

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	·
Total RAM Bits	-
Number of I/O	72
Number of Gates	14000
Voltage - Supply	3V ~ 3.6V, 4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a42mx09-3plg84i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figures

Figure 1	Ordering Information
Figure 2	42MX C-Module Implementation
Figure 3	42MX C-Module Implementation
Figure 4	42MX S-Module Implementation
Figure 5	A42MX24 and A42MX36 D-Module Implementation
Figure 6	A42MX36 Dual-Port SRAM Block
Figure 7	MX Routing Structure
Figure 8	Clock Networks of 42MX Devices
Figure 9	Quadrant Clock Network of A42MX36 Devices
Figure 10	42MX I/O Module
Figure 11	PCI Output Structure of A42MX24 and A42MX36 Devices
Figure 12	Silicon Explorer II Setup with 40MX
Figure 13	Silicon Explorer II Setup with 42MX
Figure 14	42MX IEEE 1149.1 Boundary Scan Circuitry
Figure 15	Device Selection Wizard
Figure 16	Typical Output Drive Characteristics (Based Upon Measured Data)
Figure 17	40MX Timing Model*
Figure 18	42MX Timing Model
Figure 19	42MX Timing Model (Logic Functions Using Quadrant Clocks)
Figure 20	42MX Timing Model (SRAM Functions)
Figure 21	Output Buffer Delays
Figure 22	AC Test Loads
Figure 23	Input Buffer Delays
Figure 24	Module Delays
Figure 25	Flip-Flops and Latches 34
Figure 26	Input Buffer Latches 34
Figure 27	Output Buffer Latches 35
Figure 28	Decode Module Timing 35
Figure 29	SRAM Timing Characteristics 35
Figure 30	42MX SRAM Write Operation 36
Figure 31	42MX SRAM Synchronous Read Operation 36
Figure 32	42MX SRAM Asynchronous Read Operation—Type 1 (Read Address Controlled)
Figure 33	42MX SRAM Asynchronous Read Operation—Type 2 (Write Address Controlled)
Figure 34	42MX Junction Temperature and Voltage Derating Curves
i iguio o i	(Normalized to $T_{L} = 25^{\circ}C$ VCCA = 5.0 V) 38
Figure 35	40MX Junction Temperature and Voltage Derating Curves
i iguio oo	(Normalized to $T_{L} = 25^{\circ}C$, VCC = 5.0 V) 39
Figure 36	42MX Junction Temperature and Voltage Derating Curves
i iguio oo	(Normalized to $T_{L} = 25^{\circ}C$ VCCA = 3.3 V) 39
Figure 37	40MX Junction Temperature and Voltage Derating Curves
i iguio or	(Normalized to $T_{L} = 25^{\circ}C$ VCC = 3.3 V) 40
Figure 38	PI 44
Figure 39	PI 68 88
Figure 40	PI 84 90
Figure 41	PQ100 93
Figure 42	PO144 97
Figure 43	PQ160 102
Figure 44	PQ208 107
Figure 45	PQ240 113
Figure 46	VQ80 120
Figure 47	VQ100 123
Figure 18	ΤΟ176
Figure 40	CO208 131
Figure 50	CQ256
99.0000	

Figure 51	BG272	145
Figure 52	PG132	153
Figure 53	CQ172	158

Figure 4 • 42MX S-Module Implementation

Up to 7-Input Function Plus D-Type Flip-Flop with Clear

Up to 7-Input Function Plus Latch

Up to 4-Input Function Plus Latch with Clear

Up to 8-Input Function (Same as C-Module)

A42MX24 and A42MX36 devices contain D-modules, which are arranged around the periphery of the device. D-modules contain wide-decode circuitry, providing a fast, wide-input AND function similar to that found in CPLD architectures (Figure 5, page 9). The D-module allows A42MX24 and A42MX36 devices to perform wide-decode functions at speeds comparable to CPLDs and PALs. The output of the D-module has a programmable inverter for active HIGH or LOW assertion. The D-module output is hardwired to an output pin, and can also be fed back into the array to be incorporated into other logic.

3.2.2 Dual-Port SRAM Modules

The A42MX36 device contains dual-port SRAM modules that have been optimized for synchronous or asynchronous applications. The SRAM modules are arranged in 256-bit blocks that can be configured as 32x8 or 64x4. SRAM modules can be cascaded together to form memory spaces of user-definable width and depth. A block diagram of the A42MX36 dual-port SRAM block is shown in Figure 6, page 9.

The A42MX36 SRAM modules are true dual-port structures containing independent read and write ports. Each SRAM module contains six bits of read and write addressing (RDAD[5:0] and WRAD[5:0], respectively) for 64x4-bit blocks. When configured in byte mode, the highest order address bits (RDAD5 and WRAD5) are not used. The read and write ports of the SRAM block contain independent clocks (RCLK and WCLK) with programmable polarities offering active HIGH or LOW implementation. The SRAM block contains eight data inputs (WD[7:0]), and eight outputs (RD[7:0]), which are connected to segmented vertical routing tracks.

The A42MX36 dual-port SRAM blocks provide an optimal solution for high-speed buffered applications requiring FIFO and LIFO queues. The ACTgen Macro Builder within Microsemi's designer software provides capability to quickly design memory functions with the SRAM blocks. Unused SRAM blocks can be used to implement registers for other user logic within the design.

Figure 8 • Clock Networks of 42MX Devices

Figure 9 • Quadrant Clock Network of A42MX36 Devices

Note: *QCLK1IN, QCLK2IN, QCLK3IN, and QCLK4IN are internally-generated signals.

3.2.5 MultiPlex I/O Modules

42MX devices feature Multiplex I/Os and support 5.0 V, 3.3 V, and mixed 3.3 V/5.0 V operations.

The MultiPlex I/O modules provide the interface between the device pins and the logic array. Figure 10, page 12 is a block diagram of the 42MX I/O module. A variety of user functions, determined by a library macro selection, can be implemented in the module. (See the *Antifuse Macro Library Guide* for more information.) All 42MX I/O modules contain tristate buffers, with input and output latches that can be configured for input, output, or bidirectional operation.

All 42MX devices contain flexible I/O structures, where each output pin has a dedicated output-enable control (Figure 10, page 12). The I/O module can be used to latch input or output data, or both, providing fast set-up time. In addition, the Designer software tools can build a D-type flip-flop using a C-module combined with an I/O module to register input and output signals. See the *Antifuse Macro Library Guide* for more details.

A42MX24 and A42MX36 devices also offer selectable PCI output drives, enabling 100% compliance with version 2.1 of the PCI specification. For low-power systems, all inputs and outputs are turned off to reduce current consumption to below 500 μ A.

To achieve 5.0 V or 3.3 V PCI-compliant output drives on A42MX24 and A42MX36 devices, a chip-wide PCI fuse is programmed via the Device Selection Wizard in the Designer software (Figure 11, page 12). When the PCI fuse is not programmed, the output drive is standard.

Figure 30 • 42MX SRAM Write Operation

Note: Identical timing for falling edge clock

	Temperature												
40MX Voltage	–55°C	-40°C	0°C	25°C	70°C	85°C	125°C						
3.60	0.83	0.85	0.92	0.96	1.14	1.25	1.53						

Table 31 • 40MX Temperature and Voltage Derating Factors (Normalized to TJ = 25°C, VCC = 3.3 V)

Figure 37 • 40MX Junction Temperature and Voltage Derating Curves (Normalized to T_J = 25°C, VCC = 3.3 V)

Voltage (V)

Note: This derating factor applies to all routing and propagation delays

3.11.5 PCI System Timing Specification

The following tables list the critical PCI timing parameters and the corresponding timing parameters for the MX PCI-compliant devices.

3.11.6 PCI Models

Microsemi provides synthesizable VHDL and Verilog-HDL models for a PCI Target interface, a PCI Target and Target+DMA Master interface. Contact the Microsemi sales representative for more details.

Table 32 • Clock Specification for 33 MHz PCI

		PCI	A42MX	24	A42MX			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{CYC}	CLK Cycle Time	30	-	4.0	-	4.0	-	ns
t _{HIGH}	CLK High Time	11	-	1.9	-	1.9	-	ns
t _{LOW}	CLK Low Time	11	-	1.9	-	1.9	-	ns

Table 33 • Timing Parameters for 33 MHz PCI

		PCI	A42N	IX24	A42N			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{VAL}	CLK to Signal Valid—Bused Signals	2	11	2.0	9.0	2.0	9.0	ns
t _{VAL(PTP)}	CLK to Signal Valid—Point-to-Point	2 ²	12	2.0	9.0	2.0	9.0	ns
t _{ON}	Float to Active	2	_	2.0	4.0	2.0	4.0	ns
t _{OFF}	Active to Float	-	28	-	8.3 ¹	-	8.3 ¹	ns
t _{SU}	Input Set-Up Time to CLK—Bused Signals	7	_	1.5	-	1.5	-	ns

			–3 Sp	beed	–2 Sp	beed	–1 Sp	beed	Std Speed		-F Speed		
Paramete	r / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _P	Minimum Period	FO = 16	6.5		7.5		8.5		10.1		14.1		ns
		FO = 128	6.8		7.8		8.9		10.4		14.6		
f _{MAX}	Maximum	FO = 16		113		105		96		83		50	MHz
	Frequency	FO = 128		109		101		92		80		48	
TTL Outp	ut Module Timing ⁴												
t _{DLH}	Data-to-Pad HIGH			4.7		5.4		6.1		7.2		10.0	ns
t _{DHL}	Data-to-Pad LOW			5.6		6.4		7.3		8.6		12.0	ns
t _{ENZH}	Enable Pad Z to HIG	θH		5.2		6.0		6.8		8.1		11.3	ns
t _{ENZL}	Enable Pad Z to LO	W		6.6		7.6		8.6		10.1		14.1	ns
t _{ENHZ}	Enable Pad HIGH to	νZ		11.1		12.8		14.5		17.1		23.9	ns
t _{ENLZ}	Enable Pad LOW to	Z		8.2		9.5		10.7		12.6		17.7	ns
d _{TLH}	Delta LOW to HIGH			0.03		0.03		0.04		0.04		0.06	ns/pF
d _{THL}	Delta HIGH to LOW			0.04		0.04		0.05		0.06		0.08	ns/pF

Table 35 •A40MX02 Timing Characteristics (Nominal 3.3 V Operation) (continued)
(Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70° C)

		-3 Speed -2		–2 Sj	-2 Speed -1 Speed		beed	Std Speed		-F Speed		
Parameter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.5		4.9		5.6		6.6		9.2		ns
t _A	Flip-Flop Clock Input Period	3.5		3.8		4.3		5.1		7.1		ns
t _{INH}	Input Buffer Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Buffer Latch Set-Up	0.3		0.3		0.4		0.4		0.6		ns
t _{OUTH}	Output Buffer Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{OUTSU}	Output Buffer Latch Set-Up	0.3		0.3		0.4		0.4		0.6		ns
f _{MAX}	Flip-Flop (Latch) Clock Frequency	/	268		244		224		195		117	MHz

Table 38 • A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial Conditions, VCCA = 4.75 V, T_J = 70°C)

			–3 Sp	beed	–2 S	peed	–1 Sp	beed	Std S	Speed	–F S	peed	
Paramet	er / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input Mo	odule Propagation Del	ays											
t _{INYH}	Pad-to-Y HIGH			1.0		1.2		1.3		1.6		2.2	ns
t _{INYL}	Pad-to-Y LOW			0.8		0.9		1.0		1.2		1.7	ns
t _{INGH}	G to Y HIGH			1.3		1.4		1.6		1.9		2.7	ns
t _{INGL}	G to Y LOW			1.3		1.4		1.6		1.9		2.7	ns
Input Mo	odule Predicted Routin	ng Delays ²											
t _{IRD1}	FO = 1 Routing Delay	,		2.0		2.2		2.5		3.0		4.2	ns
t _{IRD2}	FO = 2 Routing Delay	,		2.3		2.5		2.9		3.4		4.7	ns
t _{IRD3}	FO = 3 Routing Delay	,		2.5		2.8		3.2		3.7		5.2	ns
t _{IRD4}	FO = 4 Routing Delay	,		2.8		3.1		3.5		4.1		5.7	ns
t _{IRD8}	FO = 8 Routing Delay	,		3.7		4.1		4.7		5.5		7.7	ns
Global C	Clock Network												
t _{CKH}	Input LOW to HIGH	FO = 32		2.4		2.7		3.0		3.6		5.0	ns
		FO = 256		2.7		3.0		3.4		4.0		5.5	ns
t _{CKL}	Input HIGH to LOW	FO = 32		3.5		3.9		4.4		5.2		7.3	ns
	Minimum Dulas	FO = 250	10	3.9	4.4	4.3	4 5	4.9	4.0	5.7	25	0.0	115
ι _{ΡΜΗ}	Width HIGH	FO = 32 FO = 256	1.2 1.3		1.4 1.5		1.5 1.7		1.8 2.0		2.5 2.7		ns ns
t _{PWL}	Minimum Pulse	FO = 32	1.2		1.4		1.5		1.8		2.5		ns
	Width LOW	FO = 256	1.3		1.5		1.7		2.0		2.7		ns
t _{CKSW}	Maximum Skew	FO = 32		0.3		0.3		0.4		0.5		0.6	ns
		FO = 256		0.3		0.3		0.4		0.5		0.6	ns
t _{SUEXT}	Input Latch	FO = 32	0.0		0.0		0.0		0.0		0.0		ns
	External Set-Op	FU = 256	0.0		0.0		0.0		0.0		0.0		ns
t _{HEXT}	Input Latch	FO = 32	2.3		2.6		3.0		3.5		4.9 5.5		ns
		FU = 230	2.2		2.4		3.3		3.9		5.5		115
t _P	Minimum Period	FO = 32 FO = 256	3.4 3.7		3.7 1		4.0 4.5		4.7 5.2		7.8 8.6		ns ns
4		r = 200	5.7	206	- - 1	260	-1 .5	247	0.2	215	0.0	100	MLI-
^I MAX	waximum Frequency	FO = 32 FO = 256		296 268		269 244		∠47 224		∠15 195		129 117	MHz

Table 38 •A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

Table 41 • A42MX16 Timing Characteristics (Nominal 3.3 V Operation) (continued)(Worst-Case Commercial Conditions, VCCA = 3.0 V, T_J = 70°C)

		-3 Speed		-2 Speed		-1 Speed		Std Speed		–F Speed		
Parameter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{ACO}	Array Clock-to-Out (Pad-to-Pad),64 Clock Loading		11.3		12.5		14.2		16.7		23.3	ns
d _{TLH}	Capacitive Loading, LOW to HIGH		0.04		0.04		0.05		0.06		0.08	ns/pF
d_{THL}	Capacitive Loading, HIGH to LOW		0.05		0.05		0.06		0.07		0.10	ns/pF

1. For dual-module macros use tPD1 + tRD1 + taped, to + tRD1 + taped, or tPD1 + tRD1 + tusk, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing ansalysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G inputs subtracts (adds) to the internal setup (hold) time.

5. Delays based on 35 pF loading.

Table 42 •A42MX24 Timing Characteristics (Nominal 5.0 V Operation) (Worst-Case Commercial Conditions,
VCCA = 4.75 V, T_J = 70°C)

		–3 Spee		-2 Speed		-1 Speed		Std Speed		–F Speed		_
Parameter	r / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mod	dule Combinatorial Functions ¹											
t _{PD}	Internal Array Module Delay		1.2		1.3		1.5		1.8		2.5	ns
t _{PDD}	Internal Decode Module Delay		1.4		1.6		1.8		2.1		3.0	ns
Logic Mod	dule Predicted Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.8		0.9		1.0		1.2		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.0		1.2		1.3		1.5		2.1	ns
t _{RD3}	FO = 3 Routing Delay		1.3		1.4		1.6		1.9		2.6	ns
t _{RD4}	FO = 4 Routing Delay		1.5		1.7		1.9		2.2		3.1	ns
t _{RD5}	FO = 8 Routing Delay		2.4		2.7		3.0		3.6		5.0	ns
Logic Mod	dule Sequential Timing ^{3, 4}											
t _{CO}	Flip-Flop Clock-to-Output		1.3		1.4		1.6		1.9		2.7	ns
t _{GO}	Latch Gate-to-Output		1.2		1.3		1.5		1.8		2.5	ns
t _{SUD}	Flip-Flop (Latch) Set-Up Time	0.3		0.4		0.4		0.5		0.7		ns
t _{HD}	Flip-Flop (Latch) Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RO}	Flip-Flop (Latch) Reset-to-Output		1.4		1.6		1.8		2.1		2.9	ns
t _{SUENA}	Flip-Flop (Latch) Enable Set-Up	0.4		0.5		0.5		0.6		0.8		ns
t _{HENA}	Flip-Flop (Latch) Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WCLKA}	Flip-Flop (Latch) Clock Active Pulse Width	3.3		3.7		4.2		4.9		6.9		ns
t _{WASYN}	Flip-Flop (Latch) Asynchronous Pulse Width	4.4		4.8		5.3		6.5		9.0		ns

		–3 S	peed	–2 S	beed	–1 Sp	beed	Std S	speed	–F Sp	beed	
Parame	eter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS	Output Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		3.5		3.9		4.5		5.2		7.3	ns
t _{DHL}	Data-to-Pad LOW		2.5		2.7		3.1		3.6		5.1	ns
t _{ENZH}	Enable Pad Z to HIGH		2.7		3.0		3.3		3.9		5.5	ns
t _{ENZL}	Enable Pad Z to LOW		2.9		3.3		3.7		4.3		6.1	ns
t _{ENHZ}	Enable Pad HIGH to Z		5.3		5.8		6.6		7.8		10.9	ns
t _{ENLZ}	Enable Pad LOW to Z		4.9		5.5		6.2		7.3		10.2	ns
t _{GLH}	G-to-Pad HIGH		5.0		5.6		6.3		7.5		10.4	ns
t _{GHL}	G-to-Pad LOW		5.0		5.6		6.3		7.5		10.4	ns
t _{LSU}	I/O Latch Set-Up	0.5		0.5		0.6		0.7		1.0		ns
t _{LH}	I/O Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O		5.7		6.3		7.1		8.4		11.8	ns
t _{ACO}	Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O		7.8		8.6		9.8		11.5		16.1	ns
d _{TLH}	Capacitive Loading, LOW to HIGH		0.07		0.08		0.09		0.10		0.14	ns/pF
d_{THL}	Capacitive Loading, HIGH to LOW		0.07		0.08		0.09		0.10		0.14	ns/pF

Table 44 • A42MX36 Timing Characteristics (Nominal 5.0 V Operation)(Worst-Case Commercial Conditions, $VCCA = 4.75 V, T_{J} = 70^{\circ}C)$

 For dual-module macros, use t_{PD1} + t_{RD1} + t_{PDn}, t_{CO} + t_{RD1} + t_{PDn}, or t_{PD1} + t_{RD1} + t_{SUD}, whichever is appropriate.
 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating 2. device performance. Post-route timing analysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External 4. setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

Delays based on 35 pF loading. 5.

Table 45 • A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, $VCCA = 3.0 V, T_{.1} = 70^{\circ}C)$

		–3 Sj	beed	–2 S	peed	–1 Sp	beed	Std S	speed	–F S	peed	
Parameter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mo	odule Combinatorial Functions ¹											
t _{PD}	Internal Array Module Delay		1.9		2.1		2.3		2.7		3.8	ns
t _{PDD}	Internal Decode Module Delay		2.2		2.5		2.8		3.3		4.7	ns
Logic Module Predicted Routing Delays ²												
t _{RD1}	FO = 1 Routing Delay		1.3		1.5		1.7		2.0		2.7	ns
t _{RD2}	FO = 2 Routing Delay		1.8		2.0		2.3		2.7		3.7	ns
t _{RD3}	FO = 3 Routing Delay		2.3		2.5		2.8		3.4		4.7	ns
t _{RD4}	FO = 4 Routing Delay		2.8		3.1		3.5		4.1		5.7	ns

Table 49 • PL84

PL84				
Pin Number	A40MX04 Function	A42MX09 Function	A42MX16 Function	A42MX24 Function
10	I/O	DCLK, I/O	DCLK, I/O	DCLK, I/O
11	I/O	I/O	I/O	I/O
12	NC	MODE	MODE	MODE
13	I/O	I/O	I/O	I/O
14	I/O	I/O	I/O	I/O
15	I/O	I/O	I/O	I/O
16	I/O	I/O	I/O	I/O
17	I/O	I/O	I/O	I/O
18	GND	I/O	I/O	I/O
19	GND	I/O	I/O	I/O
20	I/O	I/O	I/O	I/O
21	I/O	I/O	I/O	I/O
22	I/O	VCCA	VCCI	VCCI
23	I/O	VCCI	VCCA	VCCA
24	I/O	I/O	I/O	I/O
25	VCC	I/O	I/O	I/O
26	VCC	I/O	I/O	I/O
27	I/O	I/O	I/O	I/O
28	I/O	GND	GND	GND
29	I/O	I/O	I/O	I/O
30	I/O	I/O	I/O	I/O
31	I/O	I/O	I/O	I/O
32	I/O	I/O	I/O	I/O
33	VCC	I/O	I/O	I/O
34	I/O	I/O	I/O	TMS, I/O
35	I/O	I/O	I/O	TDI, I/O
36	I/O	I/O	I/O	WD, I/O
37	I/O	I/O	I/O	I/O
38	I/O	I/O	I/O	WD, I/O
39	I/O	I/O	I/O	WD, I/O
40	GND	I/O	I/O	I/O
41	I/O	I/O	I/O	I/O
42	I/O	I/O	I/O	I/O
43	I/O	VCCA	VCCA	VCCA
44	I/O	I/O	I/O	WD, I/O
45	I/O	I/O	I/O	WD, I/O
46	VCC	I/O	I/O	WD, I/O

Figure 42 • PQ144

Table 51 • PQ144

PQ144			
Pin Number	A42MX09 Function		
1	I/O		
2	MODE		
3	I/O		
4	I/O		
5	I/O		

PQ144		
Pin Number	A42MX09 Function	
117	GNDI	
118	NC	
119	I/O	
120	I/O	
121	I/O	
122	I/O	
123	PROBA	
124	I/O	
125	CLKA	
126	VCC	
127	VCCI	
128	NC	
129	I/O	
130	CLKB	
131	I/O	
132	PROBB	
133	I/O	
134	I/O	
135	I/O	
136	GND	
137	GNDI	
138	NC	
139	I/O	
140	I/O	
141	I/O	
142	I/O	
143	I/O	
144	DCLK	

Table 51 • PQ144

Table 53 • PQ208

PQ208			
Pin Number	A42MX16 Function	A42MX24 Function	A42MX36 Function
95	NC	I/O	I/O
96	NC	I/O	I/O
97	NC	I/O	I/O
98	VCCI	VCCI	VCCI
99	I/O	I/O	I/O
100	I/O	WD, I/O	WD, I/O
101	I/O	WD, I/O	WD, I/O
102	I/O	I/O	I/O
103	SDO, I/O	SDO, TDO, I/O	SDO, TDO, I/O
104	I/O	I/O	I/O
105	GND	GND	GND
106	NC	VCCA	VCCA
107	I/O	I/O	I/O
108	I/O	I/O	I/O
109	I/O	I/O	I/O
110	I/O	I/O	I/O
111	I/O	I/O	I/O
112	NC	I/O	I/O
113	NC	I/O	I/O
114	NC	I/O	I/O
115	NC	I/O	I/O
116	I/O	I/O	I/O
117	I/O	I/O	I/O
118	I/O	I/O	I/O
119	I/O	I/O	I/O
120	I/O	I/O	I/O
121	I/O	I/O	I/O
122	I/O	I/O	I/O
123	I/O	I/O	I/O
124	I/O	I/O	I/O
125	I/O	I/O	I/O
126	GND	GND	GND
127	I/O	I/O	I/O
128	I/O	TCK, I/O	TCK, I/O
129	LP	LP	LP
130	VCCA	VCCA	VCCA
131	GND	GND	GND

Table 54 •	PQ240	
		-

PQ240				
Pin Number	A42MX36 Function			
237	GND			
238	MODE			
239	VCCA			
240	GND			

Figure 46 • VQ80

Table 55 • VQ80

VQ80		
Pin Number	A40MX02 Function	A40MX04 Function
1	I/O	I/O
2	NC	I/O
3	NC	I/O
4	NC	I/O
5	I/O	I/O
6	I/O	I/O
7	GND	GND
8	I/O	I/O
9	I/O	I/O
10	I/O	I/O
11	I/O	I/O
12	I/O	I/O

Table 56 • VQ100

VQ100		
Pin Number	A42MX09 Function	A42MX16 Function
1	I/O	I/O
2	MODE	MODE
3	I/O	I/O
4	I/O	I/O
5	I/O	I/O
6	I/O	I/O
7	GND	GND
8	I/O	I/O
9	I/O	I/O
10	I/O	I/O
11	I/O	I/O
12	I/O	I/O
13	I/O	I/O
14	VCCA	NC
15	VCCI	VCCI
16	I/O	I/O
17	I/O	I/O
18	I/O	I/O
19	I/O	I/O
20	GND	GND

VQ100		
Pin Number	A42MX09 Function	A42MX16 Function
93	I/O	I/O
)4	GND	GND
95	I/O	I/O
6	I/O	I/O
7	I/O	I/O
8	I/O	I/O
9	I/O	I/O
00	DCLK, I/O	DCLK, I/O

Figure 48 • TQ176

Table 57 • TQ176

TQ176			
Pin Number	A42MX09 Function	A42MX16 Function	A42MX24 Function
1	GND	GND	GND
2	MODE	MODE	MODE
3	I/O	I/O	I/O
4	I/O	I/O	I/O
5	I/O	I/O	I/O
6	I/O	I/O	I/O
7	I/O	I/O	I/O
8	NC	NC	I/O
9	I/O	I/O	I/O

Table 60 • BG	272
BG272	
Pin Number	A42MX36 Function
C3	GND
C4	I/O
C5	WD, I/O
C6	I/O
C7	QCLKC, I/O
C8	I/O
C9	I/O
C10	CLKB
C11	PRA, I/O
C12	WD, I/O
C13	I/O
C14	QCLKD, I/O
C15	I/O
C16	WD, I/O
C17	SDI, I/O
C18	I/O
C19	I/O
C20	I/O
D1	I/O
D2	I/O
D3	I/O
D4	I/O
D5	VCCI
D6	I/O
D7	I/O
D8	VCCA
D9	WD, I/O
D10	VCCI
D11	I/O
D12	VCCI
D13	I/O
D14	VCCI
D15	I/O
D16	VCCA
D17	GND
D18	I/O
D19	I/O

Table 60 • BG272	
BG272	
Pin Number	A42MX36 Function
J9	GND
J10	GND
J11	GND
J12	GND
J17	VCCA
J18	I/O
J19	I/O
J20	I/O
K1	I/O
K2	I/O
К3	I/O
K4	VCCI
К9	GND
K10	GND
K11	GND
K12	GND
K17	I/O
K18	VCCA
K19	VCCA
K20	LP
L1	I/O
L2	I/O
L3	VCCA
L4	VCCA
L9	GND
L10	GND
L11	GND
L12	GND
L17	VCCI
L18	I/O
L19	I/O
L20	TCK, I/O
M1	I/O
M2	I/O
M3	I/O
M4	VCCI
M9	GND