

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	- ·
Number of Logic Elements/Cells	
Total RAM Bits	- ·
Number of I/O	72
Number of Gates	14000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a42mx09-3pl84

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 15.0

The following is a summary of the changes in revision 15.0 of this document.

- Table 15, page 21 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V
- Table 22, page 25 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V
- Table 23, page 25 is edited to add the footnote, VIH(Min) is 2.4V for A42MX36 family. This applies only to VCCI of 5V and is not applicable to VCCI of 3.3V

1.2 Revision 14.0

The following is a summary of the changes in revision 14.0 of this document.

- Added CQFP package information for A42MX16 device in Product Profile, page 1 and Ceramic Device Resources, page 4 (SAR 79522).
- Added Military (M) and MIL-STD-883 Class B (B) grades for CPGA 132 Package and added Commercial (C), Military (M), and MIL-STD-883 Class B (B) grades for CQFP 172 Package in Temperature Grade Offerings, page 5 (SAR 79519)
- Changed Silicon Sculptor II to Silicon Sculptor in Programming, page 12 (SAR 38754)
- Added Figure 53, page 158 CQ172 package (SAR 79522).

1.3 **Revision 13.0**

The following is a summary of the changes in revision 13.0 of this document.

- Added Figure 42, page 97 PQ144 Package for A42MX09 device (SAR 69776)
- Added Figure 52, page 153 PQ132 Package for A42MX09 device (SAR 69776)

1.4 **Revision 12.0**

The following is a summary of the changes in revision 12.0 of this document.

- Added information on power-up behavior for A42MX24 and A42MX36 devices to the Power Supply, page 13 (SAR 42096
- Corrected the inadvertent mistake in the naming of the PL68 pin assignment table (SARs 48999, 49793)

1.5 Revision 11.0

The following is a summary of the changes in revision 11.0 of this document.

- The FuseLock logo and accompanying text was removed from the User Security, page 12. This marking is no longer used on Microsemi devices (PCN 0915)
- The Development Tool Support, page 19 was updated (SAR 38512)

1.6 Revision 10.0

The following is a summary of the changes in revision 10.0 of this document.

- Ordering Information, page 3 was updated to include lead-free package ordering codes (SAR 21968)
- The User Security, page 12 was revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34673)

- The Transient Current, page 13 is new (SAR 36930).
- Package names were revised according to standards established in Package Mechanical Drawings (SAR 34774)

1.7 Revision 9.0

The following is a summary of the changes in revision 9.0 of this document

In Table 20, page 23, the limits in VI were changed from -0.5 to VCCI + 0.5 to -0.5 to VCCA + 0.5

In Table 22, page 25, V_{OH} was changed from 3.7 to 2.4 for the min in industrial and military. V_{IH} had V_{CCI} and that was changed to VCCA

1.8 Revision 6.0

The following is a summary of the changes in revision 6.0 of this document.

- The Ease of Integration, page 1 was updated
- The Temperature Grade Offerings, page 5 is new
- The Speed Grade Offerings, page 5 is new
- The General Description, page 6 was updated
- The MultiPlex I/O Modules, page 11 was updated
- The User Security, page 12 was updated
- Table 6, page 13 was updated
- The Power Dissipation, page 14 was updated.
- The Static Power Component, page 14 was updated
- The Equivalent Capacitance, page 15 was updated
- Figure 13, page 17 was updated
- Table 10, page 18 was updated.
- Figure 14, page 18 was updated.
- Table 11, page 19 was updated.

2.4 Plastic Device Resources

Table 2 • Plastic Device Resources

	User I/	Os										
Device	PLCC 44-Pin		PLCC 84-Pin	PQFP 100-Pin	PQFP 144- Pin	PQFP 160-Pin	PQFP 208- Pin	PQFP 240-Pin	VQFP 80-Pin	VQFP 100- Pin	TQFP 176- Pin	PBGA 272- Pin
A40MX02	34	57	_	57	_	_	-	_	57	-	_	_
A40MX04	34	57	69	69	_	-	-	_	69	_	_	-
A42MX09	-	-	72	83	95	101	-	_	-	83	104	-
A42MX16	-	-	72	83	-	125	140	_	-	83	140	_
A42MX24	-	-	72	_	_	125	176	-	-	-	150	_
A42MX36	_	_	_	_	_	_	176	202	_	_	_	202

Note: Package Definitions: PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack, PBGA = Plastic Ball Grid Array

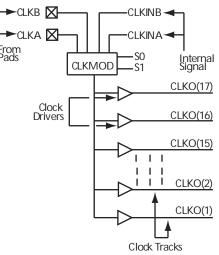
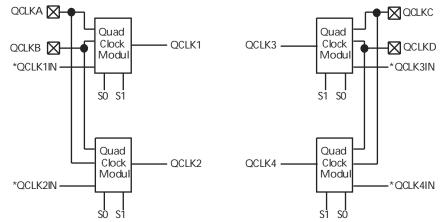

2.5 Ceramic Device Resources

Table 3 • Ceramic Device Resources


	User I/Os									
Device	CPGA 132-Pin	CQFP 172-Pin	CQFP 208-Pin	CQFP 256-Pin						
A42MX09	95									
A42MX16		131								
A42MX36			176	202						

Note: Package Definitions: CQFP = Ceramic Quad Flat Pack

Figure 8 • Clock Networks of 42MX Devices

Figure 9 • Quadrant Clock Network of A42MX36 Devices

Note: *QCLK1IN, QCLK2IN, QCLK3IN, and QCLK4IN are internally-generated signals.

3.2.5 MultiPlex I/O Modules

42MX devices feature Multiplex I/Os and support 5.0 V, 3.3 V, and mixed 3.3 V/5.0 V operations.

The MultiPlex I/O modules provide the interface between the device pins and the logic array. Figure 10, page 12 is a block diagram of the 42MX I/O module. A variety of user functions, determined by a library macro selection, can be implemented in the module. (See the *Antifuse Macro Library Guide* for more information.) All 42MX I/O modules contain tristate buffers, with input and output latches that can be configured for input, output, or bidirectional operation.

All 42MX devices contain flexible I/O structures, where each output pin has a dedicated output-enable control (Figure 10, page 12). The I/O module can be used to latch input or output data, or both, providing fast set-up time. In addition, the Designer software tools can build a D-type flip-flop using a C-module combined with an I/O module to register input and output signals. See the *Antifuse Macro Library Guide* for more details.

A42MX24 and A42MX36 devices also offer selectable PCI output drives, enabling 100% compliance with version 2.1 of the PCI specification. For low-power systems, all inputs and outputs are turned off to reduce current consumption to below 500 μ A.

To achieve 5.0 V or 3.3 V PCI-compliant output drives on A42MX24 and A42MX36 devices, a chip-wide PCI fuse is programmed via the Device Selection Wizard in the Designer software (Figure 11, page 12). When the PCI fuse is not programmed, the output drive is standard.

reliability. Devices should not be operated outside the recommended operating conditions.

 Table 21 •
 Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature Range*	0 to +70	-40 to +85	-55 to +125	°C
VCCA	4.75 to 5.25	4.5 to 5.5	4.5 to 5.5	V
VCCI	3.14 to 3.47	3.0 to 3.6	3.0 to 3.6	V

Note: *Ambient temperature (T_A) is used for commercial and industrial grades; case temperature (T_C) is used for military grades.

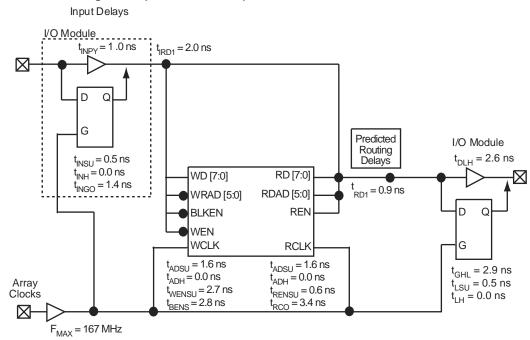
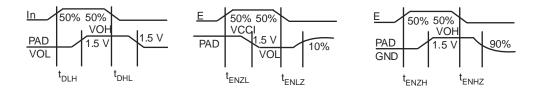
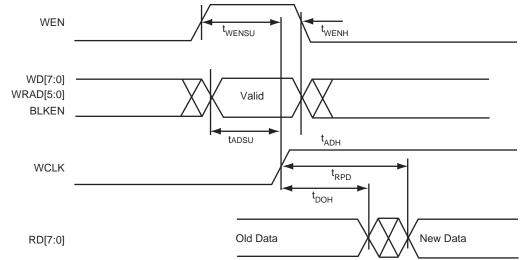


Figure 20 • 42MX Timing Model (SRAM Functions)


Note: Values are shown for A42MX36 –3 at 5.0 V worst-case commercial conditions.


3.10.1 Parameter Measurement

The following figures show parameter measurement details.

Figure 21 • Output Buffer Delays

Figure 33 • 42MX SRAM Asynchronous Read Operation—Type 2 (Write Address Controlled)

3.10.7 Predictable Performance: Tight Delay Distributions

Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases.

From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer routing tracks.

The MX FPGAs deliver a tight fanout delay distribution, which is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path.

Microsemi's patented antifuse offers a very low resistive/capacitive interconnect. The antifuses, fabricated in 0.45 μ m lithography, offer nominal levels of 100 Ω resistance and 7.0 fF capacitance per antifuse.

MX fanout distribution is also tight due to the low number of antifuses required for each interconnect path. The proprietary architecture limits the number of antifuses per path to a maximum of four, with 90 percent of interconnects using only two antifuses.

3.11 Timing Characteristics

Device timing characteristics fall into three categories: family-dependent, device-dependent, and designdependent. The input and output buffer characteristics are common to all MX devices. Internal routing delays are device-dependent; actual delays are not determined until after place-and-route of the user's design is complete. Delay values may then be determined by using the Designer software utility or by performing simulation with post-layout delays.

3.11.1 Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment in Microsemi's Designer software prior to placement and routing. Up to 6% of the nets in a design may be designated as critical.

3.11.2 Long Tracks

Some nets in the design use long tracks, which are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections, which increase capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks add

	-3 Speed	-2 Speed	-1 Speed	Std Speed	-F Speed	
Parameter / Description		Min. Max.	Min. Max.	Min. Max.	Min. Max.	Units
tput Module Timing ⁴						
Data-to-Pad HIGH	2.5	2.8	3.2	3.7	5.2	ns
Data-to-Pad LOW	3.0	3.3	3.7	4.4	6.1	ns
Enable Pad Z to HIGH	2.7	3.0	3.4	4.0	5.6	ns
Enable Pad Z to LOW	3.0	3.3	3.8	4.4	6.2	ns
Enable Pad HIGH to Z	5.4	6.0	6.8	8.0	11.2	ns
Enable Pad LOW to Z	5.0	5.6	6.3	7.4	10.4	ns
G-to-Pad HIGH	2.9	3.2	3.6	4.3	6.0	ns
G-to-Pad LOW	2.9	3.2	3.6	4.3	6.0	ns
I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading	5.7	6.3	7.1	8.4	11.9	ns
Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading	8.0	8.9	10.1	11.9	16.7	ns
Capacitive Loading, LOW to HIGH	0.03	0.03	0.03	0.04	0.06	ns/pF
Capacitive Loading, HIGH to LOW	0.04	0.04	0.04	0.05	0.07	ns/pF
	tput Module Timing ⁴ Data-to-Pad HIGH Data-to-Pad LOW Enable Pad Z to HIGH Enable Pad Z to LOW Enable Pad HIGH to Z Enable Pad LOW to Z G-to-Pad HIGH G-to-Pad LOW I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading Capacitive Loading, LOW to HIGH	Iter / DescriptionMin.Max.tput Module Timing42.5Data-to-Pad HIGH2.5Data-to-Pad LOW3.0Enable Pad Z to HIGH2.7Enable Pad Z to LOW3.0Enable Pad Z to LOW3.0Enable Pad A HIGH to Z5.4Enable Pad LOW to Z5.0G-to-Pad HIGH2.9G-to-Pad LOW2.9I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading5.7Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading8.0Capacitive Loading, LOW to HIGH0.03	Iter / DescriptionMin.Max.Min.Max.tput Module Timing42.52.8Data-to-Pad HIGH2.52.8Data-to-Pad LOW3.03.3Enable Pad Z to HIGH2.73.0Enable Pad Z to LOW3.03.3Enable Pad Z to LOW5.46.0Enable Pad HIGH to Z5.46.0Enable Pad LOW to Z5.05.6G-to-Pad HIGH2.93.2I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading5.76.3Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading8.08.9Capacitive Loading, LOW to HIGH0.030.03	Image: Marce of Description Min. Max. Min. Max. Min. Max. tput Module Timing ⁴ 2.5 2.8 3.2 Data-to-Pad HIGH 2.5 2.8 3.2 Data-to-Pad LOW 3.0 3.3 3.7 Enable Pad Z to HIGH 2.7 3.0 3.4 Enable Pad Z to LOW 3.0 3.3 3.8 Enable Pad HIGH to Z 5.4 6.0 6.8 Enable Pad HIGH to Z 5.0 5.6 6.3 G-to-Pad HIGH 2.9 3.2 3.6 G-to-Pad HIGH 2.9 3.2 3.6 I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading 5.7 6.3 7.1 Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading 8.0 8.9 10.1 Capacitive Loading, LOW to HIGH 0.03 0.03 0.03	Image: Marce / Description Min. Max. Min. Max. <th< td=""><td>Min. Max. Min. Max. <th< td=""></th<></td></th<>	Min. Max. Min. Max. <th< td=""></th<>

Table 40 •A42MX16 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

		–3 S	peed	–2 Sp	beed	–1 S	peed	Std S	peed	–F S	peed	
Paramete	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mo	odule Sequential Timing ^{3, 4}											
t _{CO}	Flip-Flop Clock-to-Output		2.1		2.0		2.3		2.7		3.7	ns
t _{GO}	Latch Gate-to-Output		3.4		1.9		2.1		2.5		3.4	ns
t _{SUD}	Flip-Flop (Latch) Set-Up Time	0.4		0.5		0.6		0.7		0.9		ns
t _{HD}	Flip-Flop (Latch) Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RO}	Flip-Flop (Latch) Reset-to-Output		2.0		2.2		2.5		2.9		4.1	ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.6		0.6		0.7		0.8		1.2		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	4.6		5.2		5.8		6.9		9.6		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	6.1		6.8		7.7		9.0		12.6		ns
Input Mo	dule Propagation Delays											
t _{INPY}	Input Data Pad-to-Y		1.4		1.6		1.8		2.2		3.0	ns
t _{INGO}	Input Latch Gate-to-Output		1.8		1.9		2.2		2.6		3.6	ns
t _{INH}	Input Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Latch Set-Up	0.7		0.7		0.8		1.0		1.4		ns
t _{ILA}	Latch Active Pulse Width	6.5		7.3		8.2		9.7		13.5		ns

Table 43 •A42MX24 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 3.0 V, T_J = 70°C)

		–3 S	peed	–2 S	beed	–1 Sp	beed	Std S	peed	–F Sp	beed	
Paramet	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic M	odule Combinatorial Functions ¹											
t _{PD}	Internal Array Module Delay		1.3		1.5		1.7		2.0		2.7	ns
t _{PDD}	Internal Decode Module Delay		1.6		1.8		2.0		2.4		3.3	ns
Logic M	odule Predicted Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.2		1.4		2.0	ns
t _{RD2}	FO = 2 Routing Delay		1.3		1.4		1.6		1.9		2.7	ns
t _{RD3}	FO =3 Routing Delay		1.6		1.8		2.0		2.4		3.4	ns
t _{RD4}	FO = 4 Routing Delay		2.0		2.2		2.5		2.9		4.1	ns
t _{RD5}	FO = 8 Routing Delay		3.3		3.7		4.2		4.9		6.9	ns
t _{RDD}	Decode-to-Output Routing Delay		0.3		0.4		0.4		0.5		0.7	ns
Logic M	odule Sequential Timing ^{3, 4}											
t _{CO}	Flip-Flop Clock-to-Output		1.3		1.4		1.6		1.9		2.7	ns
t _{GO}	Latch Gate-to-Output		1.3		1.4		1.6		1.9		2.7	ns
t _{SUD}	Flip-Flop (Latch) Set-Up Time	0.3		0.3		0.4		0.5		0.7		ns
t _{HD}	Flip-Flop (Latch) Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RO}	Flip-Flop (Latch) Reset-to-Output		1.6		1.7		2.0		2.3		3.2	ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	3.3		3.7		4.2		4.9		6.9		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.4		4.8		5.5		6.4		9.0		ns
Synchro	nous SRAM Operations											
t _{RC}	Read Cycle Time	6.8		7.5		8.5		10.0		14.0		ns
t _{WC}	Write Cycle Time	6.8		7.5		8.5		10.0		14.0		ns
t _{RCKHL}	Clock HIGH/LOW Time	3.4		3.8		4.3		5.0		7.0		ns
t _{RCO}	Data Valid After Clock HIGH/LOW		3.4		3.8		4.3		5.0		7.0	ns
t _{ADSU}	Address/Data Set-Up Time	1.6		1.8		2.0		2.4		3.4		ns
Synchro	nous SRAM Operations (continu	ied)										
t _{ADH}	Address/Data Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RENSU}	Read Enable Set-Up	0.6		0.7		0.8		0.9		1.3		ns
t _{RENH}	Read Enable Hold	3.4		3.8		4.3		5.0		7.0		ns
t _{WENSU}	Write Enable Set-Up	2.7		3.0		3.4		4.0		5.6		ns
t _{WENH}	Write Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
	Block Enable Set-Up	2.8		3.1		3.5		4.1		5.7		ns
t _{BENS}	Diotit Litable Oct Op											

Table 44 •A42MX36 Timing Characteristics (Nominal 5.0 V Operation)(Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

			–3 S	peed	-2 Speed		-1 Speed		Std Speed		–F Speed		
Paramet	er / Description		Min.	Max.	Units								
Asynchr	onous SRAM Operat	ions											
t _{RPD}	Asynchronous Acces	s Time		8.1		9.0		10.2		12.0		16.8	ns
t _{RDADV}	Read Address Valid		8.8		9.8		11.1		13.0		18.2		ns
t _{ADSU}	Address/Data Set-Up	Time	1.6		1.8		2.0		2.4		3.4		ns
t _{ADH}	Address/Data Hold T	ime	0.0		0.0		0.0		0.0		0.0		ns
t _{RENSUA}	Read Enable Set-Up Valid	to Address	0.6		0.7		0.8		0.9		1.3		ns
t _{RENHA}	Read Enable Hold		3.4		3.8		4.3		5.0		7.0		ns
t _{WENSU}	Write Enable Set-Up		2.7		3.0		3.4		4.0		5.6		ns
t _{WENH}	Write Enable Hold		0.0		0.0		0.0		0.0		0.0		ns
t _{DOH}	Data Out Hold Time			1.2		1.3		1.5		1.8		2.5	ns
Input Mo	dule Propagation De	lays											
t _{INPY}	Input Data Pad-to-Y			1.0		1.1		1.3		1.5		2.1	ns
t _{INGO}	Input Latch Gate-to-C	Dutput		1.4		1.6		1.8		2.1		2.9	ns
t _{INH}	Input Latch Hold		0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Latch Set-Up		0.5		0.5		0.6		0.7		1.0		ns
t _{ILA}	Latch Active Pulse W	/idth	4.7		5.2		5.9		6.9		9.7		ns
Input Mo	dule Predicted Routi	ing Delays ²											
t _{IRD1}	FO = 1 Routing Delay			2.0		2.2		2.5		2.9		4.1	ns
t _{IRD2}	FO = 2 Routing Delay			2.3		2.6		2.9		3.4		4.8	ns
t _{IRD3}	FO = 3 Routing Delay			2.6		2.9		3.3		3.9		5.5	ns
t _{IRD4}	FO = 4 Routing Delay			3.0		3.3		3.8		4.4		6.2	ns
t _{IRD8}	FO = 8 Routing Delay			4.3		4.8		5.5		6.4		9.0	ns
Global C	lock Network												
t _{СКН}	Input LOW to HIGH	FO = 32 FO = 635		2.7 3.0		3.0 3.3		3.4 3.8		4.0 4.4		5.6 6.2	ns ns
t _{CKL}	Input HIGH to LOW	FO = 32 FO = 635		3.8 4.9		4.2 5.4		4.8 6.1		5.6 7.2		7.8 10.1	ns ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 32 FO = 635	1.8 2.0		2.0 2.2		2.2 2.5		2.6 2.9		3.6 4.1		ns ns
t _{PWL}	Minimum Pulse Width LOW	FO = 32 FO = 635	1.8 2.0		2.0 2.2		2.2 2.5		2.6 2.9		3.6 4.1		ns ns
t _{CKSW}	Maximum Skew	FO = 32 FO = 635		0.8 0.8		0.8 0.8		0.9 0.9		1.0 1.0		1.4 1.4	ns ns

Table 44 •A42MX36 Timing Characteristics (Nominal 5.0 V Operation)(Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

Input, output, tristate or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/Os pins are configured by the Designer software as shown in Table 46, page 84.

Device	Configuration
A40MX02, A40MX04	Pulled LOW
A42MX09, A42MX16	Pulled LOW
A42MX24, A42MX36	Tristated

Table 46 • Configuration of Unused I/Os

In all cases, it is recommended to tie all unused MX I/O pins to LOW on the board. This applies to all dual-purpose pins when configured as I/Os as well.

LP, Low Power Mode

Controls the low power mode of all 42MX devices. The device is placed in the low power mode by connecting the LP pin to logic HIGH. In low power mode, all I/Os are tristated, all input buffers are turned OFF, and the core of the device is turned OFF. To exit the low power mode, the LP pin must be set LOW. The device enters the low power mode 800 ns after the LP pin is driven to a logic HIGH. It will resume normal operation in 200 µs after the LP pin is driven to a logic LOW.

MODE, Mode

Controls the use of multifunction pins (DCLK, PRA, PRB, SDI, TDO). The MODE pin is held HIGH to provide verification capability. The MODE pin should be terminated to GND through a $10k\Omega$ resistor so that the MODE pin can be pulled HIGH when required.

NC, No Connection

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

PRA, I/O

PRB, I/OProbe A/B

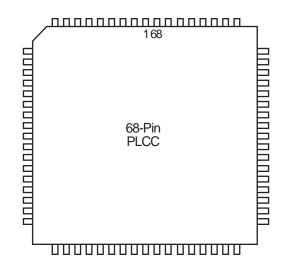
The Probe pin is used to output data from any user-defined design node within the device. Each diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. The Probe pin is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

QCLKA/B/C/D, I/O Quadrant Clock

Quadrant clock inputs for A42MX36 devices. When not used as a register control signal, these pins can function as user I/Os.

SDI, I/OSerial Data Input

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.


SDO, I/OSerial Data Output

Serial data output for diagnostic probe and device programming. SDO is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. SDO is available for 42MX devices only.

When Silicon Explorer II is being used, SDO will act as an output while the "checksum" command is run. It will return to user I/O when "checksum" is complete.

TCK, I/O Test Clock

Figure 39 • PL68

Table 48 • PL68

Inction

Table 49 • PL84

PL84				
Pin Number	A40MX04 Function	A42MX09 Function	A42MX16 Function	A42MX24 Function
10	I/O	DCLK, I/O	DCLK, I/O	DCLK, I/O
11	I/O	I/O	I/O	I/O
12	NC	MODE	MODE	MODE
13	I/O	I/O	I/O	I/O
14	I/O	I/O	I/O	I/O
15	I/O	I/O	I/O	I/O
16	I/O	I/O	I/O	I/O
17	I/O	I/O	I/O	I/O
18	GND	I/O	I/O	I/O
19	GND	I/O	I/O	I/O
20	I/O	I/O	I/O	I/O
21	I/O	I/O	I/O	I/O
22	I/O	VCCA	VCCI	VCCI
23	I/O	VCCI	VCCA	VCCA
24	I/O	I/O	I/O	I/O
25	VCC	I/O	I/O	I/O
26	VCC	I/O	I/O	I/O
27	I/O	I/O	I/O	I/O
28	I/O	GND	GND	GND
29	I/O	I/O	I/O	I/O
30	I/O	I/O	I/O	I/O
31	I/O	I/O	I/O	I/O
32	I/O	I/O	I/O	I/O
33	VCC	I/O	I/O	I/O
34	I/O	I/O	I/O	TMS, I/O
35	I/O	I/O	I/O	TDI, I/O
36	I/O	I/O	I/O	WD, I/O
37	I/O	I/O	I/O	I/O
38	I/O	I/O	I/O	WD, I/O
39	I/O	I/O	I/O	WD, I/O
40	GND	I/O	I/O	I/O
41	I/O	I/O	I/O	I/O
42	I/O	I/O	I/O	I/O
43	I/O	VCCA	VCCA	VCCA
44	I/O	I/O	I/O	WD, I/O
45	I/O	I/O	I/O	WD, I/O
46	VCC	I/O	I/O	WD, I/O

PQ144		
Pin Number	A42MX09 Function	
80	GNDI	
81	NC	
82	I/O	
83	I/O	
84	I/O	
85	I/O	
86	I/O	
87	I/O	
88	VKS	
89	VPP	
90	VCC	
91	VCCI	
92	NC	
93	VSV	
94	I/O	
95	I/O	
96	I/O	
97	I/O	
98	I/O	
99	I/O	
100	GND	
101	GNDI	
102	NC	
103	I/O	
104	I/O	
105	I/O	
106	I/O	
107	I/O	
108	I/O	
109	I/O	
110	SDI	
111	I/O	
112	I/O	
113	I/O	
114	I/O	
115	I/O	
116	GNDQ	

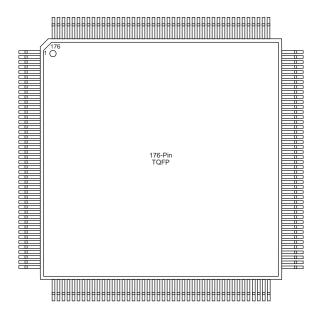

Table 51 • PQ144

Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
21	I/O	I/O	I/O
22	GND	GND	GND
23	I/O	I/O	I/O
24	I/O	I/O	I/O
25	I/O	I/O	I/O
26	I/O	I/O	I/O
27	GND	GND	GND
28	VCCI	VCCI	VCCI
29	VCCA	VCCA	VCCA
30	I/O	I/O	I/O
31	I/O	I/O	I/O
32	VCCA	VCCA	VCCA
33	I/O	I/O	I/O
34	I/O	I/O	I/O
35	I/O	I/O	I/O
36	I/O	I/O	I/O
37	I/O	I/O	I/O
38	I/O	I/O	I/O
39	I/O	I/O	I/O
40	I/O	I/O	I/O
41	NC	I/O	I/O
42	NC	I/O	I/O
43	NC	I/O	I/O
44	I/O	I/O	I/O
45	I/O	I/O	I/O
46	I/O	I/O	I/O
47	I/O	I/O	I/O
48	I/O	I/O	I/O
49	I/O	I/O	I/O
50	NC	I/O	I/O
51	NC	I/O	I/O
52	GND	GND	GND
53	GND	GND	GND
54	I/O	TMS, I/O	TMS, I/O
55	I/O	TDI, I/O	TDI, I/O
56	I/O	I/O	I/O
57	I/O	WD, I/O	WD, I/O

VQ100				
Pin Number	A42MX09 Function	A42MX16 Function		
93	I/O	I/O		
94	GND	GND		
5	I/O	I/O		
96	I/O	I/O		
)7	I/O	I/O		
98	I/O	I/O		
99	I/O	I/O		
100	DCLK, I/O	DCLK, I/O		

Figure 48 • TQ176

Table 57 • TQ176

TQ176			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
1	GND	GND	GND
2	MODE	MODE	MODE
3	I/O	I/O	I/O
4	I/O	I/O	I/O
5	I/O	I/O	I/O
6	I/O	I/O	I/O
7	I/O	I/O	I/O
8	NC	NC	I/O
9	I/O	I/O	I/O

CQ256	
Pin Number	A42MX36 Function
59	I/O
60	VCCA
61	GND
62	GND
63	NC
64	NC
65	NC
66	I/O
67	SDO, TDO, I/O
68	I/O
69	WD, I/O
70	WD, I/O
71	I/O
72	VCCI
73	I/O
74	I/O
75	I/O
76	WD, I/O
77	GND
78	WD, I/O
79	I/O
80	QCLKB, I/O
81	I/O
82	I/O
83	I/O
84	I/O
85	I/O
86	I/O
87	WD, I/O
88	WD, I/O
89	I/O
90	I/O
91	I/O
92	I/O
93	I/O
94	I/O
95	VCCI

PG132		
Pin Number	A42MX09 Function	
B3	I/O	
A2	I/O	
23	DCLK	
35	GNDA	
E12	GNDA	
J2	GNDA	
M9	GNDA	
B9	GNDI	
C5	GNDI	
Ξ11	GNDI	
4	GNDI	
J3	GNDI	
11	GNDI	
_5	GNDI	
_9	GNDI	
C9	GNDQ	
Ξ3	GNDQ	
K12	GNDQ	
77	VCCA	
G3	VCCA	
G10	VCCA	
L7	VCCA	
C7	VCCI	
G2	VCCI	
G11	VCCI	
<7	VCCI	

21	I/O
22	GND
23	VCCI
24	VSV
25	I/O
26	I/O
27	VCC
28	I/O
29	I/O
30	I/O
31	I/O
32	GND
33	I/O
34	I/O
35	I/O
36	I/O
37	GND
38	I/O
39	I/O
40	I/O
41	I/O
42	I/O
43	I/O
44	BININ
45	BINOUT
46	I/O
47	I/O
48	I/O
49	I/O
50	VCCI
51	I/O
52	I/O
53	I/O
54	I/O
55	GND
56	I/O
57	I/O
58	I/O