

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	83
Number of Gates	14000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a42mx09-2pq100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figures

Figure 1	Ordering Information
Figure 2	42MX C-Module Implementation
Figure 3	42MX C-Module Implementation
Figure 4	42MX S-Module Implementation
Figure 5	A42MX24 and A42MX36 D-Module Implementation
Figure 6	A42MX36 Dual-Port SRAM Block
Figure 7	MX Routing Structure
Figure 8	Clock Networks of 42MX Devices
Figure 9	Quadrant Clock Network of A42MX36 Devices
Figure 10	42MX I/O Module
Figure 11	PCI Output Structure of A42MX24 and A42MX36 Devices
Figure 12	Silicon Explorer II Setup with 40MX
Figure 13	Silicon Explorer II Setup with 42MX
Figure 14	42MX IEEE 1149.1 Boundary Scan Circuitry
Figure 15	Device Selection Wizard
Figure 16	Typical Output Drive Characteristics (Based Upon Measured Data)
Figure 17	40MX Timing Model*
Figure 18	42MX Timing Model
Figure 19	42MX Timing Model (Logic Functions Using Quadrant Clocks)
Figure 20	42MX Timing Model (SRAM Functions)
Figure 21	Output Buffer Delays
Figure 22	AC Test Loads
Figure 23	Input Buffer Delays
Figure 24	Module Delays
Figure 25	Flip-Flops and Latches 34
Figure 26	Input Buffer Latches 34
Figure 27	Output Buffer Latches 35
Figure 28	Decode Module Timing 35
Figure 29	SRAM Timing Characteristics 35
Figure 30	42MX SRAM Write Operation 36
Figure 31	42MX SRAM Synchronous Read Operation 36
Figure 32	42MX SRAM Asynchronous Read Operation—Type 1 (Read Address Controlled)
Figure 33	42MX SRAM Asynchronous Read Operation—Type 2 (Write Address Controlled)
Figure 34	42MX Junction Temperature and Voltage Derating Curves
i iguio o i	(Normalized to $T_{L} = 25^{\circ}C$ VCCA = 5.0 V) 38
Figure 35	40MX Junction Temperature and Voltage Derating Curves
i iguio oo	(Normalized to $T_{L} = 25^{\circ}C$, VCC = 5.0 V) 39
Figure 36	42MX Junction Temperature and Voltage Derating Curves
i iguio oo	(Normalized to $T_{L} = 25^{\circ}C$ VCCA = 3.3 V) 39
Figure 37	40MX Junction Temperature and Voltage Derating Curves
i iguio or	(Normalized to $T_{L} = 25^{\circ}C$ VCC = 3.3 V) 40
Figure 38	PI 44
Figure 39	PI 68 88
Figure 40	PI 84 90
Figure 41	PQ100 93
Figure 42	PO144 97
Figure 43	PQ160 102
Figure 44	PQ208 107
Figure 45	PQ240 113
Figure 46	VQ80 120
Figure 47	VQ100 123
Figure 18	ΤΟ176
Figure 49	CO208 131
Figure 50	CQ256
99.0000	

- The Transient Current, page 13 is new (SAR 36930).
- Package names were revised according to standards established in Package Mechanical Drawings (SAR 34774)

1.7 Revision 9.0

The following is a summary of the changes in revision 9.0 of this document

In Table 20, page 23, the limits in VI were changed from -0.5 to VCCI + 0.5 to -0.5 to VCCA + 0.5

In Table 22, page 25, V_{OH} was changed from 3.7 to 2.4 for the min in industrial and military. V_{IH} had V_{CCI} and that was changed to VCCA

1.8 Revision 6.0

The following is a summary of the changes in revision 6.0 of this document.

- The Ease of Integration, page 1 was updated
- The Temperature Grade Offerings, page 5 is new
- The Speed Grade Offerings, page 5 is new
- The General Description, page 6 was updated
- The MultiPlex I/O Modules, page 11 was updated
- The User Security, page 12 was updated
- Table 6, page 13 was updated
- The Power Dissipation, page 14 was updated.
- The Static Power Component, page 14 was updated
- The Equivalent Capacitance, page 15 was updated
- Figure 13, page 17 was updated
- Table 10, page 18 was updated.
- Figure 14, page 18 was updated.
- Table 11, page 19 was updated.

3.2.3.3 Antifuse Structures

An antifuse is a "normally open" structure. The use of antifuses to implement a programmable logic device results in highly testable structures as well as efficient programming algorithms. There are no pre-existing connections; temporary connections can be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed and individual circuit structures to be tested, which can be done before and after programming. For instance, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified.

Figure 7 • MX Routing Structure

3.2.4 Clock Networks

The 40MX devices have one global clock distribution network (CLK). A signal can be put on the CLK network by being routed through the CLKBUF buffer.

In 42MX devices, there are two low-skew, high-fanout clock distribution networks, referred to as CLKA and CLKB. Each network has a clock module (CLKMOD) that can select the source of the clock signal from any of the following (Figure 8, page 11):

- Externally from the CLKA pad, using CLKBUF buffer
- Externally from the CLKB pad, using CLKBUF buffer
- Internally from the CLKINTA input, using CLKINT buffer
- Internally from the CLKINTB input, using CLKINT buffer

The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel.

Clock input pads in both 40MX and 42MX devices can also be used as normal I/Os, bypassing the clock networks.

The A42MX36 device has four additional register control resources, called quadrant clock networks (Figure 9, page 11). Each quadrant clock provides a local, high-fanout resource to the contiguous logic modules within its quadrant of the device. Quadrant clock signals can originate from specific I/O pins or from the internal array and can be used as a secondary register clock, register clear, or output enable.

Silicon Sculptor programs devices independently to achieve the fastest programming times possible. After being programmed, each fuse is verified to insure that it has been programmed correctly. Furthermore, at the end of programming, there are integrity tests that are run to ensure no extra fuses have been programmed. Not only does it test fuses (both programmed and non-programmed), Silicon Sculptor also allows self-test to verify its own hardware extensively.

The procedure for programming an MX device using Silicon Sculptor is as follows:

- 1. Load the *.AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Microsemi offers device volume-programming services either through distribution partners or via In-House Programming from the factory.

For more details on programming MX devices, see the AC225: Programming Antifuse Devices application note and the Silicon Sculptor 3 Programmers User Guide.

3.3.4 Power Supply

MX devices are designed to operate in both 5.0V and 3.3V environments. In particular, 42MX devices can operate in mixed 5.0 V/3.3 V systems. The following table describes the voltage support of MX devices.

Device	VCC	VCCA	VCCI	Maximum Input Tolerance	Nominal Output Voltage
40MX	5.0 V	-	-	5.5 V	5.0 V
	3.3 V	-	-	3.6 V	3.3 V
42MX	-	5.0 V	5.0 V	5.5 V	5.0 V
	_	3.3 V	3.3 V	3.6 V	3.3 V
	_	5.0 V	3.3 V	5.5 V	3.3 V

Table 6 • Voltage Support of MX Devices

For A42MX24 and A42MX36 devices the VCCA supply has to be monotonic during power up in order for the POR to issue reset to the JTAG state machine correctly. For more information, see the AC291: 42MX Family Devices Power-Up Behavior.

3.3.5 Power-Up/Down in Mixed-Voltage Mode

When powering up 42MX in mixed voltage mode (VCCA = 5.0 V and VCCI = 3.3 V), VCCA must be greater than or equal to VCCI throughout the power-up sequence. If VCCI exceeds VCCA during power-up, one of two things will happen:

- The input protection diode on the I/Os will be forward biased
- The I/Os will be at logical High

In either case, ICC rises to high levels. For power-down, any sequence with VCCA and VCCI can be implemented.

3.3.6 Transient Current

Due to the simultaneous random logic switching activity during power-up, a transient current may appear on the core supply (VCC). Customers must use a regulator for the VCC supply that can source a minimum of 100 mA for transient current during power-up. Failure to provide enough power can prevent the system from powering up properly and result in functional failure. However, there are no reliability concerns, since transient current is distributed across the die instead of confined to a localized spot.

Since the transient current is not due to I/O switching, its value and duration are independent of the VCCI.

3.3.7 Low Power Mode

42MX devices have been designed with a Low Power Mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when exiting Low Power Mode. I/Os can be driven during LP mode, and clock pins should be driven HIGH or LOW and should not float to avoid drawing current. To exit LP mode, the LP pin must be pulled LOW for over 200 µs to allow for charge pumps to power up, and device initialization will begin.

3.4 **Power Dissipation**

The general power consumption of MX devices is made up of static and dynamic power and can be expressed with the following equation.

3.4.1 General Power Equation

P = [ICCstandby + ICCactive]*VCCI + IOL*VOL*N + IOH*(VCCI - VOH)*M

EQ 1

where:

- ICCstandby is the current flowing when no inputs or outputs are changing.
- ICCactive is the current flowing due to CMOS switching.
- IOL, IOH are TTL sink/source currents.
- VOL, VOH are TTL level output voltages.
- N equals the number of outputs driving TTL loads to VOL.
- M equals the number of outputs driving TTL loads to VOH.

Accurate values for N and M are difficult to determine because they depend on the family type, on design details, and on the system I/O. The power can be divided into two components: static and active.

3.4.2 Static Power Component

The static power due to standby current is typically a small component of the overall power consumption. Standby power is calculated for commercial, worst-case conditions. The static power dissipation by TTL loads depends on the number of outputs driving, and on the DC load current. For instance, a 32-bit bus sinking 4mA at 0.33V will generate 42mW with all outputs driving LOW, and 140mW with all outputs driving HIGH. The actual dissipation will average somewhere in between, as I/Os switch states with time.

3.4.3 Active Power Component

Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. Dynamic power consumption is frequency-dependent and is a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitances due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation.

The power dissipated by a CMOS circuit can be expressed by the equation:

$$Power(\mu W) = C_{EO}^* VCCA2^* F(1)$$

where:

C_{EQ} = Equivalent capacitance expressed in picofarads (pF)

EQ 2

3.9.1 Mixed 5.0V/3.3V Electrical Specifications

		Com	mercial	Com	mercial –F	Indu	strial	Milita		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
VOH ¹	IOH = -10 mA	2.4		2.4						V
	IOH = -4 mA					2.4		2.4		V
VOL ¹	IOL = 10 mA		0.5		0.5					V
	IOL = 6 mA						0.4		0.4	V
VIL		-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
VIH ²		2.0	VCCA + 0.3	2.0	VCCA + 0.3	2.0	VCCA + 0.3	2.0	VCCA + 0.3	V
IL	VIN = 0.5 V		-10		-10		-10		-10	μA
IH	VIN = 2.7 V		-10		-10		-10		-10	μA
Input Transition Time, T_R and T_F			500		500		500		500	ns
C _{IO} I/O Capacitance			10		10		10		10	pF
Standby Current,	A42MX09		5		25		25		25	mA
ICC ³	A42MX16		6		25		25		25	mA
	A42MX24, A42MX36		20		25		25		25	mA
Low Power Mode Standby Current			0.5		ICC – 5.0		ICC – 5.0		ICC – 5.0	mA

Table 22 • Mixed 5.0V/3.3V Electrical Specifications

IIO I/O source sink Can be derived from the *IBIS model* (http://www.microsemi.com/soc/techdocs/models/ibis.html) current

1. Only one output tested at a time. VCCI = min.

2. VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V

3. All outputs unloaded. All inputs = VCCI or GND

3.9.2 Output Drive Characteristics for 5.0 V PCI Signaling

MX PCI device I/O drivers were designed specifically for high-performance PCI systems. Figure 16, page 28 shows the typical output drive characteristics of the MX devices. MX output drivers are compliant with the PCI Local Bus Specification.

Table 23 • DC Specification (5.0 V PCI Signaling)¹

			PCI		MX		
Symbol	Parameter	Condition	Min.	Max.	Min.	Max.	Units
VCCI	Supply Voltage for I/Os		4.75	5.25	4.75	5.25 ²	V
VIH ³	Input High Voltage		2.0	VCC + 0.5	2.0	VCCI + 0.3	V
VIL	Input Low Voltage		-0.5	0.8	-0.3	0.8	V
IIH	Input High Leakage Current	VIN = 2.7 V		70	_	10	μA
IIL	Input Low Leakage Current	VIN=0.5 V		-70	_	-10	μA
VOH	Output High Voltage	IOUT = -2 mA IOUT = -6 mA	2.4		3.84		V
VOL	Output Low Voltage	IOUT = 3 mA, 6 mA		0.55	_	0.33	V

Figure 16 • Typical Output Drive Characteristics (Based Upon Measured Data)

3.9.4 Junction Temperature (T_J)

The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. The following equation can be used to calculate junction temperature.

Junction Temperature = $\Delta T + T_a(1)$

EQ 4

where:

- T_a = Ambient Temperature
- ΔT = Temperature gradient between junction (silicon) and ambient
- $\Delta T = \theta_{ia} * P(2)$
- P = Power
- θ_{ia} = Junction to ambient of package. θ_{ia} numbers are located in Table 27, page 29.

3.9.5 Package Thermal Characteristics

The device junction-to-case thermal characteristic is θ_{jc} , and the junction-to-ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates.

The maximum junction temperature is 150°C.

Maximum power dissipation for commercial- and industrial-grade devices is a function of θ_{ia} .

Table 33 • Timing Parameters for 33 MHz PCI

		PCI		A42N	IX24	A42N		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{SU(PTP)}	Input Set-Up Time to CLK—Point-to-Point	10, 12 ²	_	1.5	-	1.5	-	ns
t _H	Input Hold to CLK	0	_	0	_	0	_	ns

1. TOFF is system dependent. MX PCI devices have 7.4 ns turn-off time, reflection is typically an additional 10 ns.

2. REQ# and GNT# are point-to-point signals and have different output valid delay and input setup times than do bussed signals. GNT# has a setup of 10; REW# has a setup of 12.

3.11.6.1 Timing Characteristics

The following tables list the timing characteristics.

Table 34 •A40MX02 Timing Characteristics (Nominal 5.0 V Operation)
(Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C)

		-3 Sp	beed	–2 Sp	beed	–1 Sp	beed	Std S	peed	–F Sp	eed	
Parame	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic N	Iodule Propagation Delays											
t _{PD1}	Single Module		1.2		1.4		1.6		1.9		2.7	ns
t _{PD2}	Dual-Module Macros		2.7		3.1		3.5		4.1		5.7	ns
t _{CO}	Sequential Clock-to-Q		1.2		1.4		1.6		1.9		2.7	ns
t _{GO}	Latch G-to-Q		1.2		1.4		1.6		1.9		2.7	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q		1.2		1.4		1.6		1.9		2.7	ns
Logic N	Iodule Predicted Routing Del	ays ¹										
t _{RD1}	FO = 1 Routing Delay		1.3		1.5		1.7		2.0		2.8	ns
t _{RD2}	FO = 2 Routing Delay		1.8		2.1		2.4		2.8		3.9	ns
t _{RD3}	FO = 3 Routing Delay		2.3		2.7		3.0		3.6		5.0	ns
t _{RD4}	FO = 4 Routing Delay		2.9		3.3		3.7		4.4		6.1	ns
t _{RD8}	FO = 8 Routing Delay		4.9		5.7		6.5		7.6		10.6	ns
Logic N	Iodule Sequential Timing ²											
t _{SUD}	Flip-Flop (Latch) Data Input Set-Up	3.1		3.5		4.0		4.7		6.6		ns
t _{HD} ³	Flip-Flop (Latch) Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	3.1		3.5		4.0		4.7		6.6		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	3.3		3.8		4.3		5.0		7.0		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	3.3		3.8		4.3		5.0		7.0		ns
t _A	Flip-Flop Clock Input Period	4.8		5.6		6.3		7.5		10.4		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency (FO = 128)		181		168		154		134		80	MHz

		–3 Sp	beed	–2 Sj	beed	–1 Sp	beed	Std S	Speed	–F Sj	peed	
Parameter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.5		4.9		5.6		6.6		9.2		ns
t _A	Flip-Flop Clock Input Period	3.5		3.8		4.3		5.1		7.1		ns
t _{INH}	Input Buffer Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Set-Up	0.3		0.3		0.4		0.4		0.6		ns
t _{OUTH}	Output Buffer Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{OUTSU}	Output Buffer Latch Set-Up	0.3		0.3		0.4		0.4		0.6		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency	/	268		244		224		195		117	MHz

Table 38 • A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T_J = 70°C)

			–3 S	peed	–2 Sp	-2 Speed		beed	Std S	peed	-F Speed		
Parameter	/ Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input Mod	ule Predicted Routing	Delays ²											
t _{IRD1}	FO = 1 Routing Delay			1.8		2.0		2.3		2.7		3.8	ns
t _{IRD2}	FO = 2 Routing Delay			2.1		2.3		2.6		3.1		4.3	ns
t _{IRD3}	FO = 3 Routing Delay			2.3		2.5		2.9		3.4		4.8	ns
t _{IRD4}	FO = 4 Routing Delay			2.5		2.8		3.2		3.7		5.2	ns
t _{IRD8}	FO = 8 Routing Delay			3.4		3.8		4.3		5.1		7.1	ns
Global Clo	ock Network												
t _{СКН}	Input LOW to HIGH	FO = 32 FO = 486		2.6 2.9		2.9 3.2		3.3 3.6		3.9 4.3		5.4 5.9	ns ns
t _{CKL}	Input HIGH to LOW	FO = 32 FO = 486		3.7 4.3		4.1 4.7		4.6 5.4		5.4 6.3		7.6 8.8	ns ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 32 FO = 486	2.2 2.4		2.4 2.6		2.7 3.0		3.2 3.5		4.5 4.9		ns ns
t _{PWL}	Minimum Pulse Width LOW	FO = 32 FO = 486	2.2 2.4		2.4 2.6		2.7 3.0		3.2 3.5		4.5 4.9		ns ns
t _{CKSW}	Maximum Skew	FO = 32 FO = 486		0.5 0.5		0.6 0.6		0.7 0.7		0.8 0.8		1.1 1.1	ns ns
t _{SUEXT}	Input Latch External Set-Up	FO = 32 FO = 486	0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		0.0 0.0		ns ns
t _{HEXT}	Input Latch External Hold	FO = 32 FO = 486	2.8 3.3		3.1 3.7		3.5 4.2		4.1 4.9		5.7 6.9		ns ns
t _P	Minimum Period (1/f _{MAX})	FO = 32 FO = 486	4.7 5.1		5.2 5.7		5.7 6.2		6.5 7.1		10.9 11.9		ns ns

Table 42 • A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T_J = 70°C)

			–3 S	peed	–2 Sp	2 Speed –1 Speed		Std S	peed	–F Speed			
Paramete	r / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input Mod	lule Predicted Routing	Delays ²											
t _{IRD1}	FO = 1 Routing Delay			2.6		2.9		3.2		3.8		5.3	ns
t _{IRD2}	FO = 2 Routing Delay			2.9		3.2		3.6		4.3		6.0	ns
t _{IRD3}	FO = 3 Routing Delay			3.2		3.6		4.0		4.8		6.6	ns
t _{IRD4}	FO = 4 Routing Delay			3.5		3.9		4.4		5.2		7.3	ns
t _{IRD8}	FO = 8 Routing Delay			4.8		5.3		6.1		7.1		10.0	ns
Global Clo	ock Network												
t _{CKH}	Input LOW to HIGH	FO = 32		4.4		4.8		5.5		6.5		9.1	ns
		FO = 486		4.8		5.3		6.0		7.1		10.0	ns
t _{CKL}	Input HIGH to LOW	FO = 32		5.1		5.7		6.4		7.6		10.6	ns
		FO = 486		6.0		6.6		7.5		8.8		12.4	ns
t _{PWH}	Minimum Pulse	FO = 32	3.0		3.3		3.8		4.5		6.3		ns
	width HIGH	FO = 486	3.3		3.7		4.Z		4.9		6.9		ns
t _{PWL}	Minimum Pulse	FO = 32	3.0		3.4		3.8		4.5		6.3		ns
		FU = 400	3.3		3.7		4.2		4.9		0.9		115
t _{CKSW}	Maximum Skew	FO = 32 FO = 486		0.8 0.8		0.8 0.8		1.0 1.0		1.1 1.1		1.6 1.6	ns ns
tSUEXT	Input Latch External	FO = 32	0.0		0.0		0.0		0.0		0.0		ns
OOLAI	Set-Up	FO = 486	0.0		0.0		0.0		0.0		0.0		ns
TTL Outpu	ut Module Timing ⁵												
t _{DLH}	Data-to-Pad HIGH			3.4		3.8		4.3		5.0		7.1	ns
t _{DHL}	Data-to-Pad LOW			4.0		4.4		5.0		5.9		8.3	ns
t _{ENZH}	Enable Pad Z to HIGH			3.6		4.0		4.5		5.3		7.4	ns
t _{ENZL}	Enable Pad Z to LOW			3.9		4.4		5.0		5.8		8.2	ns
t _{ENHZ}	Enable Pad HIGH to Z			7.2		8.0		9.1		10.7		14.9	ns
t _{ENLZ}	Enable Pad LOW to Z			6.7		7.5		8.5		9.9		13.9	ns
t _{GLH}	G-to-Pad HIGH			4.8		5.3		6.0		7.2		10.0	ns
t _{GHL}	G-to-Pad LOW			4.8		5.3		6.0		7.2		10.0	ns
t _{LSU}	I/O Latch Output Set-U	р	0.7		0.7		0.8		1.0		1.4		ns

Table 43 •A42MX24 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 3.0 V, T_J = 70°C)

Input, output, tristate or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/Os pins are configured by the Designer software as shown in Table 46, page 84.

Device	Configuration
A40MX02, A40MX04	Pulled LOW
A42MX09, A42MX16	Pulled LOW
A42MX24, A42MX36	Tristated

Table 46 • Configuration of Unused I/Os

In all cases, it is recommended to tie all unused MX I/O pins to LOW on the board. This applies to all dual-purpose pins when configured as I/Os as well.

LP, Low Power Mode

Controls the low power mode of all 42MX devices. The device is placed in the low power mode by connecting the LP pin to logic HIGH. In low power mode, all I/Os are tristated, all input buffers are turned OFF, and the core of the device is turned OFF. To exit the low power mode, the LP pin must be set LOW. The device enters the low power mode 800 ns after the LP pin is driven to a logic HIGH. It will resume normal operation in 200 µs after the LP pin is driven to a logic LOW.

MODE, Mode

Controls the use of multifunction pins (DCLK, PRA, PRB, SDI, TDO). The MODE pin is held HIGH to provide verification capability. The MODE pin should be terminated to GND through a $10k\Omega$ resistor so that the MODE pin can be pulled HIGH when required.

NC, No Connection

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

PRA, I/O

PRB, I/OProbe A/B

The Probe pin is used to output data from any user-defined design node within the device. Each diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. The Probe pin is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

QCLKA/B/C/D, I/O Quadrant Clock

Quadrant clock inputs for A42MX36 devices. When not used as a register control signal, these pins can function as user I/Os.

SDI, I/OSerial Data Input

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

SDO, I/OSerial Data Output

Serial data output for diagnostic probe and device programming. SDO is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. SDO is available for 42MX devices only.

When Silicon Explorer II is being used, SDO will act as an output while the "checksum" command is run. It will return to user I/O when "checksum" is complete.

TCK, I/O Test Clock

Table 49 • PL84

PL84				
Pin Number	A40MX04 Function	A42MX09 Function	A42MX16 Function	A42MX24 Function
10	I/O	DCLK, I/O	DCLK, I/O	DCLK, I/O
11	I/O	I/O	I/O	I/O
12	NC	MODE	MODE	MODE
13	I/O	I/O	I/O	I/O
14	I/O	I/O	I/O	I/O
15	I/O	I/O	I/O	I/O
16	I/O	I/O	I/O	I/O
17	I/O	I/O	I/O	I/O
18	GND	I/O	I/O	I/O
19	GND	I/O	I/O	I/O
20	I/O	I/O	I/O	I/O
21	I/O	I/O	I/O	I/O
22	I/O	VCCA	VCCI	VCCI
23	I/O	VCCI	VCCA	VCCA
24	I/O	I/O	I/O	I/O
25	VCC	I/O	I/O	I/O
26	VCC	I/O	I/O	I/O
27	I/O	I/O	I/O	I/O
28	I/O	GND	GND	GND
29	I/O	I/O	I/O	I/O
30	I/O	I/O	I/O	I/O
31	I/O	I/O	I/O	I/O
32	I/O	I/O	I/O	I/O
33	VCC	I/O	I/O	I/O
34	I/O	I/O	I/O	TMS, I/O
35	I/O	I/O	I/O	TDI, I/O
36	I/O	I/O	I/O	WD, I/O
37	I/O	I/O	I/O	I/O
38	I/O	I/O	I/O	WD, I/O
39	I/O	I/O	I/O	WD, I/O
40	GND	I/O	I/O	I/O
41	I/O	I/O	I/O	I/O
42	I/O	I/O	I/O	I/O
43	I/O	VCCA	VCCA	VCCA
44	I/O	I/O	I/O	WD, I/O
45	I/O	I/O	I/O	WD, I/O
46	VCC	I/O	I/O	WD, I/O

PQ144	
Pin Number	A42MX09 Function
43	I/O
44	GNDQ
45	GNDI
46	NC
47	I/O
48	I/O
49	I/O
50	I/O
51	I/O
52	I/O
53	I/O
54	VCC
55	VCCI
56	NC
57	I/O
58	I/O
59	I/O
60	I/O
61	I/O
62	I/O
63	I/O
64	GND
65	GNDI
66	I/O
67	I/O
68	I/O
69	I/O
70	I/O
71	SDO
72	I/O
73	I/O
74	I/O
75	I/O
76	I/O
77	I/O
78	I/O
79	GNDQ

Table 51 • PQ144

Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
58	I/O	WD, I/O	WD, I/O
59	I/O	I/O	I/O
60	VCCI	VCCI	VCCI
61	NC	I/O	I/O
62	NC	I/O	I/O
63	I/O	I/O	I/O
64	I/O	I/O	I/O
65	I/O	I/O	QCLKA, I/O
66	I/O	WD, I/O	WD, I/O
67	NC	WD, I/O	WD, I/O
68	NC	I/O	I/O
69	I/O	I/O	I/O
70	I/O	WD, I/O	WD, I/O
71	I/O	WD, I/O	WD, I/O
72	I/O	I/O	I/O
73	I/O	I/O	I/O
74	I/O	I/O	I/O
75	I/O	I/O	I/O
76	I/O	I/O	I/O
77	I/O	I/O	I/O
78	GND	GND	GND
79	VCCA	VCCA	VCCA
80	NC	VCCI	VCCI
81	I/O	I/O	I/O
82	I/O	I/O	I/O
83	I/O	I/O	I/O
84	I/O	I/O	I/O
85	I/O	WD, I/O	WD, I/O
86	I/O	WD, I/O	WD, I/O
87	I/O	I/O	I/O
88	I/O	I/O	I/O
89	NC	I/O	I/O
90	NC	I/O	I/O
91	I/O	I/O	QCLKB, I/O
92	I/O	I/O	I/O
93	I/O	WD, I/O	WD, I/O
94	I/O	WD, I/O	WD, I/O

Table 54 •	PQ240	
		-

PQ240		
Pin Number	A42MX36 Function	
237	GND	
238	MODE	
239	VCCA	
240	GND	

Figure 46 • VQ80

Table 55 • VQ80

VQ80		
Pin Number	A40MX02 Function	A40MX04 Function
1	I/O	I/O
2	NC	I/O
3	NC	I/O
4	NC	I/O
5	I/O	I/O
6	I/O	I/O
7	GND	GND
8	I/O	I/O
9	I/O	I/O
10	I/O	I/O
11	I/O	I/O
12	I/O	I/O

VQ100		
Pin Number	A42MX09 Function	A42MX16 Function
21	I/O	I/O
22	I/O	I/O
23	I/O	I/O
24	I/O	I/O
25	I/O	I/O
26	I/O	I/O
27	I/O	I/O
28	I/O	I/O
29	I/O	I/O
30	I/O	I/O
31	I/O	I/O
32	GND	GND
33	I/O	I/O
34	I/O	I/O
35	I/O	I/O
36	I/O	I/O
37	I/O	I/O
38	VCCA	VCCA
39	I/O	I/O
10	I/O	I/O
11	I/O	I/O
12	I/O	I/O
13	I/O	I/O
14	GND	GND
45	I/O	I/O
16	I/O	I/O
47	I/O	I/O
48	I/O	I/O
49	I/O	I/O
50	SDO, I/O	SDO, I/O
51	I/O	I/O
52	I/O	I/O
53	I/O	I/O
54	I/O	I/O
55	GND	GND
56	I/O	I/O

VQ100		
Pin Number	A42MX09 Function	A42MX16 Function
93	I/O	I/O
94	GND	GND
95	I/O	I/O
6	I/O	I/O
7	I/O	I/O
8	I/O	I/O
9	I/O	I/O
00	DCLK, I/O	DCLK, I/O

Figure 48 • TQ176

Table 57 • TQ176

TQ176	1176		
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
1	GND	GND	GND
2	MODE	MODE	MODE
3	I/O	I/O	I/O
4	I/O	I/O	I/O
5	I/O	I/O	I/O
6	I/O	I/O	I/O
7	I/O	I/O	I/O
8	NC	NC	I/O
9	I/O	I/O	I/O

Table 57 • TQ176

TQ176				
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function	
84	I/O	I/O	WD, I/O	
85	I/O	I/O	WD, I/O	
86	NC	I/O	I/O	
87	SDO, I/O	SDO, I/O	SDO, TDO, I/O	
88	I/O	I/O	I/O	
89	GND	GND	GND	
90	I/O	I/O	I/O	
91	I/O	I/O	I/O	
92	I/O	I/O	I/O	
93	I/O	I/O	I/O	
94	I/O	I/O	I/O	
95	I/O	I/O	I/O	
96	NC	I/O	I/O	
97	NC	I/O	I/O	
98	I/O	I/O	I/O	
99	I/O	I/O	I/O	
100	I/O	I/O	I/O	
101	NC	NC	I/O	
102	I/O	I/O	I/O	
103	NC	I/O	I/O	
104	I/O	I/O	I/O	
105	I/O	I/O	I/O	
106	GND	GND	GND	
107	NC	I/O	I/O	
108	NC	I/O	TCK, I/O	
109	LP	LP	LP	
110	VCCA	VCCA	VCCA	
111	GND	GND	GND	
112	VCCI	VCCI	VCCI	
113	VCCA	VCCA	VCCA	
114	NC	I/O	I/O	
115	NC	I/O	I/O	
116	NC	VCCA	VCCA	
117	I/O	I/O	I/O	
118	I/O	I/O	I/O	
119	I/O	I/O	I/O	
120	I/O	I/O	I/O	

CQ256	
Pin Number	A42MX36 Function
207	I/O
208	I/O
209	QCLKC, I/O
210	I/O
211	WD, I/O
212	WD, I/O
213	I/O
214	I/O
215	WD, I/O
216	WD, I/O
217	I/O
218	PRB, I/O
219	I/O
220	CLKB, I/O
221	I/O
222	GND
223	GND
224	VCCA
225	VCCI
226	I/O
227	CLKA, I/O
228	I/O
229	PRA, I/O
230	I/O
231	I/O
232	WD, I/O
233	WD, I/O
234	I/O
235	I/O
236	I/O
237	I/O
238	I/O
239	I/O
240	QCLKD, I/O
241	I/O
242	WD, I/O
243	GND