.4		2.4		V
VOL ¹	IOL = 10 mA		0.5		0.5					V
	IOL = 6 mA						0.4		0.4	V
VIL		-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
VIH ²		2.0	VCCA + 0.3	2.0	VCCA + 0.3	2.0	VCCA + 0.3	2.0	VCCA + 0.3	V
IL	VIN = 0.5 V		-10		-10		-10		-10	μA
IH	VIN = 2.7 V		-10		-10		-10		-10	μA
Input Transition Time, T_R and T_F			500		500		500		500	ns
CIO I/O Capacitance)		10		10		10		10	pF
Standby Current,	A42MX09		5		25		25		25	mA
ICC ³	A42MX16		6		25		25		25	mA
	A42MX24, A42MX36		20		25		25		25	mA
Low Power Mode Standby Current			0.5		ICC - 5.0		ICC - 5.0		ICC - 5.0	mA

Table 22 • Mixed 5.0V/3.3V Electrical Specifications

IIO I/O source sink Can be derived from the *IBIS model* (http://www.microsemi.com/soc/techdocs/models/ibis.html) current

1. Only one output tested at a time. VCCI = min.

2. VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V

3. All outputs unloaded. All inputs = VCCI or GND

3.9.2 Output Drive Characteristics for 5.0 V PCI Signaling

MX PCI device I/O drivers were designed specifically for high-performance PCI systems. Figure 16, page 28 shows the typical output drive characteristics of the MX devices. MX output drivers are compliant with the PCI Local Bus Specification.

Table 23 • DC Specification (5.0 V PCI Signaling)¹

			PCI		MX		
Symbol	Parameter	Condition	Min.	Max.	Min.	Max.	Units
VCCI	Supply Voltage for I/Os		4.75	5.25	4.75	5.25 ²	V
VIH ³	Input High Voltage		2.0	VCC + 0.5	2.0	VCCI + 0.3	V
VIL	Input Low Voltage		-0.5	0.8	-0.3	0.8	V
IIH	Input High Leakage Current	VIN = 2.7 V		70	—	10	μA
IIL	Input Low Leakage Current	VIN=0.5 V		-70	—	-10	μA
VOH	Output High Voltage	IOUT = -2 mA IOUT = -6 mA	2.4		3.84		V
VOL	Output Low Voltage	IOUT = 3 mA, 6 mA		0.55	_	0.33	V

Table 34 •A40MX02 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C)

			-3 Sp	beed	–2 Sp	beed	–1 Sp	eed	Std S	peed	–F Sp	beed	
Param	eter / Description	•	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input N	Iodule Propagation	Delays											
t _{INYH}	Pad-to-Y HIGH			0.7		0.8		0.9		1.1		1.5	ns
t _{INYL}	Pad-to-Y LOW			0.6		0.7		0.8		1.0		1.3	ns
Input N	Iodule Predicted Ro	outing Dela	ys ¹										
t _{IRD1}	FO = 1 Routing De	lay		2.1		2.4		2.2		3.2		4.5	ns
t _{IRD2}	FO = 2 Routing De	lay		2.6		3.0		3.4		4.0		5.6	ns
t _{IRD3}	FO = 3 Routing De	lay		3.1		3.6		4.1		4.8		6.7	ns
t _{IRD4}	FO = 4 Routing De	lay		3.6		4.2		4.8		5.6		7.8	ns
t _{IRD8}	FO = 8 Routing De	lay		5.7		6.6		7.5		8.8		12.4	ns
Global	Clock Network												
t _{СКН}	Input Low to HIGH	FO = 16 FO = 128		4.6 4.6		5.3 5.3		6.0 6.0		7.0 7.0		9.8 9.8	ns
t _{CKL}	Input High to LOW	FO = 16 FO = 128		4.8 4.8		5.6 5.6		6.3 6.3		7.4 7.4		10.4 10.4	ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 16 FO = 128	2.2 2.4		2.6 2.7		2.9 3.1		3.4 3.6		4.8 5.1		ns
t _{PWL}	Minimum Pulse Width LOW	FO = 16 FO = 128	2.2 2.4		2.6 2.7		2.9 3.01		3.4 3.6		4.8 5.1		ns
t _{CKSW}	Maximum Skew	FO = 16 FO = 128		0.4 0.5		0.5 0.6		0.5 0.7		0.6 0.8		0.8 1.2	ns
t _P	Minimum Period	FO = 16 FO = 128			5.4 5.6		6.1 6.3		7.2 7.5		10.0 10.4		ns
f _{MAX}	Maximum Frequency	FO = 16 FO = 128		188 181		175 168		160 154		139 134		83 80	MHz

		–3 SI	beed	–2 Sp	beed	–1 Sp	eed	Std S	peed	–F Sp	beed	
Param	eter / Description	Min.	Max.	Units								
TTL Ou	utput Module Timing ⁴											
t _{DLH}	Data-to-Pad HIGH		3.3		3.8		4.3		5.1		7.2	ns
t _{DHL}	Data-to-Pad LOW		4.0		4.6		5.2		6.1		8.6	ns
t _{ENZH}	Enable Pad Z to HIGH		3.7		4.3		4.9		5.8		8.0	ns
t _{ENZL}	Enable Pad Z to LOW		4.7		5.4		6.1		7.2		10.1	ns
t _{ENHZ}	Enable Pad HIGH to Z		7.9		9.1		10.4		12.2		17.1	ns
t _{ENLZ}	Enable Pad LOW to Z		5.9		6.8		7.7		9.0		12.6	ns
d _{TLH}	Delta LOW to HIGH		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{THL}	Delta HIGH to LOW		0.03		0.03		0.03		0.04		0.06	ns/pF
CMOS	Output Module Timing ⁴											
t _{DLH}	Data-to-Pad HIGH		3.9		4.5		5.1		6.05		8.5	ns
t _{DHL}	Data-to-Pad LOW		3.4		3.9		4.4		5.2		7.3	ns
t _{ENZH}	Enable Pad Z to HIGH		3.4		3.9		4.4		5.2		7.3	ns
t _{ENZL}	Enable Pad Z to LOW		4.9		5.6		6.4		7.5		10.5	ns
t _{ENHZ}	Enable Pad HIGH to Z		7.9		9.1		10.4		12.2		17.0	ns
t _{ENLZ}	Enable Pad LOW to Z		5.9		6.8		7.7		9.0		12.6	ns
d _{TLH}	Delta LOW to HIGH		0.03		0.04		0.04		0.05		0.07	ns/pF
d _{THL}	Delta HIGH to LOW		0.02		0.02		0.03		0.03		0.04	ns/pF

Table 34 •A40MX02 Timing Characteristics (Nominal 5.0 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}$ C)

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance

2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility

3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check

the hold time for this macro.

4. Delays based on 35pF loading

Table 35 •A40MX02 Timing Characteristics (Nominal 3.3 V Operation)
(Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70°C)

		–3 Sp	beed	–2 Sp	beed	–1 S	beed	Std S	Speed	–F S	peed	
Parame	eter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic M	Module Propagation Delays											
t _{PD1}	Single Module		1.7		2.0		2.3		2.7		3.7	ns
t _{PD2}	Dual-Module Macros		3.7		4.3		4.9		5.7		8.0	ns
t _{CO}	Sequential Clock-to-Q		1.7		2.0		2.3		2.7		3.7	ns
t _{GO}	Latch G-to-Q		1.7		2.0		2.3		2.7		3.7	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q		1.7		2.0		2.3		2.7		3.7	ns
Logic M	Module Predicted Routing Delays	s ¹										

			–3 S	peed	–2 Sj	beed	–1 Sp	beed	Std S	peed	–F Sp	beed	
Parame	ter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PWL}	Minimum Pulse Width LOW	FO = 32 FO = 384	3.2 3.7		3.5 4.1		4.0 4.6		4.7 5.4		6.6 7.6		ns ns
t _{CKSW}	Maximum Skew	FO = 32 FO = 384		0.3 0.3		0.4 0.4		0.4 0.4		0.5 0.5		0.7 0.7	ns ns
t _{SUEXT}	Input Latch External Set-Up	FO = 32 FO = 384	0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		ns ns
t _{HEXT}	Input Latch External Hold	FO = 32 FO = 384	2.8 3.2		3.1 3.5		5.5 4.0		4.1 4.7		5.7 6.6		ns ns
t _P	Minimum Period	FO = 32 FO = 384	4.2 4.6		4.67 5.1		5.1 5.6		5.8 6.4		9.7 10.7		ns ns
f _{MAX}	Maximum Frequency	FO = 32 FO = 384		237 215		215 195		198 179		172 156		103 94	MHz MHz

Table 40 •A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

	-3 Speed	-2 Speed	-1 Speed	Std Speed	-F Speed	
eter / Description	Min. Max.	Min. Max.	Min. Max.	Min. Max.	Min. Max.	Units
tput Module Timing ⁴						
Data-to-Pad HIGH	2.5	2.8	3.2	3.7	5.2	ns
Data-to-Pad LOW	3.0	3.3	3.7	4.4	6.1	ns
Enable Pad Z to HIGH	2.7	3.0	3.4	4.0	5.6	ns
Enable Pad Z to LOW	3.0	3.3	3.8	4.4	6.2	ns
Enable Pad HIGH to Z	5.4	6.0	6.8	8.0	11.2	ns
Enable Pad LOW to Z	5.0	5.6	6.3	7.4	10.4	ns
G-to-Pad HIGH	2.9	3.2	3.6	4.3	6.0	ns
G-to-Pad LOW	2.9	3.2	3.6	4.3	6.0	ns
I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading	5.7	6.3	7.1	8.4	11.9	ns
Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading	8.0	8.9	10.1	11.9	16.7	ns
Capacitive Loading, LOW to HIGH	0.03	0.03	0.03	0.04	0.06	ns/pF
Capacitive Loading, HIGH to LOW	0.04	0.04	0.04	0.05	0.07	ns/pF
	tput Module Timing ⁴ Data-to-Pad HIGH Data-to-Pad LOW Enable Pad Z to HIGH Enable Pad Z to LOW Enable Pad HIGH to Z Enable Pad LOW to Z G-to-Pad HIGH G-to-Pad LOW I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading Capacitive Loading, LOW to HIGH	Iter / DescriptionMin.Max.tput Module Timing42.5Data-to-Pad HIGH2.5Data-to-Pad LOW3.0Enable Pad Z to HIGH2.7Enable Pad Z to LOW3.0Enable Pad Z to LOW3.0Enable Pad A HIGH to Z5.4Enable Pad LOW to Z5.0G-to-Pad HIGH2.9G-to-Pad LOW2.9I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading5.7Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading8.0Capacitive Loading, LOW to HIGH0.03	Iter / DescriptionMin.Max.Min.Max.tput Module Timing42.52.8Data-to-Pad HIGH2.52.8Data-to-Pad LOW3.03.3Enable Pad Z to HIGH2.73.0Enable Pad Z to LOW3.03.3Enable Pad Z to LOW5.46.0Enable Pad HIGH to Z5.46.0Enable Pad LOW to Z5.05.6G-to-Pad HIGH2.93.2I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading5.76.3Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading8.08.9Capacitive Loading, LOW to HIGH0.030.03	Image: Marce of Description Min. Max. Min. Max. Min. Max. tput Module Timing ⁴ 2.5 2.8 3.2 Data-to-Pad HIGH 2.5 2.8 3.2 Data-to-Pad LOW 3.0 3.3 3.7 Enable Pad Z to HIGH 2.7 3.0 3.4 Enable Pad Z to LOW 3.0 3.3 3.8 Enable Pad HIGH to Z 5.4 6.0 6.8 Enable Pad HIGH to Z 5.0 5.6 6.3 G-to-Pad HIGH 2.9 3.2 3.6 G-to-Pad HIGH 2.9 3.2 3.6 I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 5.7 6.3 7.1 Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 Capacitive Loading, LOW to HIGH 0.03 0.03 0.03	Image: Marce / Description Min. Max. Min. Max. <th< td=""><td>Min. Max. Min. Max. <th< td=""></th<></td></th<>	Min. Max. Min. Max. <th< td=""></th<>

Table 40 •A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

		–3 S	peed	–2 Sp	beed	–1 S	peed	Std S	d Speed –F Speed		peed	
Paramet	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
TTL Out	tput Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		2.4		2.7		3.1		3.6		5.1	ns
t _{DHL}	Data-to-Pad LOW		2.8		3.2		3.6		4.2		5.9	ns
t _{ENZH}	Enable Pad Z to HIGH		2.5		2.8		3.2		3.8		5.3	ns
t _{ENZL}	Enable Pad Z to LOW		2.8		3.1		3.5		4.2		5.9	ns
t _{ENHZ}	Enable Pad HIGH to Z		5.2		5.7		6.5		7.6		10.7	ns
t _{ENLZ}	Enable Pad LOW to Z		4.8		5.3		6.0		7.1		9.9	ns
t _{GLH}	G-to-Pad HIGH		2.9		3.2		3.6		4.3		6.0	ns
t _{GHL}	G-to-Pad LOW		2.9		3.2		3.6		4.3		6.0	ns
t _{LSU}	I/O Latch Output Set-Up	0.5		0.5		0.6		0.7		1.0		ns
t _{LH}	I/O Latch Output Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O		5.6		6.1		6.9		8.1		11.4	ns
t _{ACO}	Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O		10.6		11.8		13.4		15.7		22.0	ns
d _{TLH}	Capacitive Loading, LOW to HIGH		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THL}	Capacitive Loading, HIGH to LOW		0.03		0.03		0.03		0.04		0.06	ns/pF

Table 42 • A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T_J = 70°C)

Input, output, tristate or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/Os pins are configured by the Designer software as shown in Table 46, page 84.

Device	Configuration
A40MX02, A40MX04	Pulled LOW
A42MX09, A42MX16	Pulled LOW
A42MX24, A42MX36	Tristated

Table 46 • Configuration of Unused I/Os

In all cases, it is recommended to tie all unused MX I/O pins to LOW on the board. This applies to all dual-purpose pins when configured as I/Os as well.

LP, Low Power Mode

Controls the low power mode of all 42MX devices. The device is placed in the low power mode by connecting the LP pin to logic HIGH. In low power mode, all I/Os are tristated, all input buffers are turned OFF, and the core of the device is turned OFF. To exit the low power mode, the LP pin must be set LOW. The device enters the low power mode 800 ns after the LP pin is driven to a logic HIGH. It will resume normal operation in 200 µs after the LP pin is driven to a logic LOW.

MODE, Mode

Controls the use of multifunction pins (DCLK, PRA, PRB, SDI, TDO). The MODE pin is held HIGH to provide verification capability. The MODE pin should be terminated to GND through a $10k\Omega$ resistor so that the MODE pin can be pulled HIGH when required.

NC, No Connection

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

PRA, I/O

PRB, I/OProbe A/B

The Probe pin is used to output data from any user-defined design node within the device. Each diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. The Probe pin is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

QCLKA/B/C/D, I/O Quadrant Clock

Quadrant clock inputs for A42MX36 devices. When not used as a register control signal, these pins can function as user I/Os.

SDI, I/OSerial Data Input

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

SDO, I/OSerial Data Output

Serial data output for diagnostic probe and device programming. SDO is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. SDO is available for 42MX devices only.

When Silicon Explorer II is being used, SDO will act as an output while the "checksum" command is run. It will return to user I/O when "checksum" is complete.

TCK, I/O Test Clock

Table 50 • PQ 100

PQ100				
Pin Number	A40MX02 Function	A40MX04 Function	A42MX09 Function	A42MX16 Function
93	VCC	VCC	I/O	I/O
94	VCC	VCC	PRB, I/O	PRB, I/O
95	NC	I/O	I/O	I/O
96	NC	I/O	GND	GND
97	NC	I/O	I/O	I/O
98	SDI, I/O	SDI, I/O	I/O	I/O
99	DCLK, I/O	DCLK, I/O	I/O	I/O
100	PRA, I/O	PRA, I/O	I/O	I/O

PQ144		
Pin Number	A42MX09 Function	
117	GNDI	
118	NC	
119	I/O	
120	I/O	
121	I/O	
122	I/O	
123	PROBA	
124	I/O	
125	CLKA	
126	VCC	
127	VCCI	
128	NC	
129	I/O	
130	CLKB	
131	I/O	
132	PROBB	
133	I/O	
134	I/O	
135	I/O	
136	GND	
137	GNDI	
138	NC	
139	I/O	
140	I/O	
141	I/O	
142	I/O	
143	I/O	
144	DCLK	

Table 51 • PQ144

Table 52 • PQ160

PQ160			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
58	VCCI	VCCI	VCCI
59	GND	GND	GND
60	VCCA	VCCA	VCCA
61	LP	LP	LP
62	I/O	I/O	TCK, I/O
63	I/O	I/O	I/O
64	GND	GND	GND
65	I/O	I/O	I/O
66	I/O	I/O	I/O
67	I/O	I/O	I/O
68	I/O	I/O	I/O
69	GND	GND	GND
70	NC	I/O	I/O
71	I/O	I/O	I/O
72	I/O	I/O	I/O
73	I/O	I/O	I/O
74	I/O	I/O	I/O
75	NC	I/O	I/O
76	I/O	I/O	I/O
77	NC	I/O	I/O
78	I/O	I/O	I/O
79	NC	I/O	I/O
30	GND	GND	GND
31	I/O	I/O	I/O
32	SDO, I/O	SDO, I/O	SDO, TDO, I/O
33	I/O	I/O	WD, I/O
34	I/O	I/O	WD, I/O
35	I/O	I/O	I/O
36	NC	VCCI	VCCI
37	I/O	I/O	I/O
38	I/O	I/O	WD, I/O
39	GND	GND	GND
90	NC	I/O	I/O
91	I/O	I/O	I/O
92	I/O	I/O	I/O
93	I/O	I/O	I/O
94	I/O	I/O	I/O

Table 52 • PQ160

PQ160			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
132	I/O	I/O	I/O
133	I/O	I/O	I/O
134	I/O	I/O	I/O
135	NC	VCCA	VCCA
136	I/O	I/O	I/O
137	I/O	I/O	I/O
138	NC	VCCA	VCCA
139	VCCI	VCCI	VCCI
140	GND	GND	GND
141	NC	I/O	I/O
142	I/O	I/O	I/O
143	I/O	I/O	I/O
144	I/O	I/O	I/O
145	GND	GND	GND
146	NC	I/O	I/O
147	I/O	I/O	I/O
148	I/O	I/O	I/O
149	I/O	I/O	I/O
150	NC	VCCA	VCCA
151	NC	I/O	I/O
152	NC	I/O	I/O
153	NC	I/O	I/O
154	NC	I/O	I/O
155	GND	GND	GND
156	I/O	I/O	I/O
157	I/O	I/O	I/O
158	I/O	I/O	I/O
159	MODE	MODE	MODE
160	GND	GND	GND

Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
1	GND	GND	GND
2	NC	VCCA	VCCA
3	MODE	MODE	MODE
4	I/O	I/O	I/O
5	I/O	I/O	I/O
6	I/O	I/O	I/O
7	I/O	I/O	I/O
8	I/O	I/O	I/O
9	NC	I/O	I/O
10	NC	I/O	I/O
11	NC	I/O	I/O
12	I/O	I/O	I/O
13	I/O	I/O	I/O
14	I/O	I/O	I/O
15	I/O	I/O	I/O
16	NC	I/O	I/O
17	VCCA	VCCA	VCCA
18	I/O	I/O	I/O
19	I/O	I/O	I/O
20	I/O	I/O	I/O

Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
58	I/O	WD, I/O	WD, I/O
59	I/O	I/O	I/O
60	VCCI	VCCI	VCCI
61	NC	I/O	I/O
62	NC	I/O	I/O
63	I/O	I/O	I/O
64	I/O	I/O	I/O
65	I/O	I/O	QCLKA, I/O
66	I/O	WD, I/O	WD, I/O
67	NC	WD, I/O	WD, I/O
68	NC	I/O	I/O
69	I/O	I/O	I/O
70	I/O	WD, I/O	WD, I/O
71	I/O	WD, I/O	WD, I/O
72	I/O	I/O	I/O
73	I/O	I/O	I/O
74	I/O	I/O	I/O
75	I/O	I/O	I/O
76	I/O	I/O	I/O
77	I/O	I/O	I/O
78	GND	GND	GND
79	VCCA	VCCA	VCCA
30	NC	VCCI	VCCI
31	I/O	I/O	I/O
32	I/O	I/O	I/O
83	I/O	I/O	I/O
34	I/O	I/O	I/O
35	I/O	WD, I/O	WD, I/O
36	I/O	WD, I/O	WD, I/O
37	I/O	I/O	I/O
38	I/O	I/O	I/O
39	NC	I/O	I/O
90	NC	I/O	I/O
91	I/O	I/O	QCLKB, I/O
92	I/O	I/O	I/O
93	I/O	WD, I/O	WD, I/O
94	I/O	WD, I/O	WD, I/O

PQ240	
Pin Number	A42MX36 Function
15	QCLKC, I/O
16	I/O
17	WD, I/O
18	WD, I/O
19	I/O
20	I/O
21	WD, I/O
22	WD, I/O
23	I/O
24	PRB, I/O
25	I/O
26	CLKB, I/O
27	I/O
28	GND
29	VCCA
30	VCCI
31	I/O
32	CLKA, I/O
33	I/O
34	PRA, I/O
35	I/O
36	I/O
37	WD, I/O
38	WD, I/O
39	I/O
40	I/O
41	I/O
42	I/O
43	I/O
44	I/O
45	QCLKD, I/O
46	I/O
47	WD, I/O
48	WD, I/O
49	I/O
50	I/O
51	I/O

PQ240	
Pin Number	A42MX36 Function
52	VCCI
53	I/O
54	WD, I/O
55	WD, I/O
56	I/O
57	SDI, I/O
58	I/O
59	VCCA
60	GND
61	GND
62	I/O
63	I/O
64	I/O
65	I/O
66	I/O
67	I/O
68	I/O
69	I/O
70	I/O
'1	VCCI
72	I/O
73	I/O
74	I/O
75	I/O
76	I/O
77	I/O
78	I/O
79	I/O
30	I/O
81	I/O
82	I/O
83	I/O
84	I/O
85	VCCA
36	I/O
87	I/O
38	VCCA

CQ208	
Pin Number	A42MX36 Function
74	I/O
75	I/O
76	I/O
77	I/O
78	GND
79	VCCA
80	VCCI
81	I/O
32	I/O
83	I/O
84	I/O
85	WD, I/O
36	WD, I/O
37	I/O
38	I/O
39	I/O
90	I/O
91	QCLKB, I/O
92	I/O
93	WD, I/O
94	WD, I/O
95	I/O
96	I/O
97	I/O
98	VCCI
99	I/O
100	WD, I/O
101	WD, I/O
102	I/O
103	TDO, I/O
104	I/O
105	GND
106	VCCA
107	I/O
108	I/O
109	I/O