

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	104
Number of Gates	14000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	176-LQFP
Supplier Device Package	176-TQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a42mx09-1tqg176m

Email: info@E-XFL.COM

E·XF

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 4 • 42MX S-Module Implementation

Up to 7-Input Function Plus D-Type Flip-Flop with Clear

Up to 7-Input Function Plus Latch

Up to 4-Input Function Plus Latch with Clear

Up to 8-Input Function (Same as C-Module)

A42MX24 and A42MX36 devices contain D-modules, which are arranged around the periphery of the device. D-modules contain wide-decode circuitry, providing a fast, wide-input AND function similar to that found in CPLD architectures (Figure 5, page 9). The D-module allows A42MX24 and A42MX36 devices to perform wide-decode functions at speeds comparable to CPLDs and PALs. The output of the D-module has a programmable inverter for active HIGH or LOW assertion. The D-module output is hardwired to an output pin, and can also be fed back into the array to be incorporated into other logic.

3.2.2 Dual-Port SRAM Modules

The A42MX36 device contains dual-port SRAM modules that have been optimized for synchronous or asynchronous applications. The SRAM modules are arranged in 256-bit blocks that can be configured as 32x8 or 64x4. SRAM modules can be cascaded together to form memory spaces of user-definable width and depth. A block diagram of the A42MX36 dual-port SRAM block is shown in Figure 6, page 9.

The A42MX36 SRAM modules are true dual-port structures containing independent read and write ports. Each SRAM module contains six bits of read and write addressing (RDAD[5:0] and WRAD[5:0], respectively) for 64x4-bit blocks. When configured in byte mode, the highest order address bits (RDAD5 and WRAD5) are not used. The read and write ports of the SRAM block contain independent clocks (RCLK and WCLK) with programmable polarities offering active HIGH or LOW implementation. The SRAM block contains eight data inputs (WD[7:0]), and eight outputs (RD[7:0]), which are connected to segmented vertical routing tracks.

The A42MX36 dual-port SRAM blocks provide an optimal solution for high-speed buffered applications requiring FIFO and LIFO queues. The ACTgen Macro Builder within Microsemi's designer software provides capability to quickly design memory functions with the SRAM blocks. Unused SRAM blocks can be used to implement registers for other user logic within the design.

Silicon Sculptor programs devices independently to achieve the fastest programming times possible. After being programmed, each fuse is verified to insure that it has been programmed correctly. Furthermore, at the end of programming, there are integrity tests that are run to ensure no extra fuses have been programmed. Not only does it test fuses (both programmed and non-programmed), Silicon Sculptor also allows self-test to verify its own hardware extensively.

The procedure for programming an MX device using Silicon Sculptor is as follows:

- 1. Load the *.AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Microsemi offers device volume-programming services either through distribution partners or via In-House Programming from the factory.

For more details on programming MX devices, see the AC225: Programming Antifuse Devices application note and the Silicon Sculptor 3 Programmers User Guide.

3.3.4 Power Supply

MX devices are designed to operate in both 5.0V and 3.3V environments. In particular, 42MX devices can operate in mixed 5.0 V/3.3 V systems. The following table describes the voltage support of MX devices.

Device	VCC	VCCA	VCCI	Maximum Input Tolerance	Nominal Output Voltage
40MX	5.0 V	-	-	5.5 V	5.0 V
	3.3 V	-	-	3.6 V	3.3 V
42MX	-	5.0 V	5.0 V	5.5 V	5.0 V
	_	3.3 V	3.3 V	3.6 V	3.3 V
	_	5.0 V	3.3 V	5.5 V	3.3 V

Table 6 • Voltage Support of MX Devices

For A42MX24 and A42MX36 devices the VCCA supply has to be monotonic during power up in order for the POR to issue reset to the JTAG state machine correctly. For more information, see the AC291: 42MX Family Devices Power-Up Behavior.

3.3.5 Power-Up/Down in Mixed-Voltage Mode

When powering up 42MX in mixed voltage mode (VCCA = 5.0 V and VCCI = 3.3 V), VCCA must be greater than or equal to VCCI throughout the power-up sequence. If VCCI exceeds VCCA during power-up, one of two things will happen:

- The input protection diode on the I/Os will be forward biased
- The I/Os will be at logical High

In either case, ICC rises to high levels. For power-down, any sequence with VCCA and VCCI can be implemented.

3.3.6 Transient Current

Due to the simultaneous random logic switching activity during power-up, a transient current may appear on the core supply (VCC). Customers must use a regulator for the VCC supply that can source a minimum of 100 mA for transient current during power-up. Failure to provide enough power can prevent the system from powering up properly and result in functional failure. However, there are no reliability concerns, since transient current is distributed across the die instead of confined to a localized spot.

Since the transient current is not due to I/O switching, its value and duration are independent of the VCCI.

3.3.7 Low Power Mode

42MX devices have been designed with a Low Power Mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when exiting Low Power Mode. I/Os can be driven during LP mode, and clock pins should be driven HIGH or LOW and should not float to avoid drawing current. To exit LP mode, the LP pin must be pulled LOW for over 200 µs to allow for charge pumps to power up, and device initialization will begin.

3.4 **Power Dissipation**

The general power consumption of MX devices is made up of static and dynamic power and can be expressed with the following equation.

3.4.1 General Power Equation

P = [ICCstandby + ICCactive]*VCCI + IOL*VOL*N + IOH*(VCCI - VOH)*M

EQ 1

where:

- ICCstandby is the current flowing when no inputs or outputs are changing.
- ICCactive is the current flowing due to CMOS switching.
- IOL, IOH are TTL sink/source currents.
- VOL, VOH are TTL level output voltages.
- N equals the number of outputs driving TTL loads to VOL.
- M equals the number of outputs driving TTL loads to VOH.

Accurate values for N and M are difficult to determine because they depend on the family type, on design details, and on the system I/O. The power can be divided into two components: static and active.

3.4.2 Static Power Component

The static power due to standby current is typically a small component of the overall power consumption. Standby power is calculated for commercial, worst-case conditions. The static power dissipation by TTL loads depends on the number of outputs driving, and on the DC load current. For instance, a 32-bit bus sinking 4mA at 0.33V will generate 42mW with all outputs driving LOW, and 140mW with all outputs driving HIGH. The actual dissipation will average somewhere in between, as I/Os switch states with time.

3.4.3 Active Power Component

Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. Dynamic power consumption is frequency-dependent and is a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitances due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation.

The power dissipated by a CMOS circuit can be expressed by the equation:

$$Power(\mu W) = C_{EO}^* VCCA2^* F(1)$$

where:

C_{EQ} = Equivalent capacitance expressed in picofarads (pF)

EQ 2

Each I/O cell has three boundary-scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin. The serial pins are used to serially connect all the boundary-scan register cells in a device into a boundary-scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic tile and the input, output and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O.

Figure 14 • 42MX IEEE 1149.1 Boundary Scan Circuitry

Table 9 • Test Access Port Descriptions

Port	Description
TMS (Test Mode Select)	Serial input for the test logic control bits. Data is captured on the rising edge of the test logic clock (TCK).
TCK (Test Clock Input)	Dedicated test logic clock used serially to shift test instruction, test data, and control inputs on the rising edge of the clock, and serially to shift the output data on the falling edge of the clock. The maximum clock frequency for TCK is 20 MHz.
TDI (Test Data Input)	Serial input for instruction and test data. Data is captured on the rising edge of the test logic clock.
TDO (Test Data Output)	Serial output for test instruction and data from the test logic. TDO is set to an Inactive Drive state (high impedance) when data scanning is not in progress.

Table 10 • Supported BST Public Instructions

Instruction	IR Code (IR2.IR0)	Instruction Type	Description
EXTEST	000	Mandatory	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
SAMPLE/PRELOAD	001	Mandatory	Allows a snapshot of the signals at the device pins to be captured and examined during operation
HIGH Z	101	Optional	Tristates all I/Os to allow external signals to drive pins. See the IEEE Standard 1149.1 specification.
CLAMP	110	Optional	Allows state of signals driven from component pins to be determined from the Boundary-Scan Register. See the IEEE Standard 1149.1 specification for details.
BYPASS	111	Mandatory	Enables the bypass register between the TDI and TDO pins. The test data passes through the selected device to adjacent devices in the test chain.

Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Microsemi's integrated verification and logic analysis tool. Another tool included in the Libero software is the SmartGen macro builder, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design.

Microsemi's Libero software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synopsys, and Cadence design systems.

See the Libero IDE web content at www.microsemi.com/soc/products/software/libero/default.aspx for further information on licensing and current operating system support.

3.6 Related Documents

The following sections give the list of related documents which can be refered for this datasheet.

3.6.1 Application Notes

- AC278: BSDL Files Format Description
- AC225: Programming Antifuse Devices
- AC168: Implementation of Security in Microsemi Antifuse FPGAs

3.6.2 User Guides and Manuals

- Antifuse Macro Library Guide
- Silicon Sculptor Programmers User Guide

3.6.3 Miscellaneous

Libero IDE Flow Diagram

3.7 5.0 V Operating Conditions

The following tables show 5.0 V operating conditions.

Table 12 • Absolute Maximum Ratings for 40MX Devices*

Symbol	Parameter	Limits	Units
VCC	DC Supply Voltage	-0.5 to +7.0	V
VI	Input Voltage	-0.5 to VCC+0.5	V
VO	Output Voltage	-0.5 to VCC+0.5	V
t _{STG}	Storage Temperature	-65 to +150	°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions.

Table 13 • Absolute Maximum Ratings for 42MX Devices*

Symbol	Parameter	Limits	Units
VCCI	DC Supply Voltage for I/Os	-0.5 to +7.0	V
VCCA	DC Supply Voltage for Array	-0.5 to +7.0	V
VI	Input Voltage	-0.5 to VCCI+0.5	V
VO	Output Voltage	-0.5 to VCCI+0.5	V
t _{STG}	Storage Temperature	-65 to +150	°C

3.10 Timing Models

The following figures show various timing models.

Figure 17 • 40MX Timing Model*

Note: Values are shown for 40MX –3 speed devices at 5.0 V worst-case commercial conditions.

Note: 1. Input module predicted routing delay

Note: 2. Values are shown for A42MX09 -3 at 5.0 V worst-case commercial conditions.

Figure 33 • 42MX SRAM Asynchronous Read Operation—Type 2 (Write Address Controlled)

3.10.7 Predictable Performance: Tight Delay Distributions

Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases.

From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer routing tracks.

The MX FPGAs deliver a tight fanout delay distribution, which is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path.

Microsemi's patented antifuse offers a very low resistive/capacitive interconnect. The antifuses, fabricated in 0.45 μ m lithography, offer nominal levels of 100 Ω resistance and 7.0 fF capacitance per antifuse.

MX fanout distribution is also tight due to the low number of antifuses required for each interconnect path. The proprietary architecture limits the number of antifuses per path to a maximum of four, with 90 percent of interconnects using only two antifuses.

3.11 Timing Characteristics

Device timing characteristics fall into three categories: family-dependent, device-dependent, and designdependent. The input and output buffer characteristics are common to all MX devices. Internal routing delays are device-dependent; actual delays are not determined until after place-and-route of the user's design is complete. Delay values may then be determined by using the Designer software utility or by performing simulation with post-layout delays.

3.11.1 Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment in Microsemi's Designer software prior to placement and routing. Up to 6% of the nets in a design may be designated as critical.

3.11.2 Long Tracks

Some nets in the design use long tracks, which are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections, which increase capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks add

		–3 Sp	beed	–2 Sp	beed	–1 Sp	beed	Std S	peed	–F S	peed	
Paramete	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS Ou	utput Module Timing ⁴											
t _{DLH}	Data-to-Pad HIGH		5.5		6.4		7.2		8.5		11.9	ns
t _{DHL}	Data-to-Pad LOW		4.8		5.5		6.2		7.3		10.2	ns
t _{ENZH}	Enable Pad Z to HIGH		4.7		5.5		6.2		7.3		10.2	ns
t _{ENZL}	Enable Pad Z to LOW		6.8		7.9		8.9		10.5		14.7	ns
t _{ENHZ}	Enable Pad HIGH to Z		11.1		12.8		14.5		17.1		23.9	ns
t _{ENLZ}	Enable Pad LOW to Z		8.2		9.5		10.7		12.6		17.7	ns
d _{TLH}	Delta LOW to HIGH		0.05		0.05		0.06		0.07		0.10	ns/pF
d _{THL}	Delta HIGH to LOW		0.03		0.03		0.04		0.04		0.06	ns/pF

Table 35 •A40MX02 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70°C)

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.

3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro

4. Delays based on 35 pF loading

Table 36 •A40MX04 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions,
VCC = 4.75 V, T_J = 70°C)

		–3 Sp	beed	–2 Sp	beed	–1 S	beed	Std S	Speed	–F S	peed	
Parame	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic M	odule Propagation Delays											
t _{PD1}	Single Module		1.2		1.4		1.6		1.9		2.7	ns
t _{PD2}	Dual-Module Macros		2.3		3.1		3.5		4.1		5.7	ns
t _{CO}	Sequential Clock-to-Q		1.2		1.4		1.6		1.9		2.7	ns
t _{GO}	Latch G-to-Q		1.2		1.4		1.6		1.9		2.7	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q		1.2		1.4		1.6		1.9		2.7	ns
Logic M	odule Predicted Routing Delay	′s ¹										
t _{RD1}	FO = 1 Routing Delay		1.2		1.6		1.8		2.1		3.0	ns
t _{RD2}	FO = 2 Routing Delay		1.9		2.2		2.5		2.9		4.1	ns
t _{RD3}	FO = 3 Routing Delay		2.4		2.8		3.2		3.7		5.2	ns
t _{RD4}	FO = 4 Routing Delay		2.9		3.4		3.9		4.5		6.3	ns
t _{RD8}	FO = 8 Routing Delay		5.0		5.8		6.6		7.8		10.9	ns
Logic M	odule Sequential Timing ²											
t _{SUD}	Flip-Flop (Latch) Data Input Set-Up	3.1		3.5		4.0		4.7		6.6		ns
t _{HD} ³	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	3.1		3.5		4.0		4.7		6.6		ns

Table 37 • A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (continued)(Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70°C)

		–3 Sj	beed	–2 S	peed	–1 Sp	beed	Std S	Speed	–F Sj	peed	
Paramet	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	4.6		5.3		5.6		7.0		9.8		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.6		5.3		5.6		7.0		9.8		ns
t _A	Flip-Flop Clock Input Period	6.8		7.8		8.9		10.4		14.6		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency (FO = 128)		109		101		92		80		48	MHz
Input Mo	odule Propagation Delays											
t _{INYH}	Pad-to-Y HIGH		1.0		1.1		1.3		1.5		2.1	ns
t _{INYL}	Pad-to-Y LOW		0.9		1.0		1.1		1.3		1.9	ns

		-3 Speed		–2 Sp	beed	-1 Speed		Std Speed		–F Speed		
Paramete	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS O	utput Module Timing ⁴											
t _{DLH}	Data-to-Pad HIGH		5.5		6.4		7.2		8.5		11.9	ns
t _{DHL}	Data-to-Pad LOW		4.8		5.5		6.2		7.3		10.2	ns
t _{ENZH}	Enable Pad Z to HIGH		4.7		5.5		6.2		7.3		10.2	ns
t _{ENZL}	Enable Pad Z to LOW		6.8		7.9		8.9		10.5		14.7	ns
t _{ENHZ}	Enable Pad HIGH to Z		11.1		12.8		14.5		17.1		23.9	ns
t _{ENLZ}	Enable Pad LOW to Z		8.2		9.5		10.7		12.6		17.7	ns
d _{TLH}	Delta LOW to HIGH		0.05		0.05		0.06		0.07		0.10	ns/pF
d _{THL}	Delta HIGH to LOW		0.03		0.03		0.04		0.04		0.06	ns/pF

Table 37 • A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (continued)(Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70°C)

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

2. Set-up times assume fanout of 3. Further testing information can be obtained from the Timer utility.

3. The hold time for the DFME1A macro may be greater than 0 ns. Use the Timer tool from the Designer software to check the hold time for this macro.

4. Delays based on 35 pF loading.

Table 38 •A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

		–3 Sp	beed	–2 S	peed	–1 Sp	eed	Std S	Speed	–F Speed		
Paramet	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mo	odule Propagation Delays ¹											
t _{PD1}	Single Module		1.2		1.3		1.5		1.8		2.5	ns
t _{CO}	Sequential Clock-to-Q		1.3		1.4		1.6		1.9		2.7	ns
t _{GO}	Latch G-to-Q		1.2		1.4		1.6		1.8		2.6	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q		1.2		1.6		1.8		2.1		2.9	ns
Logic Mo	odule Predicted Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.7		0.8		0.9		1.0		1.4	ns
t _{RD2}	FO = 2 Routing Delay		0.9		1.0		1.2		1.4		1.9	ns
t _{RD3}	FO = 3 Routing Delay		1.2		1.3		1.5		1.7		2.4	ns
t _{RD4}	FO = 4 Routing Delay		1.4		1.5		1.7		2.0		2.9	ns
t _{RD8}	FO = 8 Routing Delay		2.3		2.6		2.9		3.4		4.8	ns
Logic Mo	odule Sequential Timing ^{3, 4}											
t _{SUD}	Flip-Flop (Latch) Data Input Set-Up	0.3		0.4		0.4		0.5		0.7		ns
t _{HD}	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.4		0.5		0.5		0.6		0.8		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	3.4		3.8		4.3		5.0		7.0		ns

			–3 S	peed	–2 Sp	beed	d –1 Speed		Std S	Speed	-F Speed		
Paramete	r / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PWL}	Minimum Pulse Width LOW	FO = 32 FO = 384	5.3 6.2		5.9 6.9		6.7 7.9		7.8 9.2		11.0 12.9		ns ns
t _{CKSW}	Maximum Skew	FO = 32 FO = 384		0.5 2.2		0.5 2.4		0.6 2.7		0.7 3.2		1.0 4.5	ns ns
t _{SUEXT}	Input Latch External Set-Up	FO = 32 FO = 384	0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		ns ns
t _{HEXT}	Input Latch External Hold	FO = 32 FO = 384	3.9 4.5		4.3 4.9		4.9 5.6		5.7 6.6		8.0 9.2		ns ns
t _P	Minimum Period	FO = 32 FO = 384	7.0 7.7		7.8 8.6		8.4 9.3		9.7 10.7		16.2 17.8		ns ns
f _{MAX}	Maximum Frequency	FO = 32 FO = 384		142 129		129 117		119 108		103 94		62 56	MHz MHz
TTL Outp	ut Module Timing ⁵												
t _{DLH}	Data-to-Pad HIGH			3.5		3.9		4.4		5.2		7.3	ns
t _{DHL}	Data-to-Pad LOW			4.1		4.6		5.2		6.1		8.6	ns
t _{ENZH}	Enable Pad Z to HIGH	4		3.8		4.2		4.8		5.6		7.8	ns
t _{ENZL}	Enable Pad Z to LOW	1		4.2		4.6		5.3		6.2		8.7	ns
t _{ENHZ}	Enable Pad HIGH to 2	Z		7.6		8.4		9.5		11.2		15.7	ns
t _{ENLZ}	Enable Pad LOW to Z	7		7.0		7.8		8.8		10.4		14.5	ns
t _{GLH}	G-to-Pad HIGH			4.8		5.3		6.0		7.2		10.0	ns
t _{GHL}	G-to-Pad LOW			4.8		5.3		6.0		7.2		10.0	ns
t _{LCO}	I/O Latch Clock-to-Ou (Pad-to-Pad), 64 Cloc	it k Loading		8.0		8.9		10.1		11.9		16.7	ns
t _{ACO}	Array Clock-to-Out (Pad-to-Pad), 64 Cloc	k Loading		11.3		12.5		14.2		16.7		23.3	ns
d_{TLH}	Capacitive Loading, L HIGH	OW to		0.04		0.04		0.05		0.06		0.08	ns/pF
d_{THL}	Capacitive Loading, H	IIGH to		0.05		0.05		0.06		0.07		0.10	ns/pF
CMOS OL	utput Module Timing ⁵												
t _{DLH}	Data-to-Pad HIGH			4.5		5.0		5.6		6.6		9.3	ns
t _{DHL}	Data-to-Pad LOW			3.4		3.8		4.3		5.1		7.1	ns
t _{ENZH}	Enable Pad Z to HIGH	4		3.8		4.2		4.8		5.6		7.8	ns
t _{ENZL}	Enable Pad Z to LOW	1		4.2		4.6		5.3		6.2		8.7	ns
t _{ENHZ}	Enable Pad HIGH to 2	Z		7.6		8.4		9.5		11.2		15.7	ns
t _{ENLZ}	Enable Pad LOW to Z	7		7.0		7.8		8.8		10.4		14.5	ns
t _{GLH}	G-to-Pad HIGH			7.1		7.9		8.9		10.5		14.7	ns
t _{GHL}	G-to-Pad LOW			7.1		7.9		8.9		10.5		14.7	ns
t _{LCO}	I/O Latch Clock-to-Ou (Pad-to-Pad), 64 Cloc	it k Loading		8.0		8.9		10.1		11.9		16.7	ns

Table 41 • A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

		–3 SI	beed	–2 S	peed	–1 Sp	beed	Std S	speed	–F S	beed	
Paramete	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Synchro	nous SRAM Operations (continue	ed)										
t _{ADH}	Address/Data Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RENSU}	Read Enable Set-Up	0.9		1.0		1.1		1.3		1.8		ns
t _{RENH}	Read Enable Hold	4.8		5.3		6.0		7.0		9.8		ns
t _{WENSU}	Write Enable Set-Up	3.8		4.2		4.8		5.6		7.8		ns
t _{WENH}	Write Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{BENS}	Block Enable Set-Up	3.9		4.3		4.9		5.7		8.0		ns
t _{BENH}	Block Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
Asynchr	onous SRAM Operations											
t _{RPD}	Asynchronous Access Time		11.3		12.6		14.3		16.8		23.5	ns
t _{RDADV}	Read Address Valid	12.3		13.7		15.5		18.2		25.5		ns
t _{ADSU}	Address/Data Set-Up Time	2.3		2.5		2.8		3.4		4.8		ns
t _{ADH}	Address/Data Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RENSUA}	Read Enable Set-Up to Address Valid	0.9		1.0		1.1		1.3		1.8		ns
t _{RENHA}	Read Enable Hold	4.8		5.3		6.0		7.0		9.8		ns
t _{WENSU}	Write Enable Set-Up	3.8		4.2		4.8		5.6		7.8		ns
t _{WENH}	Write Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{DOH}	Data Out Hold Time		1.8		2.0		2.1		2.5		3.5	ns
Input Mo	dule Propagation Delays											
t _{INPY}	Input Data Pad-to-Y		1.4		1.6		1.8		2.1		3.0	ns
t _{INGO}	Input Latch Gate-to-Output		2.0		2.2		2.5		2.9		4.1	ns
t _{INH}	Input Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Latch Set-Up	0.7		0.7		0.8		1.0		1.4		ns
t _{ILA}	Latch Active Pulse Width	6.5		7.3		8.2		9.7		13.5		ns

Table 45 •A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 3.0 V, T_J = 70°C)

Figure 39 • PL68

Table 48 • PL68

PL68		
Pin Number	A40MX02 Function	A40MX04 Function
1	I/O	I/O
2	I/O	I/O
3	I/O	I/O
4	VCC	VCC
5	I/O	I/O
6	I/O	I/O
7	I/O	I/O
8	I/O	I/O
9	I/O	I/O
10	I/O	I/O
11	I/O	I/O
12	I/O	I/O
13	I/O	I/O
14	GND	GND
15	GND	GND
16	I/O	I/O
17	I/O	I/O
18	I/O	I/O
19	I/O	I/O
20	I/O	I/O
21	VCC	VCC
22	I/O	I/O
23	I/O	I/O

Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
169	I/O	WD, I/O	WD, I/O
170	I/O	I/O	I/O
171	NC	I/O	QCLKD, I/O
172	I/O	I/O	I/O
173	I/O	I/O	I/O
174	I/O	I/O	I/O
175	I/O	I/O	I/O
176	I/O	WD, I/O	WD, I/O
177	I/O	WD, I/O	WD, I/O
178	PRA, I/O	PRA, I/O	PRA, I/O
179	I/O	I/O	I/O
180	CLKA, I/O	CLKA, I/O	CLKA, I/O
181	NC	I/O	I/O
182	NC	VCCI	VCCI
183	VCCA	VCCA	VCCA
184	GND	GND	GND
185	I/O	I/O	I/O
186	CLKB, I/O	CLKB, I/O	CLKB, I/O
187	I/O	I/O	I/O
188	PRB, I/O	PRB, I/O	PRB, I/O
189	I/O	I/O	I/O
190	I/O	WD, I/O	WD, I/O
191	I/O	WD, I/O	WD, I/O
192	I/O	I/O	I/O
193	NC	I/O	I/O
194	NC	WD, I/O	WD, I/O
195	NC	WD, I/O	WD, I/O
196	I/O	I/O	QCLKC, I/O
197	NC	I/O	I/O
198	I/O	I/O	I/O
199	I/O	I/O	I/O
200	I/O	I/O	I/O
201	NC	I/O	I/O
202	VCCI	VCCI	VCCI
203	I/O	WD, I/O	WD, I/O
204	I/O	WD, I/O	WD, I/O
205	I/O	I/O	I/O

Table 54 • PQ24	0
PQ240	
Pin Number	A42MX36 Function
200	I/O
201	I/O
202	I/O
203	I/O
204	I/O
205	I/O
206	VCCA
207	I/O
208	I/O
209	VCCA
210	VCCI
211	I/O
212	I/O
213	I/O
214	I/O
215	I/O
216	I/O
217	I/O
218	I/O
219	VCCA
220	I/O
221	I/O
222	I/O
223	I/O
224	I/O
225	I/O
226	I/O
227	VCCI
228	I/O
229	I/O
230	I/O
231	I/O
232	I/O
233	I/O
234	I/O
235	I/O
236	I/O

Table 57 • TQ176

TQ176			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
47	I/O	I/O	TDI, I/O
48	I/O	I/O	I/O
49	I/O	I/O	WD, I/O
50	I/O	I/O	WD, I/O
51	I/O	I/O	I/O
52	NC	VCCI	VCCI
53	I/O	I/O	I/O
54	NC	I/O	I/O
55	NC	I/O	WD, I/O
56	I/O	I/O	WD, I/O
57	NC	NC	I/O
58	I/O	I/O	I/O
59	I/O	I/O	WD, I/O
60	I/O	I/O	WD, I/O
61	NC	I/O	I/O
62	I/O	I/O	I/O
63	I/O	I/O	I/O
64	NC	I/O	I/O
65	I/O	I/O	I/O
66	NC	I/O	I/O
67	GND	GND	GND
68	VCCA	VCCA	VCCA
69	I/O	I/O	WD, I/O
70	I/O	I/O	WD, I/O
71	I/O	I/O	I/O
72	I/O	I/O	I/O
73	I/O	I/O	I/O
74	NC	I/O	I/O
75	I/O	I/O	I/O
76	I/O	I/O	I/O
77	NC	NC	WD, I/O
78	NC	I/O	WD, I/O
79	I/O	I/O	I/O
80	NC	I/O	I/O
81	I/O	I/O	I/O
82	NC	VCCI	VCCI
83	I/O	I/O	I/O

Table	57•	TQ176
	-	

TQ176			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
158	CLKB, I/O	CLKB, I/O	CLKB, I/O
159	I/O	I/O	I/O
160	PRB, I/O	PRB, I/O	PRB, I/O
161	NC	I/O	WD, I/O
162	I/O	I/O	WD, I/O
163	I/O	I/O	I/O
164	I/O	I/O	I/O
165	NC	NC	WD, I/O
166	NC	I/O	WD, I/O
167	I/O	I/O	I/O
168	NC	I/O	I/O
169	I/O	I/O	I/O
170	NC	VCCI	VCCI
171	I/O	I/O	WD, I/O
172	I/O	I/O	WD, I/O
173	NC	I/O	I/O
174	I/O	I/O	I/O
175	DCLK, I/O	DCLK, I/O	DCLK, I/O
176	I/O	I/O	I/O

Figure 49 • CQ208

CQ256				
Pin Number	A42MX36 Function			
59	I/O			
60	VCCA			
61	GND			
62	GND			
63	NC			
64	NC			
65	NC			
66	I/O			
67	SDO, TDO, I/O			
68	I/O			
69	WD, I/O			
70	WD, I/O			
71	I/O			
72	VCCI			
73	I/O			
74	I/O			
75	I/O			
76	WD, I/O			
77	GND			
78	WD, I/O			
79	I/O			
80	QCLKB, I/O			
81	I/O			
82	I/O			
83	I/O			
84	I/O			
85	I/O			
86	I/O			
87	WD, I/O			
88	WD, I/O			
89	I/O			
90	I/O			
91	I/O			
92	I/O			
93	I/O			
94	I/O			
95	VCCI			

Table 60 • BG	272
BG272	
Pin Number	A42MX36 Function
M10	GND
M11	GND
M12	GND
M17	I/O
M18	I/O
M19	I/O
M20	I/O
N1	I/O
N2	I/O
N3	I/O
N4	VCCI
N17	VCCI
N18	I/O
N19	I/O
N20	I/O
P1	I/O
P2	I/O
P3	I/O
P4	VCCA
P17	I/O
P18	I/O
P19	I/O
P20	I/O
R1	I/O
R2	I/O
R3	I/O
R4	VCCI
R17	VCCI
R18	I/O
R19	I/O
R20	I/O
T1	I/O
T2	I/O
T3	Ι/Ο
T4	I/O
T17	VCCA
T18	I/O

PG132	PG132				
Pin Number	A42MX09 Function				
B3	I/O				
A2	I/O				
C3	DCLK				
B5	GNDA				
E12	GNDA				
J2	GNDA				
M9	GNDA				
В9	GNDI				
C5	GNDI				
E11	GNDI				
F4	GNDI				
J3	GNDI				
J11	GNDI				
L5	GNDI				
L9	GNDI				
C9	GNDQ				
E3	GNDQ				
K12	GNDQ				
D7	VCCA				
G3	VCCA				
G10	VCCA				
L7	VCCA				
C7	VCCI				
G2	VCCI				
G11	VCCI				
K7	VCCI				