

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	104
Number of Gates	14000
Voltage - Supply	3V ~ 3.6V, 4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	176-LQFP
Supplier Device Package	176-TQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a42mx09-3tq176

Email: info@E-XFL.COM

E·XF

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2 • 42MX C-Module Implementation

The 42MX devices contain three types of logic modules: combinatorial (C-modules), sequential (S-modules) and decode (D-modules). The following figure illustrates the combinatorial logic module. The S-module, shown in Figure 4, page 8, implements the same combinatorial logic function as the C-module while adding a sequential element. The sequential element can be configured as either a D-flip-flop or a transparent latch. The S-module register can be bypassed so that it implements purely combinatorial logic.

3.2.3.3 Antifuse Structures

An antifuse is a "normally open" structure. The use of antifuses to implement a programmable logic device results in highly testable structures as well as efficient programming algorithms. There are no pre-existing connections; temporary connections can be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed and individual circuit structures to be tested, which can be done before and after programming. For instance, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified.

Figure 7 • MX Routing Structure

3.2.4 Clock Networks

The 40MX devices have one global clock distribution network (CLK). A signal can be put on the CLK network by being routed through the CLKBUF buffer.

In 42MX devices, there are two low-skew, high-fanout clock distribution networks, referred to as CLKA and CLKB. Each network has a clock module (CLKMOD) that can select the source of the clock signal from any of the following (Figure 8, page 11):

- Externally from the CLKA pad, using CLKBUF buffer
- Externally from the CLKB pad, using CLKBUF buffer
- Internally from the CLKINTA input, using CLKINT buffer
- Internally from the CLKINTB input, using CLKINT buffer

The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel.

Clock input pads in both 40MX and 42MX devices can also be used as normal I/Os, bypassing the clock networks.

The A42MX36 device has four additional register control resources, called quadrant clock networks (Figure 9, page 11). Each quadrant clock provides a local, high-fanout resource to the contiguous logic modules within its quadrant of the device. Quadrant clock signals can originate from specific I/O pins or from the internal array and can be used as a secondary register clock, register clear, or output enable.

Figure 8 • Clock Networks of 42MX Devices

Figure 9 • Quadrant Clock Network of A42MX36 Devices

Note: *QCLK1IN, QCLK2IN, QCLK3IN, and QCLK4IN are internally-generated signals.

3.2.5 MultiPlex I/O Modules

42MX devices feature Multiplex I/Os and support 5.0 V, 3.3 V, and mixed 3.3 V/5.0 V operations.

The MultiPlex I/O modules provide the interface between the device pins and the logic array. Figure 10, page 12 is a block diagram of the 42MX I/O module. A variety of user functions, determined by a library macro selection, can be implemented in the module. (See the *Antifuse Macro Library Guide* for more information.) All 42MX I/O modules contain tristate buffers, with input and output latches that can be configured for input, output, or bidirectional operation.

All 42MX devices contain flexible I/O structures, where each output pin has a dedicated output-enable control (Figure 10, page 12). The I/O module can be used to latch input or output data, or both, providing fast set-up time. In addition, the Designer software tools can build a D-type flip-flop using a C-module combined with an I/O module to register input and output signals. See the *Antifuse Macro Library Guide* for more details.

A42MX24 and A42MX36 devices also offer selectable PCI output drives, enabling 100% compliance with version 2.1 of the PCI specification. For low-power systems, all inputs and outputs are turned off to reduce current consumption to below 500 μ A.

To achieve 5.0 V or 3.3 V PCI-compliant output drives on A42MX24 and A42MX36 devices, a chip-wide PCI fuse is programmed via the Device Selection Wizard in the Designer software (Figure 11, page 12). When the PCI fuse is not programmed, the output drive is standard.

3. All outputs unloaded. All inputs = VCC/VCCI or GND

3.8 3.3 V Operating Conditions

The following table shows 3.3 V operating conditions.

Table 16 • Absolute Maximum Ratings for 40MX Devices*

Symbol	Parameter	Limits	Units
VCC	DC Supply Voltage	–0.5 to +7.0	V
VI	Input Voltage	-0.5 to VCC + 0.5	V
VO	Output Voltage	-0.5 to VCC + 0.5	V
t _{STG}	Storage Temperature	–65 to + 150	°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions.

Table 17 • Absolute Maximum Ratings for 42MX Devices*

Symbol	Parameter	Limits	Units	
VCCI	DC Supply Voltage for I/Os	-0.5 to +7.0	V	
VCCA	DC Supply Voltage for Array	-0.5 to +7.0	V	
VI	Input Voltage	-0.5 to VCCI+0.5	V	
VO	Output Voltage	-0.5 to VCCI+0.5	V	
t _{STG}	Storage Temperature	-65 to +150	°C	

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating conditions.

Table 18 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature Range*	0 to +70	-40 to +85	-55 to +125	°C
VCC (40MX)	3.0 to 3.6	3.0 to 3.6	3.0 to 3.6	V
VCCA (42MX)	3.0 to 3.6	3.0 to 3.6	3.0 to 3.6	V
VCCI (42MX)	3.0 to 3.6	3.0 to 3.6	3.0 to 3.6	V

Note: *Ambient temperature (T_A) is used for commercial and industrial grades; case temperature (T_C) is used for military grades.

All the following tables show various specifications and operating conditions of 40MX and 42MX FPGAs.

reliability. Devices should not be operated outside the recommended operating conditions.

 Table 21 •
 Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature Range*	0 to +70	-40 to +85	-55 to +125	°C
VCCA	4.75 to 5.25	4.5 to 5.5	4.5 to 5.5	V
VCCI	3.14 to 3.47	3.0 to 3.6	3.0 to 3.6	V

Note: *Ambient temperature (T_A) is used for commercial and industrial grades; case temperature (T_C) is used for military grades.

approximately a 3 ns to a 6 ns delay, which is represented statistically in higher fanout (FO=8) routing delays in the data sheet specifications section, shown in Table 34, page 41.

3.11.3 Timing Derating

MX devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature and worst-case processing.

3.11.4 Temperature and Voltage Derating Factors

The following tables and figures show temperature and voltage derating factors for 40MX and 42MX FPGAs.

Table 28 • 42MX Temperature and Voltage Derating Factors (Normalized to $T_J = 25^{\circ}C$, VCCA = 5.0 V)

	Temperature											
42MX Voltage	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C					
4.50	0.93	0.95	1.05	1.09	1.25	1.29	1.41					
4.75	0.88	0.90	1.00	1.03	1.18	1.22	1.34					
5.00	0.85	0.87	0.96	1.00	1.15	1.18	1.29					
5.25	0.84	0.86	0.95	0.97	1.12	1.14	1.28					
5.50	0.83	0.85	0.94	0.96	1.10	1.13	1.26					

Figure 34 • 42MX Junction Temperature and Voltage Derating Curves (Normalized to TJ = 25°C, VCCA = 5.0 V)

Note: This derating factor applies to all routing and propagation delays

Table 29 • 40MX Temperature and Voltage Derating Factors(Normalized to TJ = 25°C, VCC = 5.0 V)

	Temperature										
40MX Voltage	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C				
4.50	0.89	0.93	1.02	1.09	1.25	1.31	1.45				
4.75	0.84	0.88	0.97	1.03	1.18	1.24	1.37				
5.00	0.82	0.85	0.94	1.00	1.15	1.20	1.33				
5.25	0.80	0.82	0.91	0.97	1.12	1.16	1.29				
5.50	0.79	0.82	0.90	0.96	1.10	1.15	1.28				

			–3 S	peed	–2 S	peed	–1 Sp	eed	Std Speed		-F Speed		
Paramet	er / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input Mo	odule Predicted Routir	ng Delays1											
t _{IRD1}	FO = 1 Routing Delay	,		2.9		3.3		3.8		4.5		6.3	ns
t _{IRD2}	FO = 2 Routing Delay	,		3.6		4.2		4.8		5.6		7.8	ns
t _{IRD3}	FO = 3 Routing Delay	,		4.4		5.0		5.7		6.7		9.4	ns
t _{IRD4}	FO = 4 Routing Delay	,		5.1		5.9		6.7		7.8		11.0	ns
t _{IRD8}	FO = 8 Routing Delay			8.0		9.3		10.5		12.4		17.2	ns
Global C	lock Network												
t _{СКН}	Input LOW to HIGH	FO = 16 FO = 128		6.4 6.4		7.4 7.4		8.4 8.4		9.9 9.9		13.8 13.8	ns
t _{CKL}	Input HIGH to LOW	FO = 16 FO = 128		6.8 6.8		7.8 7.8		8.9 8.9		10.4 10.4		14.6 14.6	ns
t _{PWH}	Minimum Pulse Width HIGH	FO = 16 FO = 128	3.1 3.3		3.6 3.8		4.1 4.3		4.8 5.1		6.7 7.1		ns
t _{PWL}	Minimum Pulse Width LOW	FO = 16 FO = 128	3.1 3.3		3.6 3.8		4.1 4.3		4.8 5.1		6.7 7.1		ns
t _{CKSW}	Maximum Skew	FO = 16 FO = 128		0.6 0.8		0.6 0.9		0.7 1.0		0.8 1.2		1.2 1.6	ns
t _P	Minimum Period	FO = 16 FO = 128	6.5 6.8		7.5 7.8		8.5 8.9		10.1 10.4		14.1 14.6		ns
f _{MAX}	Maximum Frequency	FO = 16 FO = 128		113 109		105 101		96 92		83 80		50 48	MHz
TTL Out	put Module Timing ⁴												
t _{DLH}	Data-to-Pad HIGH			4.7		5.4		6.1		7.2		10.0	ns
t _{DHL}	Data-to-Pad LOW			5.6		6.4		7.3		8.6		12.0	ns
t _{ENZH}	Enable Pad Z to HIG	4		5.2		6.0		6.9		8.1		11.3	ns
t _{ENZL}	Enable Pad Z to LOW	1		6.6		7.6		8.6		10.1		14.1	ns
t _{ENHZ}	Enable Pad HIGH to 2	Z		11.1		12.8		14.5		17.1		23.9	ns
t _{ENLZ}	Enable Pad LOW to Z	-		8.2		9.5		10.7		12.6		17.7	ns
d _{TLH}	Delta LOW to HIGH			0.03		0.03		0.04		0.04		0.06	ns/pF
d _{THL}	Delta HIGH to LOW			0.04		0.04		0.05		0.06		0.08	ns/pF

Table 37 • A40MX04 Timing Characteristics (Nominal 3.3 V Operation) (continued)(Worst-Case Commercial Conditions, VCC = 3.0 V, T_J = 70°C)

			–3 Sp	beed	–2 S	peed	–1 Sp	beed	Std Speed		ed –F Speed		
Paramet	er / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Input Mo	odule Propagation Del	ays											
t _{INYH}	Pad-to-Y HIGH			1.0		1.2		1.3		1.6		2.2	ns
t _{INYL}	Pad-to-Y LOW			0.8		0.9		1.0		1.2		1.7	ns
t _{INGH}	G to Y HIGH			1.3		1.4		1.6		1.9		2.7	ns
t _{INGL}	G to Y LOW			1.3		1.4		1.6		1.9		2.7	ns
Input Mo	odule Predicted Routin	ng Delays ²											
t _{IRD1}	FO = 1 Routing Delay	,		2.0		2.2		2.5		3.0		4.2	ns
t _{IRD2}	FO = 2 Routing Delay	,		2.3		2.5		2.9		3.4		4.7	ns
t _{IRD3}	FO = 3 Routing Delay	,		2.5		2.8		3.2		3.7		5.2	ns
t _{IRD4}	FO = 4 Routing Delay	,		2.8		3.1		3.5		4.1		5.7	ns
t _{IRD8}	FO = 8 Routing Delay	,		3.7		4.1		4.7		5.5		7.7	ns
Global C	Clock Network												
t _{CKH}	Input LOW to HIGH	FO = 32		2.4		2.7		3.0		3.6		5.0	ns
		FO = 256		2.7		3.0		3.4		4.0		5.5	ns
t _{CKL}	Input HIGH to LOW	FO = 32		3.5		3.9		4.4		5.2		7.3	ns
	Minimum Dulas	FO = 250	10	3.9	4.4	4.3	4 5	4.9	4.0	5.7	25	0.0	115
ι _{ΡΜΗ}	Width HIGH	FO = 32 FO = 256	1.2 1.3		1.4 1.5		1.5 1.7		1.8 2.0		2.5 2.7		ns ns
t _{PWL}	Minimum Pulse	FO = 32	1.2		1.4		1.5		1.8		2.5		ns
	Width LOW	FO = 256	1.3		1.5		1.7		2.0		2.7		ns
t _{CKSW}	Maximum Skew	FO = 32		0.3		0.3		0.4		0.5		0.6	ns
		FO = 256		0.3		0.3		0.4		0.5		0.6	ns
t _{SUEXT}	Input Latch	FO = 32	0.0		0.0		0.0		0.0		0.0		ns
	External Set-Op	FU = 256	0.0		0.0		0.0		0.0		0.0		ns
t _{HEXT}	Input Latch	FO = 32	2.3		2.6		3.0		3.5		4.9 5.5		ns
		FU = 230	2.2		2.4		3.3		3.9		5.5		115
t _P	Minimum Period	FO = 32 FO = 256	3.4 3.7		3.7 1		4.0 4.5		4.7 5.2		7.8 8.6		ns ns
4		r = 200	5.7	206	- - 1	260	-1 .5	247	0.2	215	0.0	100	MLI-
^I MAX	waximum Frequency	FO = 32 FO = 256		296 268		269 244		∠47 224		∠15 195		129 117	MHz

Table 38 •A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 4.75 V, T_J = 70°C)

		–3 Sp	beed	–2 Speed –1 Sp		beed Std Speed		Speed	–F Speed			
Parame	ter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS C	Dutput Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		2.4		2.7		3.1		3.6		5.1	ns
t _{DHL}	Data-to-Pad LOW		2.9		3.2		3.6		4.3		6.0	ns
t _{ENZH}	Enable Pad Z to HIGH		2.7		2.9		3.3		3.9		5.5	ns
t _{ENZL}	Enable Pad Z to LOW		2.9		3.2		3.7		4.3		6.1	ns
t _{ENHZ}	Enable Pad HIGH to Z		4.9		5.4		6.2		7.3		10.2	ns
t _{ENLZ}	Enable Pad LOW to Z		5.3		5.9		6.7		7.9		11.1	ns
t _{GLH}	G-to-Pad HIGH		4.2		4.6		5.2		6.1		8.6	ns
t _{GHL}	G-to-Pad LOW		4.2		4.6		5.2		6.1		8.6	ns
t _{LSU}	I/O Latch Set-Up	0.5		0.5		0.6		0.7		1.0		ns
t _{LH}	I/O Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad), 64 Clock Loading		5.2		5.8		6.6		7.7		10.8	ns
t _{ACO}	Array Clock-to-Out (Pad-to-Pad), 64 Clock Loading		7.4		8.2		9.3		10.9		15.3	ns
d _{TLH}	Capacity Loading, LOW to HIGH		0.03		0.03		0.03		0.04		0.06	ns/pF
d _{THL}	Capacity Loading, HIGH to LOW		0.04		0.04		0.04		0.05		0.07	ns/pF

Table 38 • A42MX09 Timing Characteristics (Nominal 5.0 V Operation) (continued)(Worst-Case Commercial Conditions, VCCA = 4.75 V, $T_J = 70^{\circ}$ C)

 For dual-module macros, use t_{PD1} + t_{RD1} + t_{PDn}, t_{CO} + t_{RD1} + t_{PDn}, or t_{PD1} + t_{RD1} + t_{SUD}, whichever is appropriate.
 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External 4. setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

Delays based on 35 pF loading 5.

Table 39 •	A42MX09 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions,
	VCCA = 3.0 V, T _J = 70°C)

		-3 Speed -2 Speed -1		-1 Speed	-1 Speed Std Speed		
Paramete	Parameter / Description		Min. Max.	Min. Max.	Min. Max.	Min. Max.	Units
Logic Mo	odule Propagation Delays ¹						
t _{PD1}	Single Module	1.6	1.8	2.1	2.5	3.5	ns
t _{CO}	Sequential Clock-to-Q	1.8	2.0	2.3	2.7	3.8	ns
t _{GO}	Latch G-to-Q	1.7	1.9	2.1	2.5	3.5	ns
t _{RS}	Flip-Flop (Latch) Reset-to-Q	2.0	2.2	2.5	2.9	4.1	ns
Logic Mo	odule Predicted Routing Delays ²						
t _{RD1}	FO = 1 Routing Delay	1.0	1.1	1.2	1.4	2.0	ns
t _{RD2}	FO = 2 Routing Delay	1.3	1.4	1.6	1.9	2.7	ns
t _{RD3}	FO = 3 Routing Delay	1.6	1.8	2.0	2.4	3.3	ns

		–3 S	peed	–2 S	beed	–1 Sp	beed	Std S	speed	–F Sp	beed	
Parame	eter / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
CMOS	Output Module Timing ⁵											
t _{DLH}	Data-to-Pad HIGH		3.5		3.9		4.5		5.2		7.3	ns
t _{DHL}	Data-to-Pad LOW		2.5		2.7		3.1		3.6		5.1	ns
t _{ENZH}	Enable Pad Z to HIGH		2.7		3.0		3.3		3.9		5.5	ns
t _{ENZL}	Enable Pad Z to LOW		2.9		3.3		3.7		4.3		6.1	ns
t _{ENHZ}	Enable Pad HIGH to Z		5.3		5.8		6.6		7.8		10.9	ns
t _{ENLZ}	Enable Pad LOW to Z		4.9		5.5		6.2		7.3		10.2	ns
t _{GLH}	G-to-Pad HIGH		5.0		5.6		6.3		7.5		10.4	ns
t _{GHL}	G-to-Pad LOW		5.0		5.6		6.3		7.5		10.4	ns
t _{LSU}	I/O Latch Set-Up	0.5		0.5		0.6		0.7		1.0		ns
t _{LH}	I/O Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{LCO}	I/O Latch Clock-to-Out (Pad-to-Pad) 32 I/O		5.7		6.3		7.1		8.4		11.8	ns
t _{ACO}	Array Latch Clock-to-Out (Pad-to-Pad) 32 I/O		7.8		8.6		9.8		11.5		16.1	ns
d _{TLH}	Capacitive Loading, LOW to HIGH		0.07		0.08		0.09		0.10		0.14	ns/pF
d_{THL}	Capacitive Loading, HIGH to LOW		0.07		0.08		0.09		0.10		0.14	ns/pF

Table 44 • A42MX36 Timing Characteristics (Nominal 5.0 V Operation)(Worst-Case Commercial Conditions, $VCCA = 4.75 V, T_{J} = 70^{\circ}C)$

 For dual-module macros, use t_{PD1} + t_{RD1} + t_{PDn}, t_{CO} + t_{RD1} + t_{PDn}, or t_{PD1} + t_{RD1} + t_{SUD}, whichever is appropriate.
 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating 2. device performance. Post-route timing analysis or simulation is required to determine actual performance.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the Timer utility.

Set-up and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External 4. setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to the internal setup (hold) time.

Delays based on 35 pF loading. 5.

Table 45 • A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (Worst-Case Commercial Conditions, $VCCA = 3.0 V, T_{.1} = 70^{\circ}C)$

		–3 Sj	beed	–2 S	peed	–1 Sp	beed	Std S	speed	–F S	peed	
Parameter / Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Logic Mo	odule Combinatorial Functions ¹											
t _{PD}	Internal Array Module Delay		1.9		2.1		2.3		2.7		3.8	ns
t _{PDD}	Internal Decode Module Delay		2.2		2.5		2.8		3.3		4.7	ns
Logic Module Predicted Routing Delays ²												
t _{RD1}	FO = 1 Routing Delay		1.3		1.5		1.7		2.0		2.7	ns
t _{RD2}	FO = 2 Routing Delay		1.8		2.0		2.3		2.7		3.7	ns
t _{RD3}	FO = 3 Routing Delay		2.3		2.5		2.8		3.4		4.7	ns
t _{RD4}	FO = 4 Routing Delay		2.8		3.1		3.5		4.1		5.7	ns

		–3 SI	beed	–2 S	peed	–1 Sp	beed	Std S	speed	–F S	beed	
Paramete	er / Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Synchronous SRAM Operations (continued)												
t _{ADH}	Address/Data Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RENSU}	Read Enable Set-Up	0.9		1.0		1.1		1.3		1.8		ns
t _{RENH}	Read Enable Hold	4.8		5.3		6.0		7.0		9.8		ns
t _{WENSU}	Write Enable Set-Up	3.8		4.2		4.8		5.6		7.8		ns
t _{WENH}	Write Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{BENS}	Block Enable Set-Up	3.9		4.3		4.9		5.7		8.0		ns
t _{BENH}	Block Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
Asynchr	onous SRAM Operations											
t _{RPD}	Asynchronous Access Time		11.3		12.6		14.3		16.8		23.5	ns
t _{RDADV}	Read Address Valid	12.3		13.7		15.5		18.2		25.5		ns
t _{ADSU}	Address/Data Set-Up Time	2.3		2.5		2.8		3.4		4.8		ns
t _{ADH}	Address/Data Hold Time	0.0		0.0		0.0		0.0		0.0		ns
t _{RENSUA}	Read Enable Set-Up to Address Valid	0.9		1.0		1.1		1.3		1.8		ns
t _{RENHA}	Read Enable Hold	4.8		5.3		6.0		7.0		9.8		ns
t _{WENSU}	Write Enable Set-Up	3.8		4.2		4.8		5.6		7.8		ns
t _{WENH}	Write Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{DOH}	Data Out Hold Time		1.8		2.0		2.1		2.5		3.5	ns
Input Module Propagation Delays												
t _{INPY}	Input Data Pad-to-Y		1.4		1.6		1.8		2.1		3.0	ns
t _{INGO}	Input Latch Gate-to-Output		2.0		2.2		2.5		2.9		4.1	ns
t _{INH}	Input Latch Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input Latch Set-Up	0.7		0.7		0.8		1.0		1.4		ns
t _{ILA}	Latch Active Pulse Width	6.5		7.3		8.2		9.7		13.5		ns

Table 45 •A42MX36 Timing Characteristics (Nominal 3.3 V Operation) (continued) (Worst-Case Commercial
Conditions, VCCA = 3.0 V, T_J = 70°C)

Input, output, tristate or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/Os pins are configured by the Designer software as shown in Table 46, page 84.

Device	Configuration
A40MX02, A40MX04	Pulled LOW
A42MX09, A42MX16	Pulled LOW
A42MX24, A42MX36	Tristated

Table 46 • Configuration of Unused I/Os

In all cases, it is recommended to tie all unused MX I/O pins to LOW on the board. This applies to all dual-purpose pins when configured as I/Os as well.

LP, Low Power Mode

Controls the low power mode of all 42MX devices. The device is placed in the low power mode by connecting the LP pin to logic HIGH. In low power mode, all I/Os are tristated, all input buffers are turned OFF, and the core of the device is turned OFF. To exit the low power mode, the LP pin must be set LOW. The device enters the low power mode 800 ns after the LP pin is driven to a logic HIGH. It will resume normal operation in 200 µs after the LP pin is driven to a logic LOW.

MODE, Mode

Controls the use of multifunction pins (DCLK, PRA, PRB, SDI, TDO). The MODE pin is held HIGH to provide verification capability. The MODE pin should be terminated to GND through a $10k\Omega$ resistor so that the MODE pin can be pulled HIGH when required.

NC, No Connection

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

PRA, I/O

PRB, I/OProbe A/B

The Probe pin is used to output data from any user-defined design node within the device. Each diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. The Probe pin is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

QCLKA/B/C/D, I/O Quadrant Clock

Quadrant clock inputs for A42MX36 devices. When not used as a register control signal, these pins can function as user I/Os.

SDI, I/OSerial Data Input

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

SDO, I/OSerial Data Output

Serial data output for diagnostic probe and device programming. SDO is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW. SDO is available for 42MX devices only.

When Silicon Explorer II is being used, SDO will act as an output while the "checksum" command is run. It will return to user I/O when "checksum" is complete.

TCK, I/O Test Clock

Clock signal to shift the Boundary Scan Test (BST) data into the device. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TDI, I/OTest Data In

Serial data input for BST instructions and data. Data is shifted in on the rising edge of TCK. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TDO, I/OTest Data Out

Serial data output for BST instructions and test data. This pin functions as an I/O when "Reserve JTAG" is not checked in the Designer Software. BST pins are only available in A42MX24 and A42MX36 devices.

TMS, I/OTest Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO). In flexible mode when the TMS pin is set LOW, the TCK, TDI and TDO pins are boundary scan pins. Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the "logic reset" state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The "logic reset" state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications. IEEE JTAG specification recommends a $10k\Omega$ pull-up resistor on the pin. BST pins are only available in A42MX24 and A42MX36 devices.

VCC, Supply Voltage

Input supply voltage for 40MX devices

VCCA, Supply Voltage

Supply voltage for array in 42MX devices

VCCI, Supply Voltage

Supply voltage for I/Os in 42MX devices

WD, I/OWide Decode Output

When a wide decode module is used in a 42MX device this pin can be used as a dedicated output from the wide decode module. This direct connection eliminates additional interconnect delays associated with regular logic modules. To implement the direct I/O connection, connect an output buffer of any type to the output of the wide decode macro and place this output on one of the reserved WD pins.

PL44		
Pin Number	A40MX02 Function	A40MX04 Function
21	GND	GND
22	I/O	I/O
23	I/O	I/O
24	I/O	I/O
25	VCC	VCC
26	I/O	I/O
27	I/O	I/O
28	I/O	I/O
29	I/O	I/O
30	I/O	I/O
31	I/O	I/O
32	GND	GND
33	CLK, I/O	CLK, I/O
34	MODE	MODE
35	VCC	VCC
36	SDI, I/O	SDI, I/O
37	DCLK, I/O	DCLK, I/O
38	PRA, I/O	PRA, I/O
39	PRB, I/O	PRB, I/O
40	I/O	I/O
41	I/O	I/O
42	I/O	I/O
43	GND	GND
44	I/O	I/O

Table 47 • PL44

PL68		
Pin Number	A40MX02 Function	A40MX04 Function
24	I/O	I/O
25	VCC	VCC
26	I/O	I/O
27	I/O	I/O
28	I/O	I/O
29	I/O	I/O
30	I/O	I/O
31	I/O	I/O
32	GND	GND
33	I/O	I/O
34	I/O	I/O
35	I/O	I/O
36	I/O	I/O
37	I/O	I/O
38	VCC	VCC
39	I/O	I/O
40	I/O	I/O
41	I/O	I/O
42	I/O	I/O
43	I/O	I/O
44	I/O	I/O
45	I/O	I/O
46	I/O	I/O
47	I/O	I/O
48	I/O	I/O
49	GND	GND
50	I/O	I/O
51	I/O	I/O
52	CLK, I/O	CLK, I/O
53	I/O	I/O
54	MODE	MODE
55	VCC	VCC
56	SDI, I/O	SDI, I/O
57	DCLK, I/O	DCLK, I/O
58	PRA, I/O	PRA, I/O
59	PRB, I/O	PRB, I/O
60	I/O	I/O

Table 48 • PL68

Table 49 • PL84

Table 50 • PQ 100

PQ100				
Pin Number	A40MX02 Function	A40MX04 Function	A42MX09 Function	A42MX16 Function
1	NC	NC	I/O	I/O
2	NC	NC	DCLK, I/O	DCLK, I/O
3	NC	NC	I/O	I/O
4	NC	NC	MODE	MODE
5	NC	NC	I/O	I/O
6	PRB, I/O	PRB, I/O	I/O	I/O
7	I/O	I/O	I/O	I/O
8	I/O	I/O	I/O	I/O
9	I/O	I/O	GND	GND
10	I/O	I/O	I/O	I/O
11	I/O	I/O	I/O	I/O
12	I/O	I/O	I/O	I/O
13	GND	GND	I/O	I/O
14	I/O	I/O	I/O	I/O
15	I/O	I/O	I/O	I/O
16	I/O	I/O	VCCA	VCCA
17	I/O	I/O	VCCI	VCCA
18	I/O	I/O	I/O	I/O

VQ80		
Pin Number	A40MX02 Function	A40MX04 Function
13	VCC	VCC
14	I/O	I/O
15	I/O	I/O
16	I/O	I/O
17	NC	I/O
18	NC	I/O
19	NC	I/O
20	VCC	VCC
21	I/O	I/O
22	I/O	I/O
23	I/O	I/O
24	I/O	I/O
25	I/O	I/O
26	I/O	I/O
27	GND	GND
28	I/O	I/O
29	I/O	I/O
30	I/O	I/O
31	I/O	I/O
32	I/O	I/O
33	VCC	VCC
34	I/O	I/O
35	I/O	I/O
36	I/O	I/O
37	I/O	I/O
38	I/O	I/O
39	I/O	I/O
40	I/O	I/O
41	NC	I/O
42	NC	I/O
43	NC	I/O
44	I/O	I/O
45	I/O	I/O
46	I/O	I/O
47	GND	GND
48	I/O	I/O

VQ100		
Pin Number	A42MX09 Function	A42MX16 Function
57	I/O	I/O
58	I/O	I/O
59	I/O	I/O
60	I/O	I/O
61	I/O	I/O
62	LP	LP
63	VCCA	VCCA
64	VCCI	VCCI
65	VCCA	VCCA
66	I/O	I/O
67	I/O	I/O
68	I/O	I/O
69	I/O	I/O
70	GND	GND
71	I/O	I/O
72	I/O	I/O
73	I/O	I/O
74	I/O	I/O
75	I/O	I/O
76	I/O	I/O
7	SDI, I/O	SDI, I/O
78	I/O	I/O
79	I/O	I/O
30	I/O	I/O
31	I/O	I/O
32	GND	GND
83	I/O	I/O
34	I/O	I/O
35	PRA, I/O	PRA, I/O
36	I/O	I/O
37	CLKA, I/O	CLKA, I/C
38	VCCA	VCCA
39	I/O	I/O
90	CLKB, I/O	CLKB, I/O
91	I/O	I/O
92	PRB, I/O	PRB, I/O

CQ208	
Pin Number	A42MX36 Function
1	GND
2	VCCA
3	MODE
4	I/O
5	I/O
6	I/O
7	I/O
8	I/O
9	I/O
10	I/O
11	I/O
12	I/O
13	I/O
14	I/O
15	I/O
16	I/O
17	VCCA
18	I/O
19	I/O
20	I/O
21	I/O
22	GND
23	I/O
24	I/O
25	I/O
26	I/O
27	GND
28	VCCI
29	VCCA
30	I/O
31	I/O
32	VCCA
33	I/O
34	I/O
35	I/O
36	I/O

Table 60 • BG272					
BG272					
Pin Number	A42MX36 Function				
Y13	I/O				
Y14	I/O				
Y15	I/O				
Y16	I/O				
Y17	I/O				
Y18	WD, I/O				
Y19	GND				
Y20	GND				

Figure 52 • PG132

Orientation Pin

Table 61 • PG132

PG132		
Pin Number	A42MX09 Function	
_	PMPOUT	
B2	I/O	
A1	MODE	
B1	I/O	
D3	I/O	
C2	I/O	
C1	I/O	
D2	I/O	
D1	I/O	
E2	I/O	
E1	I/O	
F3	I/O	